

Table of Contents
Introduction

W ho This B ook Is For
W hat This B ook C overs
H ow This B ook Is Structured
W hat You N eed to U se This B ook
C onventions
Source C ode
Errata
p2p.w rox.com

Part I: H TM L and C SS
Lesson 1: Introduction to H TM L5

W hat Is a M arkup Language?
The Sim plest H TM L Page Possible
A n H TM L Tem plate
U nderstanding Elem ents and A ttributes
Try It

Lesson 2: B asic H TM L
Structuring Text
Links and Im ages
Try It

Lesson 3: Lists and Tables
Lists
Tables
Try It

Lesson 4: Introduction to C SS
C SS Selectors
C SS Files and Inline Styles
Specificity
Inheritance
B row ser D efaults
C hrom e Scratch Pad
Try It

Lesson 5: Structuring Pages w ith C SS

The B ox M odel
D isplay Type
Positioning Elem ents
C ontrolling Positions
Try It

Lesson 6: H TM L Form s
W hat Is a Form ?
A dding Fields to a Form
H TM L5 Input Fields
Try It

Lesson 7: Sem antic Tags
G rouping and Segm enting C ontent
Styling Sem antic Tags w ith C SS
M icroform ats
Sum m ing U p
Try It

Lesson 8: H TM L5 Validation
A dding Validation R ules
C ustom izing Validation
D isabling Validation
Try It

Lesson 9: D rag and D rop
U nderstanding Events
D rag and D rop Exam ple
Try It

Lesson 10: D ynam ic Elem ents
Sum m ary and D etails Tags
Progress B ar and M eter
R ange Elem ent
Polyfills
Try It

Part II: D ynam ic H TM L5 W eb A pplications w ith JavaScript and jQ uery
Lesson 11: JavaScript

JavaScript C onsole
D ata Types
C ontrol Structures

Truthy and Falsy Values
D ynam ic Typing
Try It

Lesson 12: D ebugging
Try It

Lesson 13: Functions
C losures
H oisting and B lock Scope
A rgum ents
B ind
Try It

Lesson 14: O bjects
O bject Literals
Prototypes
C onstructor Functions
M odules
Try It

Lesson 15: JSO N
R eplacing and R eviving
Try It

Lesson 16: D ocum ent O bject M odel
N odes and O bjects
Try It

Lesson 17: jQ uery Selection
Loading jQ uery
Selecting Elem ents
Pseudo-selectors
Selection W ithin a C ontext
W rapped O bjects
Try It

Lesson 18: jQ uery Traversal and M anipulation
Traversal
C haining
M anipulation
C hanging Elem ents
Iteration

Try It
Lesson 19: jQ uery Events

R egistering Event Listeners
D elegated Event Listeners
Form Events
Screen Events
A nim ation
Try It

Lesson 20: D ata A ttributes and Tem plates
Tem plate Tag
D ata A ttributes
U sing the Tem plate
Try It

Lesson 21: jQ uery Plugins
jQ uery U I
W riting a Plugin
Try It

Part III: H TM L5 M ultim edia
Lesson 22: H TM L5 A udio

File Form ats
A udio Tag
C ontrolling Playback
Try It

Lesson 23: H TM L5 V ideo
File Form ats
C ontrolling Volum e
C ontrolling Playback Speed
C ontrolling V ideo Size
M edia Source Extensions
Encrypted M edia Extensions
W eb C ryptography
Try It

Lesson 24: C anvas: Part I
Sim ple D raw ing
D raw ing Lines
C ircles and C urves

D raw ing Text
Try It

Lesson 25: C anvas: Part II
Linear G radients
Shadow s
Im ages
Transform ing Shapes
B asic A nim ation
Try It

Lesson 26: C SS3: Part I
Selectors
C SS B orders
C ustom Fonts
Try It

Lesson 27: C SS3: Part II
Linear G radients
C alc Function
Text Effects
2D Transform ations
Transitions
Try It

Lesson 28: C SS3 M edia Q ueries
A dding M edia Q ueries
External Stylesheets
Try It

Part IV: H TM L5 A PIs
Lesson 29: W eb Servers

U R Ls
C hoosing a W eb Server
Try It

Lesson 30: W eb Storage
C lient-Side Storage
W eb Storage A PI
Storing Structured D ata
Try It

Lesson 31: IndexedD B

C reating a D atabase
Storing D ata
R eading D ata
D eleting D ata
Try It

Lesson 32: A pplication C ache
M anifest Files
U pdating R esources
C ache Events
Try It

Lesson 33: W eb W orkers
JavaScript Event M odel
W eb W orkers
Try It

Lesson 34: Files
FileR eader A PI
O ther File-R elated A PIs
Try It

Lesson 35: A JA X
A JA X R equests
Try It

Lesson 36: Prom ises
W orking w ith Prom ises
C reating Prom ises
Try It

Part V: M obile
Lesson 37: R esponsive W eb D esign

Testing Screen R esolution
Flexible G rids
M edia Q ueries
Try It

Lesson 38: Location A PI
M onitor M ovem ent
Loading the A pplication
Try It

Lesson 39: jQ uery M obile: Part I

U nderstanding jQ uery M obile
JQ U ERY M obile Pages
Try It

Lesson 40: jQ uery M obile: Part II
U I C om ponents
Events
Try It

C opyright
A bout the A uthor
C redits
A cknow ledgm ents
A dvertisem ent
End U ser License A greem ent

List of Illustrations
Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.5

Figure 1.6

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 6.1

Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 7.1

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

Figure 8.5

Figure 9.1

Figure 9.2

Figure 10.1

Figure 10.2

Figure 10.3

Figure 10.4

Figure 10.5

Figure 10.6

Figure 10.7

Figure 11.1

Figure 11.2

Figure 11.3

Figure 12.1

Figure 12.2

Figure 12.3

Figure 12.4

Figure 12.5

Figure 12.6

Figure 12.7

Figure 12.8

Figure 12.9

Figure 12.10

Figure 15.1

Figure 16.1

Figure 16.2

Figure 16.3

Figure 17.1

Figure 17.2

Figure 18.1

Figure 18.2

Figure 18.3

Figure 18.4

Figure 18.5

Figure 19.1

Figure 19.2

Figure 20.1

Figure 21.1

Figure 21.2

Figure 21.3

Figure 21.4

Figure 22.1

Figure 22.2

Figure 22.3

Figure 22.4

Figure 23.1

Figure 24.1

Figure 24.2

Figure 24.3

Figure 24.4

Figure 24.5

Figure 24.6

Figure 24.7

Figure 24.8

Figure 24.9

Figure 24.10

Figure 24.11

Figure 24.12

Figure 25.1

Figure 25.2

Figure 25.3

Figure 25.4

Figure 25.5

Figure 25.6

Figure 25.7

Figure 25.8

Figure 25.9

Figure 26.1

Figure 26.2

Figure 26.3

Figure 26.4

Figure 26.5

Figure 26.6

Figure 26.7

Figure 27.1

Figure 27.2

Figure 27.3

Figure 27.4

Figure 27.5

Figure 27.6

Figure 27.7

Figure 27.8

Figure 27.9

Figure 28.1

Figure 28.2

Figure 28.3

Figure 29.1

Figure 29.2

Figure 30.1

Figure 31.1

Figure 31.2

Figure 31.3

Figure 32.1

Figure 32.2

Figure 33.1

Figure 33.2

Figure 33.3

Figure 33.4

Figure 34.2

Figure 34.1

Figure 34.3

Figure 34.4

Figure 34.5

Figure 35.1

Figure 35.2

Figure 35.3

Figure 35.4

Figure 36.1

Figure 37.1

Figure 37.2

Figure 37.3

Figure 37.4

Figure 37.5

Figure 37.6

Figure 37.7

Figure 37.8

Figure 37.9

Figure 37.10

Figure 38.1

Figure 38.2

Figure 38.3

Figure 38.4

Figure 38.5

Figure 38.6

Figure 38.7

Figure 38.8

Figure 39.1

Figure 39.2

Figure 39.3

Figure 39.4

Figure 39.5

Figure 39.6

Figure 40.1

Figure 40.2

Figure 40.3

Figure 40.4

Figure 40.5

Figure 40.6

Figure 40.7

Figure 40.8

List of Tables
Table 22.1

Table 23.1

Table 26.1

Introduction
T H E B A SIC T E C H N O L O G IE S B E H IN D T H E W E B are now alm ost a quarter of a
century old. H TM L dates all the w ay back to 1993, the sam e year the first popular w eb
brow ser, M osaic, appeared on the scene.

You m ay have thought, therefore, that the technologies behind the W eb w ould have
entered a com fortable m iddle-age‍ still im proving around the edges m aybe‍ but not
innovating w ith the pace and excitem ent of their early years.

In fact, nothing could be further from the truth. The last ten years have been som e of the
m ost exciting and innovative in the history of the W eb, and this pace of change is
continuing to accelerate. A s a result, the W eb is no longer the preserve of sim ple
―w ebsites.‖ It is the realm of ―w eb applications‖: feature-rich applications that just happen
to run inside w eb brow sers.

A w hole new class of com puting devices has accentuated the pace of this change. W eb
brow sers are no longer the preserve of desktops and laptops: They now appear on a
m yriad of devices from sm art phones to sm art TV s. The fact that w eb brow sers are the one
universal feature across these diverse devices has served to enhance the appeal of brow ser-
based w eb applications: You w rite the w eb application once, and your users use it from
any device they choose.

This innovation of the last decade did not happen by accident. Various standards
com m ittees have been hard at w ork for m ore than a decade devising a set of standards that
have been grouped under the um brella of ―H TM L5.‖ These standards have now m ade
their w ay into all the m ajor w eb-brow sers.

If you are fam iliar w ith H TM L, the term H TM L5 m ay sim ply im ply a new version of the
H TM L m arkup language‍ w hich m ay be interesting‍ but not revolutionary. In fact,
H TM L5 is far m ore than a m arkup language; it is a set of program m ing A PIs,
im plem ented by brow sers, that allow w eb pages to perform tasks that had never before
been possible.

For exam ple, it is now possible for an H TM L page to store m assive am ounts of data in
your brow ser, operate w ithout a netw ork connection, request m ore inform ation from a w eb
server as and w hen it needs it, and perform com plex com putations in the background
w ithout interfering w ith your brow sing experience.

The goal of this book is to teach you how to w rite w eb applications. In order to achieve
this, you need to understand m ore than H TM L5. You need to understand a set of related
technologies. M ore im portantly, how ever, you need to understand how these technologies
w ork together.

H TM L5, for instance, is closely tied to JavaScript. In m any cases, if you w ant to use
H TM L5, you need to do so through a JavaScript A PI. It is thus not possible to m aster
H TM L5 w ithout also m astering JavaScript.

JavaScript is also approaching m iddle age, yet it too continues to evolve in tandem w ith

H TM L5. H istorically considered som ething of an oddity, JavaScript has turned into a rich
and expressive program m ing language, capable of m uch m ore than the sim ple tasks (such
as form validation) that it w as consigned for so m any years.

A large part of the appeal of JavaScript is the m yriad of enorm ously useful, freely
available libraries that are w ritten in the language. C hief am ong these is jQ uery, a
JavaScript library that has taken on a life of its ow n and com e to redefine the w ay
program m ers add dynam ic features to their w eb pages. You can w rite w eb applications
w ithout learning jQ uery, but your code w ill lack the conciseness of expression the jQ uery
library affords.

Finally, in order to produce visually appealing w eb applications you w ill need to learn
C ascading Style Sheets. Just like all other w eb technologies, C SS also continues to grow
and evolve, and the new est version of C SS‍ called C SS3‍ m eans that w eb pages can
achieve dazzling visual effects.

W ho This Book Is For
This book is for anyone w ho w ants to learn how to build dynam ic w ebsites and w eb
applications using standards-based technologies.

You m ay have experience w ith H TM L4, although that is not required because the early
lessons provide an in-depth look at all of the m ost im portant features of H TM L. M ore
experienced readers m ay, on the other hand, choose to skip these lessons.

This book contains m any code exam ples based on JavaScript. It is expected that you have
som e program m ing experience before reading this book, although not necessarily w ith
JavaScript. If you have no experience w ith program m ing, you m ay w ant to prepare w ith
som e online tutorials and exercises before beginning.

Finally, this book is for program m ers w ho w ant to learn by doing.

W hat This Book Covers
H TM L5 is a ―versionless‖ standard. The specifications behind H TM L5 continue to grow
and evolve, but this evolution is not m atched w ith ―official‖ or versioned releases.

A s such, this book does not focus on a specific version of H TM L5; instead, it focuses on
the aspects of H TM L5 that have achieved w idespread adoption in all of the m ost com m on
w eb brow sers.

The JavaScript language does contain versioned releases, but unlike m ost program m ing
languages, you have no control over the version that your users w ill choose because this is
a byproduct of the brow ser that they select. A s a result, this book w ill not focus on a
specific version of JavaScript: It w ill focus on the features that are universally available in
all the m ajor brow sers.

This book w ill use a num ber of JavaScript libraries that are subject to change over tim e.
W henever a library is used, a specific version w ill be specified. In m any cases, a m ore
recent version of the library w ill w ork w ithout issue, although the code is only guaranteed
to w ork w ith the specified version.

This book is intended as a hands-on guide. Each lesson includes code and exercises that
you can follow along w ith, and even augm ent if you choose. It is im portant that you
follow along w ith these exercises because it is this process that w ill consolidate your
understanding of how the technologies really w ork.

How This Book Is Structured
This book is split into five sections. The first tw o sections are intended to be read in order
because they provide you w ith the foundation know ledge required to add m ore com plex
functionality. The rem aining three sections can be read in any order you choose.

The first section of the book provides an introduction to H TM L and C SS and looks at how
to build static w eb pages w ith these technologies. B y the end of this lesson, you w ill have
a solid foundation on w hich to start adding m ore com plex functionality.

In the second section, you turn your attention to JavaScript and jQ uery, and look at how a
static w eb page can be converted into a dynam ic w eb application.

The third section of the book looks at the m ultim edia capabilities of w eb brow sers and
how you can harness these through technologies such as the C anvas A PI and C SS3.

O nce you have an understanding of JavaScript, you can turn your attention to the H TM L5
A PIs that allow you to store data inside the brow ser, access data from w eb servers, and
execute tasks on background processes. It is these features that truly turn your w ebsite into
a feature-rich w eb application.

In the final section of the book, you w ill turn your attention to m obile devices and address
the question of how you can convert your w eb application into a m obile w eb application
that functions on any m obile device your users m ay choose to use.

A large portion of this book is structured around the developm ent of a sam ple w eb
application. If you choose to skip a lesson, you w ill therefore need to dow nload a
com pleted version of that lesson‒s w eb application before starting the next lesson.

W hat You Need to Use This Book
In order to com plete m ost of the exercises in this book, you w ill need nothing m ore than a
text editor and the C hrom e w eb brow ser.

If you have a favorite text editor, you can continue to use it for this book. If you do not
have a text editor installed, N otepad++ (http://notepad-plus-plus.org) is a good
option for W indow s, Text W rangler
(http://www.barebones.com/products/textwrangler) is a good choice for M acs, and
EM acs is a good choice for Linux. You m ay also choose to use an Integrated D evelopm ent
Environm ent (ID E) such as Eclipse.

The C hrom e w eb brow ser has been chosen for this book not so m uch for the capabilities
of the brow ser itself, but for the developer tools that accom pany it. You can choose to use
an alternative w eb brow ser if you w ish, but the exam ples w ill focus on C hrom e.

The C hrom e w eb brow ser is subject to frequent updates, and it is assum ed that you w ill
use the latest version of the brow ser.

In later sections of this book, you w ill also need a w eb server. A lesson is provided to
guide you through the process of installing and configuring a w eb server.

The source code for the sam ples is available for dow nload from the W rox w ebsite at:
www.wrox.com/go/html5jsjquery24hr

Conventions
To help you get the m ost from the text and keep track of w hat‒s happening, w e‒ve used a
num ber of conventions throughout the book.

W arning
W arnings hold im portant, not-to-be-forgotten inform ation that is directly relevant to
the surrounding text.

Note
N otes indicate notes, tips, hints, tricks, or asides to the current discussion.

A s for styles in the text:

W e highlight new term s and im portant w ords w hen w e introduce them .

W e show keyboard strokes like this: C trl+A .

W e show filenam es, U R Ls, and code w ithin the text like so:
persistence.properties.

W e present code in tw o different w ays:
We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present

context or to show changes from a previous code snippet.

Source Code
A s you w ork through the exam ples in this book, you m ay choose either to type in all the
code m anually or to use the source code files that accom pany the book. A ll the source
code used in this book is available for dow nload at www.wrox.com. For this book, the code
dow nload is on the D ow nload C ode tab at:
www.wrox.com/go/html5jsjquery24hr

You can also search for the book at www.wrox.com by ISB N (the ISB N for this book is
978-1-1190-0116-4) to find the code. A com plete list of code dow nloads for all current
W rox books is available at www.wrox.com/dynamic/books/download.aspx.

M ost of the code on www.wrox.com is com pressed in a .ZIP or .R A R archive, or a sim ilar
archive form at appropriate to the platform . O nce you dow nload the code, just decom press
it w ith an appropriate com pression tool.

Errata
W e m ake every effort to ensure that there are no errors in the text or in the code. H ow ever,
no one is perfect, and m istakes do occur. If you find an error in one of our books, such as a
spelling m istake or faulty piece of code, w e w ould be very grateful for your feedback. B y
sending in errata, you m ay save another reader hours of frustration, and at the sam e tim e,
you w ill be helping us provide even higher quality inform ation.

To find the errata page for this book, go to

www.wrox.com/go/html5jsjquery24hr and click the Errata link. O n this page you can
view all errata that has been subm itted for this book and posted by W rox editors.

If you don‒t spot ―your‖ error on the B ook Errata page, go to
www.wrox.com/contact/techsupport.shtml and com plete the form there to send us the
error you have found. W e‒ll check the inform ation and, if appropriate, post a m essage to
the book‒s errata page and fix the problem in subsequent editions of the book.

p2p.w rox.com
For author and peer discussion, join the P2P forum s at http://p2p.wrox.com. The forum s
are a W eb-based system for you to post m essages relating to W rox books and related
technologies and interact w ith other readers and technology users. The forum s offer a
subscription feature to em ail you topics of interest of your choosing w hen new posts are
m ade to the forum s. W rox authors, editors, other industry experts, and your fellow readers
are present on these forum s.

A t http://p2p.wrox.com, you w ill find a num ber of different forum s that w ill help you,
not only as you read this book, but also as you develop your ow n applications. To join the
forum s, just follow these steps:

1. G o to http://p2p.wrox.com and click the R egister link.

2. R ead the term s of use and click A gree.

3. C om plete the required inform ation to join, as w ell as any optional inform ation you
w ish to provide, and click Subm it.

4. You w ill receive an em ail w ith inform ation describing how to verify your account
and com plete the joining process.

Note
You can read m essages in the forum s w ithout joining P2P, but in order to post your
ow n m essages, you m ust join.

O nce you join, you can post new m essages and respond to m essages other users post. You
can read m essages at any tim e on the W eb. If you w ould like to have new m essages from a
particular forum em ailed to you, click the Subscribe to this Forum icon by the forum nam e
in the forum listing.

For m ore inform ation about how to use the W rox P2P, be sure to read the P2P FA Q s for
answ ers to questions about how the forum softw are w orks, as w ell as m any com m on
questions specific to P2P and W rox books. To read the FA Q s, click the FA Q link on any
P2P page.

Part I
HTM L and CSS

Lesson 1: Introduction to H TM L5

Lesson 2: B asic H TM L

Lesson 3: Lists and Tables

Lesson 4: Introduction to C SS

Lesson 5: Structuring Pages w ith C SS

Lesson 6: H TM L Form s

Lesson 7: Sem antic Tags

Lesson 8: H TM L5 Validation

Lesson 9: D rag and D rop

Lesson 10: D ynam ic Elem ents

Lesson 1

Introduction to HTM L5
This lesson is an introduction to the H TM L5 m arkup language. The H TM L5 m arkup
language is a language for structuring and expressing the content of a w eb page in a
m anner that can be consistently interpreted by a w eb brow ser.

If you are already fam iliar w ith H TM L, m uch of this chapter w ill look very fam iliar. It is
still im portant that you read through this lesson, how ever, because there are a num ber of
im portant changes in H TM L5, and m any of these are very subtle.

If you are not fam iliar w ith H TM L, or have only a passing fam iliarity, this lesson w ill
provide you w ith the background you need to understand the basics of an H TM L w eb
page. This lesson is only an introduction, how ever; the m aterial in this lesson w ill be
enhanced in the rem ainder of this section.

W hat Is a M arkup Language?
A m arkup language is a language for annotating a docum ent w ith a set of tags. These tags
are used to provide additional m eaning and structure to the text of the docum ent, or
provide instructions on the m anner in w hich it should be displayed to the reader.

For instance, a tag m ay state that one portion of the text is a header, w hile another portion
is a paragraph of text. C onsider the follow ing docum ent fragm ent:

<h1>This is a heading</h1>

<p>This is a paragraph of text</p>

In this exam ple, the tags can be clearly differentiated from the content of the docum ent by
the angle brackets. The follow ing represents the start of a heading:

<h1>

w hile this represents the end of the heading:

</h1>

Note
H TM L defines six categories of header from h1 to h6. The low er the num ber, the m ore
im portant the header is.

The entire h1 structure‍ including the start tag, the end tag, and its textual content‍ is
referred to as an elem ent.

The H TM L5 m arkup language specifies the tags that can be used in an H TM L docum ent,
how they should be used, and w hat additional inform ation (called attributes) they can
contain.

In the early days of H TM L, m any of the tags included in the m arkup language instructed
the brow ser how to present inform ation. For instance, tags w ere used to dictate font size
and color.

The H TM L m arkup language is no longer responsible for dictating the presentation of a
docum ent, and in H TM L5 m ost of the rem aining presentation tags have been rem oved.
Presentation is now the sole preserve of another technology called C ascading Style Sheets,
w hich w ill be exam ined later in this section.

Instead, the H TM L5 m arkup language is responsible for conveying the m eaning of the
various com ponents of the docum ent and how they interact w ith other com ponents.

Note
Brow sers can still provide their ow n default styles for tags, how ever, and this is w hy
an h1 elem ent w ill appear in large, bold text.

H TM L5 greatly enhances the expressiveness of earlier version of H TM L, how ever, and
allow s sections of the docum ent to be m arked as, am ongst other things, headers, footers,
and asides.

Earlier versions of H TM L w ere based on a technology called SG M L, w hich is a language
for expressing m arkup languages. A s of H TM L5, the H TM L m arkup language is not
based on any other technology. This has rem oved a num ber of restrictions from the
language; therefore, if you are fam iliar w ith H TM L, you w ill notice in the sections that
follow that a num ber of the old rules no longer apply.

The Sim plest HTM L Page Possible
W hen learning any technology, it‒s alw ays a good idea to start out w ith the sim plest
im plem entation possible. In H TM L5, the sim plest page you can possibly w rite is as
follow s:

<!DOCTYPE html>

hello world!!!

O pen your favorite text editor, enter this text, and save the docum ent as hello.html.

N ow , open C hrom e, and select C trl-O in W indow s or -O on a M ac, navigate to the file you
have just saved, and select ―O pen‖. This should look like Figure 1.1 w hen loaded in the
w eb brow ser.

Figure 1.1

This m ay not look like a w eb page; after all, there are no tags in the page except the
strange looking tag on the first line of the docum ent.

W ith the page open in C hrom e, now select to open the developer tools:

C om m and+O ption+I on O S X

F12 or C trl+Shift+I on W indow s

This should open the w indow show n in Figure 1.2 below the w eb page.

Figure 1.2

This is the w eb-brow ser‒s internal representation of the w eb page. A s you can see, this has
norm alized the structure of the docum ent, and does provide a set of tags nested inside one
another. O n the outerm ost level is the html elem ent, and inside this are tw o elem ents: head
and body. The content of the body elem ent is the text you w rote in the text editor.

The docum ent has been norm alized to conform to the rules of the D ocum ent O bject M odel
(D O M). The D O M w ill turn out to be enorm ously im portant throughout this book because
m uch of the pow er of m odern w eb pages com es from their ability to m anipulate the D O M
after the page has loaded.

The m anner in w hich a D ocum ent O bject M odel should be constructed from an H TM L

page has been a contentious issue since H TM L first appeared. H istorically, different
brow sers w ould generate different m odels for the sam e H TM L, and this m ade it very
difficult to w rite cross-brow ser w eb pages.

In order to counteract cross-brow ser issues, the W orld W ide W eb C onsortium (W 3C),
w hich is the standards body behind w eb standards such as H TM L, decided to recom m end
a set of standards placing the onus on the w eb page developer. These standards, called
H TM L Strict and X H TM L, forced the w eb page developer to create a norm alized w eb
page, and therefore m ade it easy for w eb brow sers to render pages consistently.

This approach did not w ork very w ell. The real pow er behind H TM L is not the standards
bodies, but the brow ser vendors because they ultim ately decide w hat is a valid w eb page.
They did not w ant to enforce this strictness on w eb pages because failing to load w eb
pages w ould only serve to m ake their brow ser look deficient.

A s the W 3C continued on w ith their strict standards, a rival group called W H ATW G
started w ork on a rival standard that w ould eventually becom e H TM L5. The m em bers of
this group w ere m ade up of participants from the m ain brow ser vendors, and their goals
w ere far m ore pragm atic. R ather than creating a w hole new set of standards, this group
first looked at w hat brow sers w ere already doing and, w here possible, form ed standards
from this.

W 3C eventually abandoned their efforts for strictness and joined W H ATW G ‒s efforts, and
the tw o groups each publish a version of the H TM L5 standard.

A large part of the H TM L5 standard describes how brow ser vendors should create a
norm alized D O M from a non-norm alized H TM L docum ent. This is w hy C hrom e created
the D O M that it did in the preceding exam ple, and w hy Firefox, IE, and Safari w ould
create exactly the sam e structures.

An HTM L Tem plate
In the previous section, you w rote the sim plest w eb page you could w rite. In this section,
you w ill w rite a w eb page follow ing a basic tem plate that is intended to represent the
sim plest H TM L structure you should w rite.

I w ill first present the tem plate, and then I w ill w alk you through it line by line. O pen a
new docum ent in your text editor, and save the follow ing as template.html:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

</head>

<body>

 This is the body of the document.

</body>

</html>

If you open this in C hrom e, and then view the D O M in the developer tools, it w ill look
like the exam ple in Figure 1.3.

Figure 1.3

A s you can see, in this case there is far closer alignm ent betw een the content you provided
in the H TM L file and the norm alized structure generated by the brow ser.

Let‒s now w alk through each line in the docum ent and exam ine its purpose.

The first line in the docum ent is as follow s:

<!DOCTYPE html>

This line defines the docum ent type of the page. B ecause there have been m any different
H TM L standards over the years, the brow ser uses this line to understand w hich of these
standards the page is using, and then uses the rules applicable for this standard to interpret
the content of the page and render it accordingly.

This is the H TM L5 docum ent type definition, and com es as a pleasant surprise for
developers w ho m ay be accustom ed to copying and pasting D O C TY PE declarations such
as:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

The other m ain surprise about this docum ent type definition is that it does not include a
version num ber: The docum ent type is sim ply html.

A lthough the specification is referred to as H TM L5, it defines a ―living-standard‖ that w ill
be subject to increm ental change as and w hen brow ser vendors im plem ent, and agree on,
new features. Put another w ay, there w ill never be another version of H TM L, but H TM L
w ill alw ays continue to evolve.

The next line contains the opening html tag, w hich encapsulates the rem ainder of the
docum ent:

<html lang="en">

This tag contains an attribute called lang, w hich has been given the value en. A ttributes
provide a m echanism for providing extra m eaning to tags. This particular attribute is
stating that the language of the docum ent is English.

Note
The ISO standard 639-1 defines the set of tw o-letter codes that can be used for
languages. These can also be paired w ith a country code, for instance en-U S. C ountry
codes are defined in the ISO standard 3166.

A s w ith m any aspects of H TM L5, although the specification defines the attributes and
their expected values, it is up to the brow ser to decide w hat to do w ith this inform ation.
The brow ser m ay use this inform ation to suggest a translation to a non-English speaker, or
it m ay do absolutely nothing w ith this inform ation.

The next elem ent in the docum ent is the head elem ent. This is the section of the docum ent
w here you can provide im portant m etadata about the docum ent, along w ith links to other
files needed by the docum ent. The head section never contains any visual com ponents of
the w eb page. In this particular case, the head contains one im portant piece of m etadata:

<meta charset="utf-8"/>

This specifies that the character encoding of the docum ent is U TF-8. I w ill not cover
character encodings in this section, but the specification recom m ends setting this.

There is one other elem ent that is com m only added to the head elem ent: the title
elem ent. This is the text that the brow ser w ill display in the title bar w hen the w eb page is
loaded. Therefore, add the follow ing inside the head section:

<title>Basic template</title>

and then view the page in C hrom e; the tab header w ill appear as follow s:

Figure 1.4

N ext you com e to the body elem ent. This is w here all the visual elem ents of the page w ill
be described. In this particular exam ple, the body consists of a single text string, but it is
this area of the docum ent that you w ill enhance in the chapters ahead to create interesting
w eb pages.

Understanding Elem ents and Attributes
Even though the exam ples you have created are very sim ple, you can already see that
elem ents can be nested inside one another, and as a result, create a tree-like structure.

Every H TM L docum ent has a single top-level elem ent, w hich is alw ays the html elem ent
(the docum ent type elem ent is not part of the docum ent as such).

In addition, every elem ent in the docum ent can have zero or m ore children. The html
elem ent has tw o children: head and body. The head elem ent in turn has a child of its ow n:
the meta elem ent.

Every elem ent in the docum ent (except the html elem ent) has one (and only one) parent.
The parent of the head elem ent is the html elem ent. The parent of the meta elem ent is the
head elem ent.

A s you w ill see, the structure of pages w ill becom e considerably m ore com plex, and the
degrees of nesting w ill increase enorm ously. N o m atter how com plex the pages becom e,
how ever, all the elem ents w ill follow these sim ple rules.

You have exam ined how elem ents consist of an opening and closing tag; for instance the
opening of the head tag is <head> w hile the closing is an identically nam ed tag preceded
by a forw ard slash </head>.

Som e elem ents do not require any content: The tag and its attributes provide all the
inform ation that is required. In this case, the start and the end tag can be com bined into the
follow ing construct:

<meta charset="utf-8"/>

The forw ard slash before the end of the tag indicates that the tag is being closed. This is
the direct equivalent of the follow ing:

<meta charset="utf-8"/>

You should alw ays ensure that all tags are closed in the reverse order they are opened. For
exam ple, you should never w rite m arkup as follow s:

<p>Hello</p>

In this case, the strong elem ent is supposed to be the child of the p elem ent, but the p
elem ent ends before the strong elem ent.

Note
The strong tag is used to indicate that a piece of text is im portant. Although this is
often confused w ith the now deprecated bold tag, it is, in fact, still a valid H TM L5
tag. This tag is not considered a presentation tag because it indicates that text is
im portant, not how this text should be styled. You m ay decide that strong elem ents
are colored red rather than w ith a bold font.

If you add this to your template.html file before the ending body tag, and then view the
norm alized structure in C hrom e, you w ill notice that the brow ser has rearranged these
tags, as you can see in Figure 1.5.

Figure 1.5

A lthough the H TM L5 specification does have rules for fixing up your m istakes, it is
generally best not to m ake m istakes in the first place because the rules of the H TM L5
specification m ay not be w hat you intended.

I generally find it best to w rite tags in low ercase. A s it turns out, tag nam es are entirely
case insensitive because they are autom atically converted to low ercase in the D O M . The
follow ing is therefore valid, but should be avoided for obvious readability reasons:

<HEADER>this is a header</header>

The final feature I w ill cover in this lesson is attributes. You have already seen tw o
exam ples of attributes, on the html tag and on the meta tag. M any other tags also support
attributes, and you w ill exam ine these throughout the book.

A ttributes often consist of a nam e/value pair. W hen an attribute has a value, the value can
either be included in single or double quotes. The follow ing are equivalent:

<meta charset="utf-8"/>

<meta charset='utf-8'/>

A tag can contain m ore than one attribute, in w hich case they are sim ply separated by
w hite space:

<p id="firstParagraph" class="bold">

A dditionally, som e attributes do not have a value. These are referred to as B oolean
attributes. The presence of the attribute is all that is required. For instance:

<input read-only/>

In this case, the attribute is called read-only, but the presence of the attribute is enough to
indicate that the elem ent is read-only. It is still possible to add a value to a B oolean
attribute, but it has no m eaning. For instance, the follow ing input field is still read-only:

<input read-only="false"/>

A ttribute nam es should also be w ritten in low ercase (because this is how they w ill be
represented in the D O M). G enerally attribute nam es w ill also use hyphens if they contain
m ore than one w ord.

Try It
In this Try It, you w ill duplicate the tem plate htm l page outlined in the lesson. You m ay
choose to skip this portion if you are fam iliar w ith H TM L, but the sim ple act of typing
code w ord for w ord enhances your understanding.

If you get stuck in this exam ple, you can refer back to the exam ple earlier in the lesson, or
use the screencast to guide you though the process.

Lesson Requirem ents
You w ill need a text editor and a w eb brow ser.

Step-by-Step
1. O pen your text editor and create a new docum ent.

2. A dd the H TM L5 doctype to the docum ent.

3. A dd an html elem ent (both the opening and closing tags) below the docum ent type.

4. Indicate the language of the docum ent using an attribute on the html tag.

5. A dd a head elem ent inside the html elem ent. You w ill need both an opening and a
closing tag.

6. A dd a title inside the head elem ent, and give the docum ent a nam e. R em em ber that
this needs to be a child of the head elem ent.

7. A dd a body elem ent inside the html elem ent just below the closing head tag.

8. A dd a meta elem ent to the head indicating that the charset is U TF-8.

9. A dd any text you like to the body of the docum ent. A ny text that you add should be
displayed back to you w hen you open the w eb page in C hrom e.

10. Save the docum ent w ith a .html extension.

11. O pen the docum ent in C hrom e and inspect the D ocum ent O bject M odel in the
developer tools.

W hen you open this in C hrom e, and then open the developm ent tools to inspect the
elem ents, the m arkup should look like Figure 1.6.

Figure 1.6

There is also a com plete exam ple in the Lesson 1 folder on the book‒s w ebsite called
tryit.html.

Reference
Please select the video for Lesson 1 online at www.wrox.com/go/html5jsjquery24hr.
You w ill also be able to dow nload the code and resources for this lesson from the
w ebsite.

Lesson 2

Basic HTM L
This lesson provides a basic introduction to the m ost com m on H TM L tags. If you are
already fam iliar w ith H TM L and are reading this book prim arily to learn about H TM L5,
you could choose to skip the next tw o lessons, although each lesson does include m aterial
that is specific to H TM L5.

In the previous lesson, you created an H TM L tem plate. In this lesson, you w ill start adding
content to the body of this tem plate using som e of the m ost com m on H TM L tags.

Structuring Text
You w ill begin by exam ining the w ays you can structure text in a w eb page. H TM L
originally started life as a m eans of sharing research papers; thus, text form atting has
alw ays been an im portant part of H TM L.

B egin by opening the template.html file created in the previous chapter. R eplace the
body of the w eb page, as show n in the follow ing m arkup:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

</head>

<body>

 <h1>This is a top level heading</h1>

 <h2>This is a second level heading</h2>

 <h3>This is a third level heading</h3>

</body>

</html>

The body now contains three separate header elem ents. If you open this in C hrom e, it
should look like Figure 2.1.

Figure 2.1

N otice that the h1 elem ent‒s text is displayed in a larger font than the h2 elem ent. A s it
happens, this has nothing to do w ith the H TM L specification; this is sim ply the default
style provided by the w eb brow ser, just as the font is the default font of the brow ser. In
Lesson 4, you w ill see how this can be overridden w ith C ascading Style Sheets (C SS).

You w ill also notice that each heading is displayed on a new line. This is not because the
elem ents are placed on new lines in the H TM L file; in fact, w hite space is m ostly ignored
in H TM L. In order to prove this, change the h1 tag as follow s:

<h1>This is a top

 level heading</h1>

 <h2>This is a second level heading</h2>

If you reload the w eb page, you w ill see that this change m akes no difference to the w ay
the headings display. A lthough a single w hitespace character is displayed as a space inside

an elem ent, a sequence of w hitespace characters, even if it contains new -line characters, is
collapsed dow n to a single w hite space character.

H TM L does provide a special character sequence, , for adding extra w hitespace
characters, but new lines should be created using the tags introduced shortly.

Note
The am persand character, follow ed by a sequence of characters and term inated by a
sem icolon, indicates that this is a special character sequence.

There are a num ber of special character sequences in H TM L. Perhaps the m ost
com m on ones you w ill encounter are < and >, w hich are used for the less than
(<) and greater than (>) characters respectively. These are required because the <
and > characters have special m eaning in H TM L. In case you w ere w ondering, nbsp
stands for ―non-breaking space.‖

So w hat did generate the new lines after each heading? These appear because the elem ents
h1 through h6 are block elem ents. A ll visual H TM L elem ents have a display type, the
m ost com m on of w hich are block and inline. W henever a block elem ent ends, the next
elem ent autom atically begins on a new line.

N ext, you can continue by adding som e paragraphs to the body:

<p>This is the first paragraph</p>

<p>This is the second paragraph</p>

If you refresh the w eb page, it w ill look like w hat you see in Figure 2.2.

Figure 2.2

Each paragraph appears on a new line, and there is a space betw een each paragraph.

It is actually possible to om it the ending tag from a p tag. In fact, there are m any cases
w here the ending tag can be om itted because the next tag in the docum ent im plies it. I
usually find it easier to add the ending tag in these cases, but the specification m akes this
entirely optional. You w ill see throughout the exam ples that I som etim es om it the closing
tag and som etim es include it.

W hat about XHTM L?
If you are already fam iliar w ith H TM L, you m ay be aw are of XH TM L, w hich is an
XM L-based version of H TM L. H TM L5 extends and replaces XH TM L as w ell as
H TM L. In order to serialize an H TM L5 page to XM L, all tags m ust be closed, and the
docum ent as a w hole m ust be w ell-form ed. In addition, the html tag should be
declared as follow s:

<html xmlns="http://www.w3.org/1999/xhtml">

and the content type of the docum ent should be set to application/xhtml+xml rather
than text/html w hen it is served to the brow ser.

If you are not already fam iliar w ith XH TM L, you can ignore it for the duration of this
book: It is typically only used if you have a need to process an H TM L page w ith XM L
parsers and tools.

The text in a paragraph w ill autom atically w rap if it reaches the far right side of the
brow ser. A dditionally, if the user resizes their brow ser, the text w ill autom atically be
adjusted: This process is referred to as a brow ser reflow .

Som etim es the brow ser w ill break your paragraphs in an inconvenient place, especially if
it contains very large w ords. In order to give you m ore control over line breaks, H TM L5
has introduced a tag called wbr that can be added anyw here inside a paragraph as a hint to
the brow ser that this w ould be a good place to add a line break.

If you w ould like a line break w ithin a paragraph, you can use the br tag. This is also a
self-closing tag so it can be used as follow s:

<p>This is a paragraph
that spans two lines</p>

H TM L supports several other tags for encapsulating blocks of text. The final one you w ill
look at in this section is the blockquote elem ent, w hich can be used to capture quoted
text, optionally w ith a citation:

<blockquote>Tell me and I forget. Teach me and I remember. Involve me and I

learn.

 <cite>Benjamin Franklin</cite>

</blockquote>

This structure is slightly m ore com plex: The blockquote tag contains the quote, w hile
cite, w hich is an optional child tag, captures the source of the quote. Figure 2.3 show s an
exam ple of this tag in C hrom e.

Figure 2.3

N otice that the blockquote is indented and that the cite elem ent displays in italics.

A gain, these are brow ser defaults rather than part of the H TM L5 specification.

Finally, as your w eb pages becom e m ore com plex, you m ay find cases w here you w ould
like to add com m ents to rem ind you w hat the m arkup m eans. C om m ents can be added as
follow s, and w ill not display to the user:

<!-- This is a comment -->

Links and Im ages
H TM L pages naturally consist of far m ore than text. This section w ill introduce tw o of the
m ost fundam ental tags found in m ost w eb pages: hyperlinks and im ages.

I w ill assum e you know w hat hyperlinks are: They are a m echanism for referencing
another H TM L docum ent and can be clicked to allow the user to navigate to that
docum ent.

Start by creating a new page in the sam e folder as the page you developed in the previous
section, but call this one page2.html. A dd som e contents to this page so that you can
distinguish it w hen it loads.

N ow , in the original H TM L file, add the follow ing paragraph:

<p>Please click here to view page 2</p>

If you reload the page, this H TM L w ill generate the text found in Figure 2.4.

Figure 2.4

N otice that the text displayed to the user is derived from the content of the a tag, w hile the
page that is loaded w hen the link is clicked can be found in the href attribute.

This particular U R L is referred to as a relative U R L because it does not start w ith a
forw ard slash or a dom ain nam e. The brow ser w ill attem pt to find page2.html in a
location relative to the page currently being displayed.

If you had created page2.html in a subfolder called sub, the U R L w ould be represented as
follow s:

<p>Please click here to view page 2</p>

W hen running a w ebsite inside a w eb server, it is also possible to use absolute U R Ls.
These begin w ith a leading / and require the full path for the file to be specified.

It is also possible to add U R Ls to other w ebsites. For exam ple:

Link to Google

You w ill also notice that the a tag does not cause an im plicit new line to be generated in
the docum ent. This is because, unlike m ost of the other tags you have exam ined, it has a
display type of inline.

H yperlinks can be surprisingly com plex. A s you progress through the book you w ill see
m ore interesting features of hyperlinks, such as the m anner in w hich they can encode
param eters, but for now a basic understanding is sufficient.

Im ages can be inserted into an H TM L page w ith the img tag. I seldom use the img tag
anym ore: I typically use C SS to em bed im ages as the background of other tags because

this provides greater control for positioning the im age, but it is im portant to understand
how this tag w orks.

You can either find an im age you w ould like to use or dow nload photo1.jpg from the
Lesson 2 files at the book‒s w ebsite.

N ow , add the follow ing to the H TM L page:

<p>This is a photo I took in Cambridge

<img src="photo1.jpg"

title="Cambridge, England" width="200"></p>

If you view this in C hrom e, it w ill display in m uch the sam e w ay as you see in Figure 2.5.

Figure 2.5

This is the first tag you have exam ined w ith m ultiple attributes.

The src attribute is used to specify the location of the file. Just like hyperlinks, this
can be an absolute or a relative U R L, or it can even reference an im age on another
w ebsite.

The title attribute is used to specify a tooltip that w ill be displayed to the reader
w hen the reader hovers over the im age w ith her m ouse cursor, and to describe the
im age to screen readers.

The width attribute is used to specify the w idth of the im age in pixels. It is also
possible to specify a height, but if just width or height is specified, the im age w ill
be scaled appropriately.

B row sers support m any different im age types, but by far the m ost com m on are PN G , G IF,
and JPEG im ages.

The img tag previously supported a num ber of other presentation-orientated attributes.
These are deprecated in H TM L5, and C SS properties should be used instead.

Note
W hen a feature is deprecated, it is still available to use, and w ill probably still w ork,
but it is strongly suggested that you find an alternative because support m ay be
rem oved entirely in the future.

Try It
This Try It is an opportunity to experim ent w ith the tags that have been discussed in this
lesson. You do not necessarily need to follow this lesson exactly; just try to create an
interesting w eb page from the tags that have been introduced.

Lesson Requirem ents
You w ill need the template.html file from Lesson 1, a text editor, and a w eb brow ser.

Step-by-Step
1. O pen the template.html page in your text editor.

2. A dd an h1 elem ent to the page and include som e header text.

3. A dd som e paragraphs to the w eb page using the p tag, and split som e paragraphs
across m ultiple lines w ith the br tag.

4. A dd a quote to the page along w ith a citation, using the blockquote and cite tags.

5. Find an im age you w ould like to include in the page, and add it at the bottom . M ake
the im age a fixed w idth, and allow the brow ser to determ ine the correct height.

6. A dd a hyperlink to your page to point to another page in a subfolder of the current
page.

7. A dd a hyperlink to an external w ebsite such as G oogle.

8. A lthough I have not covered it, attem pt to turn the im age into a hyperlink so that it
loads another page w hen it is clicked. H int: The im age w ill need to be a child elem ent
of the hyperlink.

M y exam ple can be found in the Lesson 2 resources on the tryit.html w ebsite.

Reference
Please select the video for Lesson 2 online at www.wrox.com/go/html5jsjquery24hr.
You w ill also be able to dow nload the code and resources for this lesson from the
w ebsite.

Lesson 3

Lists and Tables
In this lesson, you w ill look at tw o im portant w ays content can be structured in w eb pages:
lists and tables.

Lists
Lists are com m on to anyone w ho has w orked w ith w ord processing tools such as
M icrosoft W ord: They are the bulleted and num bered lists that are used for capturing a
sequence of points. H TM L lists are very sim ilar to these lists. In this section, I introduce
the three types of list provided by H TM L.

Unordered lists
U nordered lists are used to create the fam iliar set of bullet points seen in W ord docum ents.
In order to create an unordered list, a set of li elem ents is placed inside an ul elem ent. li
stands for ―list item ,‖ w hile ul stands for ―unordered list.‖

The follow ing is an exam ple:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 </head>

 <body>

 This is the first point

 This is the second point

 This is the third point

 </body>

</html>

If you save this in an H TM L file and open it in C hrom e, it w ill display like the exam ple in
Figure 3.1.

Figure 3.1

The li tag is self-closing, so I have om itted the ending tag. O bviously, this could have
been included w ithout affecting the display of the list.

A lthough unordered lists are sim ple, once they are com bined w ith C SS, they can becom e
very pow erful. W henever you see a horizontal list of navigation links at the top of a w eb
page, there is a good chance that they w ere created from an unordered list.

O rdered Lists
O rdered lists are identical to unordered lists, except they use the ol tag rather than the ul
tag. The only visual difference betw een the tw o lists is that ordered lists are num bered:

 This is the first point

 This is the second point

 This is the third point

Figure 3.2 illustrates how this displays.

Figure 3.2

A ny elem ent can be used as the content for an li tag; thus, it is possible to nest lists w ithin
lists. The follow ing exam ple lists an unordered list inside an ordered list:

 point 1

 sub point 1

 sub point 2

 point 2

 sub point 1

 sub point 2

 point without sub points

The result of this can be seen in Figure 3.3.

Figure 3.3

Description Lists
D escription lists are probably the least used type of list. They are a type of list w here each
entry captures a nam e-value group. Each group in turn consists of one or m ore nam es,
follow ed by one or m ore definitions. C onsider the follow ing list, w hich captures
inform ation about the drinks served by a cafe:

<dl>

 <dt>Coffee</dt>

 <dd>Cappuccino</dd>

 <dd>Espresso</dd>

 <dd>Mocha</dd>

 <dt>Tea</dt>

 <dd>Earl grey</dd>

 <dd>Green tea</dd>

 <dd>Chai tea</dd>

</dl>

This list contains tw o groups: coffee and tea. Each group then consists of a set of
beverages relating to that group. You can see the result of this in Figure 3.4.

Figure 3.4

D efinition lists w ere originally specified purely in term s of term s and definitions. The
H TM L5 standard broadens the suggested uses of definition lists and encourages you to
think in term s of groups w ith nam es and values.

Tables
Tables are a m ore com plex structure than lists and support the fam iliar notion of row s and
colum ns.

Throughout the course of this book, you w ill w rite a w eb application from scratch, and
this w eb application w ill utilize a table. The w eb application w ill perform basic C ustom er
R elationship M anagem ent (C R M) capabilities; in particular, it w ill keep track of a set of
contacts and the last date they w ere contacted.

In order to start this w eb application, create a folder som ew here on your file system called
C R M . This w ill hold all the files needed by the w eb application.

N ext, add a file called contacts.html to this folder, and populate it w ith the basic
H TM L5 tem plate outlined in Lesson 1.

You w ill now create a table in the body of the w eb page for capturing the follow ing
inform ation:

C ontact nam e

Phone num ber

Em ail address

C ontact‒s com pany

D ate last contacted

To start, begin by creating an opening and closing table tag in the body of the w eb page:

<table>

</table>

H TM L tables are row orientated: You add one row at a tim e using the tr (table row)
elem ent and provide values for all the relevant colum ns. The row s can either be added to
the header, body or footer of the table. A dd the follow ing inside the table elem ent:

<thead>

 <tr>

 <th>Contact name</th>

 <th>Phone number</th>

 <th>Email address</th>

 <th>Company name</th>

 <th>Last contacted</th>

 </tr>

</thead>

The row in the thead elem ent contains five children of its ow n: These th (table heading)
elem ents are the individual cells in the row of the table.

N ext, you w ill add tw o row s to the body of the table. The body of the table is encapsulated
in a tbody elem ent. The individual cells in the body use the td (table datum) elem ent
rather than the th elem ent. A dd the follow ing after the end of the thead elem ent:

<tbody>

 <tr>

 <td>William Smith</td>

 <td>555-642-7371</td>

 <td>william@testing.com</td>

 <td>ACME Industries</td>

 <td>2014-10-21</td>

 </tr>

 <tr>

 <td>Bob Morris</td>

 <td>555-999-2991</td>

 <td>bob@testing.com</td>

 <td>ABC Corp</td>

 <td>2014-09-12</td>

 </tr>

</tbody>

N ext, you w ill add a footer row to the table. The footer w ill sim ply state how m any row s
are in the table; thus, it only needs to occupy a single cell. This presents a dilem m a
because you w ant all the row s in the able to have the sam e num ber of colum ns. The
solution to this is to utilize the colspan attribute w ith the td elem ent to specify that a
single td spans m ultiple colum ns. A dd the follow ing after the end of the tbody elem ent:

<tfoot>

 <tr>

 <td colspan="5">2 contacts displayed</td>

 </tr>

</tfoot>

Finally, you w ill add a caption for the table. This can be added anyw here in the table,
provided it is a direct child of the table elem ent itself:

<caption>Sales leads</caption>

The com plete w eb page should now look as follow s:

<table>

 <thead>

 <tr>

 <th>Contact name</th>

 <th>Phone number</th>

 <th>Email address</th>

 <th>Company name</th>

 <th>Last contacted</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>William Smith</td>

 <td>555-642-7371</td>

 <td>william@testing.com</td>

 <td>ACME Industries</td>

 <td>2014-10-21</td>

 </tr>

 <tr>

 <td>Bob Morris</td>

 <td>555-999-2991</td>

 <td>bob@testing.com</td>

 <td>ABC Corp</td>

 <td>2014-09-12</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <td colspan="5">2 contacts displayed</td>

 </tr>

 </tfoot>

 <caption>Sales leads</caption>

</table>

If you open the page in C hrom e, it should display as you see in Figure 3.5.

Figure 3.5

You w ill notice that the colum ns in the table have sized them selves according to the data
that has been added to them , but the last row in the table spans colum n boundaries.

Technically, you could have avoided using the thead, tbody, and tfoot tags, and just
w rapped every row in a tr elem ent directly w ithin the table elem ent. There are, how ever,
a num ber of reasons w hy it is w orth adding the extra structure to the table that these tags
afford:

It w ill help you style the different com ponents of the table differently. U sually, the
header and footer row s w ill be styled differently from the row s in the body of the
table.

You can add extra functionality to the table such as sorting and filtering. In this case,
you w ould not w ant to sort or filter the header and footer row s.

Prior to H TM L5, the table tag supported a num ber of attributes for controlling the
presentation of the table such as the border size, the w idth of the table, the background
color of the table, and the padding that should surround each cell. These have all been
rem oved in H TM L5, and you should not use them .

Note
In the early days of w ebsite developm ent, it w as com m on to use tables as a layout
m echanism . This is now strongly discouraged because C SS provides m ore than
enough pow er to lay out com plex w eb pages by itself. Tables should only be used for
data w here data needs to be stored in colum ns and row s.

Try It
In this Try It, you w ill experim ent w ith lists and tables. A s w ith the previous lesson, you
do not need to follow this lesson im plicitly, the m ost im portant thing is to experim ent w ith
the tags and discover for yourself the w ay they can be com bined to create interesting w eb
pages.

Lesson Requirem ents
You w ill need the template.html file from Lesson 1, a text editor, and a w eb brow ser.

Step-by-Step
1. O pen the template.html page in your text editor.

2. Start by creating a sim ple num bered list of all the tags that you have learned about in
this lesson‍ for instance table, tfoot, and thead.

3. N ow , im agine that you w ant to categorize these based on w hether they are relevant to
tables or lists. Try to convert the num bered list into a description list. Each category
should be captured in a dt elem ent, w hile the tag nam es should be placed in dd
elem ents. The goal is to create a structure that looks like Figure 3.6.

4. N ow you w ill add a table to the w eb page to present the sam e inform ation in the sam e
w ay. C reate a table w ith the follow ing colum ns:

Tag nam e

C ategory (for exam ple, list, table)

D escription

Figure 3.6

Ensure that the table utilizes the thead and the tbody elem ents.

Provide a caption for the table.

The first few row s of the table m ay look like Figure 3.7.

Figure 3.7

Reference
Please select the video for Lesson 3 online at www.wrox.com/go/html5jsjquery24hr.
You w ill also be able to dow nload the code and resources for this lesson from the
w ebsite.

Lesson 4

Introduction to CSS
The first three lessons of the book introduced you to a large num ber of tags, but it has so
far not been possible to style the presentation of these tags w hen they appear onscreen. A s
m entioned, H TM L5 has rem oved m ost of the rem aining presentation-based tags and
attributes, and presentation and style are instead the responsibility of another technology
called C ascading Style Sheets (C SS).

The m ain reason for this is a concept called ―separation of concerns.‖ The H TM L m arkup
language is responsible for providing the content of the page, w hile C SS is responsible for
the presentation and styling of this content. This m eans it is possible to change either
w ithout affecting the other.

For instance, it is usually possible to com pletely restyle an existing w eb page w ithout
changing the H TM L at all. A dditionally, it is possible to change the content of a w eb page
w ithout needing to change the C SS at all.

This lesson w ill introduce the fundam entals of C SS, and w ill m ainly focus on the w ay
individual elem ents can be styled. In the next lesson, you w ill consolidate this know ledge,
and also look at how C SS behaves w hen elem ents interact w ith one another.

The H TM L5 specification includes a com panion specification called C SS3‍ version 3 of
C ascading Style Sheets‍ that greatly enhances the pow er of C SS. You w ill look in-depth
at C SS3 later in the book, but for the next tw o lessons you w ill focus on the fundam entals
of C SS.

Note
The capabilities of C SS are truly astounding, so this lesson w ill not introduce you to
everything C SS can do. The aim of this lesson is instead to provide you w ith a sound
understanding of the fundam entals: once these are understood it is easy to find
inform ation about specific features.

CSS Selectors
In this section, you w ill get started w ith C SS by styling the w eb page developed in Lesson
2. This page utilized header and paragraph elem ents to form at text, and also included
im ages and hyperlinks. Ensure you have the follow ing H TM L available to w ork w ith in
this section:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

</head>

<body>

 <h1>This is a top level heading</h1>

 <h2>This is a second level heading</h2>

 <h3>This is a third level heading</h3>

 <p>This is the first paragraph</p>

 <p>This is the second paragraph</p>

<blockquote>

 Tell me and I forget. Teach me and I remember. Involve me and I

learn.

 <cite>Benjamin Franklin</cite>

 </blockquote>

<p>Please click here to view page 2</p>

<p>This is a photo I took in Cambridge

</p>

</body>

</html>

A s you w ill see, C SS can be included in a w eb page in three different w ays. This section
w ill focus on a single approach: adding C SS w ithin a style elem ent in the head of the
w eb page.

In order to apply a style to an elem ent, you first need a w ay of selecting the elem ents that
you w ish to style. C SS provides four key selection m echanism s, the m ost sim ple of w hich
is to select the elem ents based on their tag nam e. For instance, if you w anted to select all
the h1 elem ents in the docum ent and display them in a red font, you could add the
follow ing to the head section:

<style>

 h1 {

 color: red;

 }

</style>

If you refresh the w eb page, the top header w ill display in red.

Note
A num ber of colors can be referenced directly by nam e, but it is m ore com m on to
represent colors as a string such as #FF0000. This is a hash, follow ed by three sets of
hexadecim al num bers specifying the ratio of red, green, and blue respectively. There
are m any resources online for finding colors using this form at, and you w ill see m any
exam ples throughout this book.

This sim ple exam ple dem onstrates m ost of w hat you need to know about the syntax of
C SS. You start by specifying the selector: h1 in this case. N ext, you place a set of stylistic
properties betw een curly brackets w here each stylistic property is in the form of a
nam e/value pair. In this case, the nam e of the property is color (technically this is
foreground color), w hile the value is red. A colon separates the nam e and value, and the
w hole construct is concluded w ith a sem icolon. I w ill refer to this entire construct as a
C SS rule.

It is possible to add m ultiple stylistic properties to the sam e selection. The follow ing rule
also specifies the font-family and the fact that the text should be underlined.

<style>

 h1 {

 color: red;

 text-decoration:underline;

 font-family: Arial, Helvetica, sans-serif;

 }

</style>

Figure 4.1 show s the result.

Figure 4.1

The font-family property has a m ore interesting value than color. M any fonts are
proprietary; therefore, you cannot be sure w hich fonts the user‒s brow ser w ill provide. The
value of the property therefore contains a list of fonts in priority order. In this case, the
value states:

Try to use A rial if it is available.

If that is not available use H elvetica.

If that is not available use any sans-serif font.

Im agine now that you w ant this style to apply to all the headings in the w eb page.
O bviously, you could duplicate this rule three tim es and select h1, h2 and h3 in three
separate rules. You alw ays w ant to avoid duplication if you can, how ever, because it leads
to m aintenance issues.

There are, in fact, tw o w ays you can achieve this w ithout duplication. The first is by
specifying the three different tags separated by a com m a:

h1, h2, h3 {

 color: red;

 text-decoration:underline;

 font: Arial, Helvetica, sans-serif;

}

A m ore elegant solution, how ever, is to use classes. A ny elem ent can be assigned one or
m ore classes w ith the class attribute. A class is just an arbitrary nam e you choose and
usually describes som e aspect that a set of elem ents have in com m on. For exam ple:

<h1 class="redHeader">This is a top level heading</h1>

<h2 class="redHeader">This is a second level heading</h2>

<h3 class="redHeader">This is a third level heading</h3>

In this case, redHeader is the class nam e. It is then possible to style all elem ents w ith this
class using the follow ing selector:

.redHeader {

 color: red;

 text-decoration:underline;

 font: Arial, Helvetica, sans-serif;

}

N otice the dot at the start of the selector: This alw ays im plies that you are selecting
elem ents by a class. If you redisplay the w eb page, all three headers w ill display w ith the
specified properties.

If you w ant to assign tw o classes to an elem ent, the class nam es are separated by a space.
For exam ple:

<h1 class="redHeader pageHeading">This is a top level heading</h1>

You can then select elem ents based on either of these classes.

A nother com m on w ay to select elem ents is by their id. A ny elem ent can be given an id,
but, unlike classes, ID s m ust be unique w ithin a docum ent. The follow ing is an exam ple of
a paragraph w ith an id:

<p id="firstParagraph">This is the first paragraph</p>

It is then possible to create a C SS rule that selects this elem ent as follow s:

#firstParagraph {

 font-weight: bold;

}

N otice that the selector begins w ith a # to indicate it is based on id. This particular
exam ple w ill display the paragraph w ith the m atching id in bold.

The final com m on w ay to select elem ents is via pseudo-classes. These allow you to select
elem ents based on features that cannot be expressed by the other selectors, for instance,
every even num bered row in a table.

If you consider the firstParagraph exam ple, you m ay notice that there is a potential
issue lurking here. If a new paragraph is added before the current first paragraph, you
w ould need to rem em ber to sw ap the id onto this elem ent‍ w hich w ould be easy to
forget. A better option is to state that you w ant the first paragraph to be in bold, w ithout
specifying w hich paragraph is the first in the docum ent. This can be achieved as follow s:

p:first-of-type {

 font-weight: bold;

}

This selector first selects all the p elem ents, and then lim its this selection to just the first
elem ent found of its type. B ecause all the elem ents returned have the type of p, the first-
of-type selector w ill return the first p elem ent in the docum ent. Pseudo-class selectors
alw ays begin w ith a single or double colon.

Pseudo-classes are also useful for providing styles to elem ents based on their state. For
instance, if you w anted links to turn green w hen the user hovered over them , you could
use the follow ing selector:

a:hover {

 color: green;

}

There is no w ay to perform this selection w ithout pseudo-classes.

Note
C SS actually supports tw o related, but technically distinct, m echanism s: pseudo-
classes and pseudo-elem ents. Technically, the selectors you have looked at are
pseudo-classes because they select elem ents that you could not select via other
selectors. C SS also supports pseudo-elem ents: These allow a portion of an elem ent to
be selected, such as the first letter in a paragraph, or the first line in a paragraph.

Pseudo-elem ent selectors are supposed to use a double colon rather than a single
colon, but som e brow sers do not support the double colon syntax, so the single colon
syntax is regularly used for both types of selector.

W hen selecting the first paragraph in the docum ent, you are actually com bining tw o types
of selector: an elem ent selector and a pseudo-class selector. It turns out that you can
com bine selectors in m any interesting w ays.

For exam ple, if I w anted to select all the h1 elem ents that had the class redParagraph, I
could use the follow ing selector:

h1.redHeader {

 text-align: center;

}

N otice that there is no space betw een the elem ent selector and the class selector.
A lternatively, if I w anted to select all h1 elem ents that had both the redHeader and
pageHeader classes, I could use the follow ing:

h1.redHeader.pageHeader {

 text-align: center;

}

A lternatively, you can select elem ents only w hen they are children of elem ents returned by
other selections. For instance, you can specify that the cite elem ent should be capitalized,
but only w hen it is a child of a blockquote elem ent (w hich, as it happens, it alw ays is):

blockquote cite {

 text-transform: uppercase;

}

N otice in this case there is a space betw een the tw o selections. This w ill m atch cite
elem ents if they are a descendant of a blockquote elem ent, even if blockquote is not their
im m ediate parent. A nother w ay to think about this is tw o distinct selections. C SS first
selects all the blockquote elem ents, and then it searches for any cite elem ents that are
descendants.

W ith the > operator, it is possible to specify that the selection should only occur if the
elem ent is an im m ediate child of the first selection:

blockquote > cite {

 text-transform: uppercase;

}

CSS Files and Inline Styles
So far, you have used the style elem ent to add C SS to a w eb page. A lthough this is an
easy w ay of adding C SS, it has the disadvantage that you cannot use the sam e C SS across
m ultiple pages.

It is therefore far m ore com m on to place all the C SS in a file w ith a .css extension and
link it to each w eb page that needs to use it. In order to try this out, save the styles you
have added so far in a file called examples.css. Place this in the sam e folder as the
H TM L page, but do not include the style elem ent.

N ow , rem ove the w hole style elem ent from the head of the docum ent, and replace it w ith
the follow ing:

<link rel="stylesheet" type="text/css" href="examples.css">

A gain, the href attribute is using a relative U R L to load the style sheet, but it could also
use an absolute U R L. If you reload the w eb page it should display the sam e as before.

A n alternative w ay of specifying C SS properties is via the style attribute on individual
elem ents. A lthough this approach is generally discouraged, it can be useful w hen a style is
unique to a single elem ent. A s you w ill also see, these styles have a higher precedence, so
it can be a useful approach for overriding global styles. The follow ing is an exam ple:

<blockquote style="color: #888888;font-size:12px;">

N otice that the inline styles use the sam e basic syntax: C olons separate nam es and
properties, and sem icolons separate styles. O bviously, they do not include a selector
because they are applied to the elem ent they are declared on.

Specificity
The sam e elem ent m ay m atch m ultiple C SS rules. W hen this occurs, all the properties
defined in all the rules are applied to the elem ent. You have already seen an exam ple of
this w ith the h1 elem ent.

Im agine, how ever, if you had the follow ing in your style sheet:

 h1 {

 color: blue;

 }

 h1.redHeader {

 color: green;

 }

 .redHeader {

 color: pink;

 }

A ll three of these styles m atch the first header in the docum ent; therefore, w hat color
should it be assigned? The answ er to this lies in a concept called specificity. In order to
determ ine the style to use, C SS assigns points to each rule that m atches an elem ent based
on its selector:

If the selector m atches on an elem ent or pseudo-elem ent 1 point is assigned.

If it m atches on class or pseudo-class, 10 points are assigned.

If it m atches based on id, 100 points are assigned.

If the style is contained in a style attribute on the elem ent, 1,000 points are assigned
‍ w hich usually ensures it autom atically w ins.

You can therefore determ ine w hich of these three rules should be used:

R ule 1 m atches on an elem ent so it receives 1 point.

R ule 2 m atches on an elem ent and a class so it receives 11 points.

R ule 3 m atches on a class so it receives 10 points.

A s a result, the color of the header should be green.

It is, of course, possible that tw o styles w ill have the sam e specificity. In this case, the rule
defined last w ill have precedence. If the tw o rules are in the sam e external style sheet, the
rule that occurs closest to the end w ill w in. If they are in separate style sheets, the last
style sheet declared in the w eb page w ill w in.

There is one im portant exception to this rule. If a style is so im portant that you never w ant
it to be overw ritten by a rule w ith a higher specificity, you can assign it a tag called
important. For instance, if the follow ing tw o rules w ere defined:

 h1 {

 color: blue;

 text-align: center !important;

 }

 h1.redHeader {

 color: green;

 text-align: left

 }

the color w ill be green because of specificity, but the text w ill be aligned in the center
because it is m arked as important. It is best not to overuse this approach, but it w orks
w ell in an em ergency.

Inheritance
O bviously, it is annoying to need to style every single elem ent. There are m any cases
w here you w ant m any elem ents to share the sam e style, and therefore it w ould be
convenient to specify that the style applies to an elem ent and all its descendants. This
concept is called inheritance because styles are inherited from a parent.

C SS supports this concept for m any, but not all, styles. For instance, you m ay w ant all the
text in the docum ent to use the sam e font fam ily. You could therefore specify the
follow ing:

body {

 font-family: Arial, Helvetica, sans-serif;

}

B ecause all the visual elem ents in the docum ent have the body elem ent as a parent (even if
not a direct parent), all the elem ents in the docum ent w ill inherit this style. Likew ise, if
you w ere to specify the follow ing:

blockquote {

 text-decoration: underline;

}

the text for both the blockquote and cite elem ents w ill be underlined.

Inheritance does not alw ays m ake sense, how ever. Im agine that you used the border
property to add a 1-pixel solid black border around the blockquote.

blockquote {

 border: 1px solid black;

}

Should a separate border be draw n around the cite elem ent? I think you can probably
agree that borders should not be inherited, and, in fact, they are not.

If you w ould like to inherit a non-inherited style, you can do so by using the follow ing
syntax:

cite {

 border: inherit;

}

Brow ser Defaults
A ll brow sers have a set of default styles that they apply to elem ents. These defaults
include font types and sizes, the space betw een lines and paragraphs and the w eight of the
fonts on table headers. B row ser defaults are only used w hen you do not provide your ow n
style for an elem ent.

O ne problem w ith brow ser defaults is that they tend to vary betw een brow ser vendors.
This m ay m ean your w eb page looks perfect in C hrom e but looks terrible in IE because it
is picking up a default.

B ecause of these issues, it is com m on to com pletely rem ove the brow ser defaults. This is
typically perform ed using a separate style sheet called reset.css (you w ill find exam ples
on the Internet), w hich is then the first style sheet that is loaded on each page.

Chrom e Scratch Pad
W hen experim enting w ith C SS, it can be an annoyance to m ake changes to the style sheet,
save the changes, and reload the w eb page. Fortunately, C hrom e m akes it easy to
experim ent w ith styles directly in the brow ser. In order to dem onstrate this, right-click on
the first h1 elem ent and choose Inspect Elem ent.

O n the left-hand side of the console, you w ill see the control show n in Figure 4.2.

Figure 4.2

This is telling you all the rules that m atch the elem ent, from the m ost specific at the top, to
the least specific at the bottom . A ny tim e that a style is not used because of specificity, a
line is draw n through it.

A t the bottom of this panel, you can see the styles inherited from the brow ser defaults
(called ―user agent stylesheet‖) and those inherited from other elem ents (for instance,
body).

This can be very useful for determ ining w hy certain styles are used. For instance, have a
look at the exam ple in Figure 4.2 and determ ine w hich rule provided the text-align
property and w hy.

You can also change styles, or add styles to any of these rules: Thesechanges w ill be

reflected in the w eb page in real tim e. You can also elim inate any styles you w ant by
clearing the checkbox that appears next to them w hen you hover over them .

A dditionally, if you click on the very first rule called element.style, you can add new
rules just for this elem ent. For instance, you could m ake the color of the header blue by
adding the property dem onstrated in Figure 4.3.

Figure 4.3

Try It
In this Try It, you w ill style the table that you created in Lesson 4 to hold contact
inform ation.

Lesson Requirem ents
You w ill need the contacts.html file from Lesson 4, a text editor, and a w eb brow ser.

Step by Step
1. Start by creating a file called contacts.css in the sam e folder as contacts.html.

2. A dd a link in the head section of contacts.html to the C SS file follow ing the
instructions earlier in the lesson.

3. Set the font fam ily for the entire docum ent to use Arial, Helvetica, sans-serif.
R em em ber that you w ill need a rule that m atches the body elem ent.

4. A dd a 1-pixel solid black border to the elem ents table, th, and td. You w ill find an
exam ple of a border style earlier in this lesson.

5. Load the page in C hrom e. You w ill notice that there is a double border around cells
(see Figure 4.4) because each cell has its ow n border, and there is a gap betw een
these. To fix this, add a new style to this rule w ith the property border-collapse,
and a value of collapse. This w ill collapse the duplicate borders into a single border.

6. A dd som e space betw een the content and the border of each cell (td elem ent). A dd a
property called padding, and set this to 5px.

7. A dd a style for the thead elem ent. Set the background to the color #3056A0, and set
the color to white.

8. Set the caption for the table to display in bold, but ensure this is only applied if
caption is a child of a table elem ent.

9. Set the font of the tfoot elem ent to be three-quarters the size of the font used
elsew here. H int: Setting the font to 2em w ould double the size of the font (you w ill
look at this setting further in the next lesson). In addition, set the text alignm ent to be
on the right-hand side of the table.

10. Every second row of the table body should be given a background color of #E6E6F5.
In order to select every second row , use the pseudo-class selector tr:nth-
child(even), but ensure this is only applied to children of tbody because thead and
tbody also have tr elem ents.

W hen com plete, the table should look like the screenshot in Figure 4.5.

Figure 4.4

Figure 4.5

Reference
Please select the video for Lesson 4 online at www.wrox.com/go/html5jsjquery24hr.
You w ill also be able to dow nload the code and resources for this lesson from the
w ebsite.

Lesson 5

Structuring Pages w ith CSS
In the previous lesson, you looked at how individual elem ents could be styled w ith C SS.
This lesson builds on this know ledge and looks at how elem ents com e to occupy the
screen position that they do, how this can be m anipulated, and how this im pacts other
elem ents around them .

The Box M odel
The box m odel is one of the m ost im portant C SS concepts and dictates the w idth and
height each elem ent w ill occupy onscreen. The box m odel starts from the observation that
all elem ents in the docum ent occupy rectangular boxes, but the rules for calculating their
height and w idth are not as straightforw ard as you m ay think.

For a start, the height and w idth occupied by an elem ent is greater than the height and
w idth required for the content of the elem ent for several reasons. For instance, the elem ent
m ay have a border that occupies additional space. In the previous lesson, you created
borders that w ere 1 pixel in size. Thus, these borders added 2 pixels to the height and
w idth required for the elem ent.

Padding m ay also be added betw een the content and the border, as w ith the table cells in
the previous lesson. Finally, it m ay also be necessary to add additional m argin betw een the
elem ent and its neighboring elem ents.

The total space occupied by the elem ent‒s box can therefore be visualized in Figure 5.1.

Figure 5.1

In order to see this in action, create a w eb page as follow s:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="utf-8">

 <style>

 h1 {

 width:400px;

 height:30px;

 padding:10px;

 border:2px solid #999999;

 background:#dddddd;

 margin: 10px 20px 20px 10px;

 }

 </style>

 </head>

<body>

 <h1>This is a header</h1>

</body>

</html>

This code declares an h1 elem ent w ith the follow ing sizes (w orking from the inside of the
box to the outside):

A width of 400 pixels and a height of 30 pixels. If these w ere om itted, the elem ent
w ould have a default height and w idth calculated from the content of the elem ent.

Ten pixels of padding betw een the content and the border. W hen specifying a single
value, the value is autom atically applied to the top, right, left, and right of the box.

A 2-pixel border.

A m argin betw een itself and its neighbors, but this has different values on each side.
Therefore, four values are provided. You can rem em ber w hich side these apply to
w ith the acronym TR ouB Le (Top, R ight, B ottom , Left). For instance, in this case the
left m argin is

10 pixels.

It is also possible to specify the border, padding, or m argin for any side individually by
using properties such as margin-left, border-top, and padding-right.

O pen this w eb page and view it in C hrom e. R ight-click on the h1 elem ent, and select
Inspect Elem ent. Ensure the elem ent is selected in the Elem ents tab, and then take a look
to the bottom right of the console. It should show a box like the one in Figure 5.2, w hich is
a visualization of the box m odel for the elem ent.

Figure 5.2

You can therefore use this to determ ine how m uch height and w idth the elem ent w ill need
onscreen:

The w idth w ill need 10 + 2 + 10 + 400 + 10 + 2 + 20 = 454 pixels.

The height w ill need 10 + 2 + 10 + 30 + 10 + 2 + 20 = 74 pixels.

O ne other interesting aspect you m ay notice about the box m odel is the scope of the
background color. The background color fills the content and the padding, but not the
m argin or border.

If you add tw o m ore h1 elem ents to the docum ent and then refresh the w eb page, you w ill

notice that there is a m argin betw een the elem ents, as show n in Figure 5.3.

Figure 5.3

You m ay notice som ething unusual here how ever. Each of the headers has a top m argin of
10 pixels and a bottom m argin of 20 pixels. You m ight therefore expect that there w ould
be 30 pixels betw een each elem ent.

If you select the top elem ent in C hrom e, how ever, you w ill notice that the bottom m argin
is only 20 pixels (as dem onstrated by the fact the space taken by the elem ent extends
dow n to the top of the next elem ent). You can see this in Figure 5.4. The top m argin for
the second header has been ignored.

Figure 5.4

This is referred to as collapsed m argins. The top and bottom m argin of block elem ents are
collapsed into a single m argin that is calculated as the greatest of the top and bottom
m argin: 20 pixels in this case. W orking around collapsing m argins can be a headache;
therefore, it is often better to rely on only top or bottom m argins, not both.

Display Type
I have alluded to display types several tim es already in this book, but now is the tim e to
look at this property in m ore depth. Every elem ent has a display type and is initially
defaulted to the appropriate type for each tag. There are quite a num ber of display types,
but you really need to understand only four of them .

B y default, h1 elem ents have a display type of block. A s m entioned previously, block
elem ents insert a break in the docum ent m eaning the next elem ent w ill appear below the
previous elem ent. It is possible to control both the height and width of a block elem ent,
as you saw in the previous section.

The next m ost w idely used block type is inline. A dd the follow ing rule to the style
section and refresh the w eb page:

h1 {

 display: inline;

}

This w ill now display as you see in Figure 5.5. A s you can see, inline elem ents sit
alongside one another. If they exceed the w idth of the page, they w ill then autom atically
w rap to a new line. A lthough it is possible to control the width of an inline elem ent, it is
not possible to control their height: This is autom atically calculated.

Figure 5.5

A dditionally, it is only possible to add margin and padding to the left and right of the
elem ent, not to the top and bottom . A s you can see, the elem ents are positioned at the very
top of the w eb page, w ithout any m argin betw een the headers and the address bar.

The third m ajor category of display type is inline-block. W hen elem ents are assigned
this display type, they sit alongside one another, just like inline elem ents, but it is
possible to specify their height, and add m argin and padding to all four sides.

The final display type to understand is none. W hen an elem ent is assigned this display
type the elem ent is hidden from the view er but rem ains in the docum ent. C hange the
second header as follow s and then refresh the w eb page:

<h1 style="display:none">This is a header that is hidden</h1>

If you reload the page, you w ill see that there is no sign of this elem ent: It does not even
leave an em pty space for the position it w ould hold if it had visibility. It is com m on to
dynam ically hide and show content w ith JavaScript by m anipulating the display type, as
you w ill see later in this book.

Positioning Elem ents
N ow that you understand the box m odel, it is possible to start looking at how different
elem ents interact.

Im agine that you w ant to create a w eb page split into five sections:

A 100-pixel high header that spans the w idth of the page

A 50-pixel high footer that spans the w idth of the page

A content section broken into three sections:

A n area to the left w here m enus can be positioned: This should occupy 20
percent of the w idth and have a m inim um height of 500 pixels.

A n area on the right for advertising m aterial: This w ill also occupy 20 percent of
the w idth and have a height of 500 pixels.

A m ain content section in the m iddle occupying as m uch of the rem aining space
as it requires.

The screen therefore consists of the five boxes seen in Figure 5.6. The first question you
m ight w ant to ask yourself is: W hat type of elem ent is each of these boxes? Essentially,
they are just containers for other elem ents, and you m ay w ant to encapsulate m any
different elem ents inside each of these containers.

Figure 5.6

H TM L supports a tag I have not discussed so far called a div. This is potentially the m ost
w idely used tag in H TM L: It is a block elem ent w ith no default presentation itself; it is
sim ply used as a container to group other elem ents together.

H TM L supports a second related tag called a span (perhaps the second m ost w idely used
tag in H TM L). This is the sam e as a div, except it is an inline elem ent rather than a
block elem ent.

You w ill start by creating a page called structure.html w ith the follow ing body:

<body>

 <div id="header">This is the header</div>

 <div id="sidebar">This is the sidebar</div>

 <div id="content">This is the main content</div>

 <div id="advertising">These are adverts</div>

 <div id="footer">This is the footer</div>

</body>

B ecause these are block elem ents, you w ill notice that the five elem ents sim ply sit on top
of each other for now . I have added id attributes to the elem ents to allow them to be styled
individually in C SS.

In order to style the header elem ent, add a style elem ent w ith the follow ing value:

#header {

 height:100px;

 background:pink;

}

W hen I am laying out a w eb page, I find it convenient to give every elem ent a distinctive
background color to start‍ this allow s m e to see exactly how m uch space has been
allocated to each elem ent.

If you view this w eb page in C hrom e, you w ill see that the header has a w hite m argin
around it. This is the result of a style inherited from the body elem ent; therefore, you
should also add the follow ing to the styles section to rem ove this:

body {

 margin: 0;

}

N ow , add the follow ing for the sidebar elem ent:

#sidebar {

 width:20%;

 background:orange;

 height:500px;

 float:left;

}

N otice that the width elem ent uses a percent for the unit rather than pixels: This m eans it
w ill utilize 20 percent of the space potentially available to it, w hich for a top-level elem ent
like this is the entire w idth of the screen. Sizes are also com m only expressed in the
follow ing form ats:

mm: M illim eters

in: Inches

em: 1 em is the equivalent size of the current font; this m easurem ent therefore allow s
elem ents to be sized in relation to the standard font size.

This elem ent also declares a height. This property ensures that the elem ent occupies 500
pixels of vertical space.

The m ost interesting property here, how ever, is the float property. B ecause you need
three block elem ents to sit alongside each other, you need to control how they interact
w ith each other horizontally. The float property can be used to position block elem ents to

either the left or the right of the area available to them , and in addition, this suppresses the
break that w ould norm ally accom pany block elem ents in the left-to-right flow .

A lthough using the float property is sim ilar to declaring the display type as inline-
block, it has the additional benefit that it is possible to position elem ents to the left or the
right of their available space. B y com parison, inline-block elem ents alw ays float to the
left of the available space.

N ext, you w ill add style for the content elem ent. You w ill leave this w ithout any style,
except you w ill specify that it should float to the left of its available space, w hich w ill
position the elem ent directly to the right of the sidebar elem ent. A dd the follow ing to the
styles:

#content {

 float:left;

}

W ith this in place, you w ant to place the elem ent w ith the id of advertising on the right
side of the screen. The style for this elem ent is therefore virtually identical to sidebar,
except you w ill request that it floats right:

#advertising {

 width:20%;

 background:blue;

 height:500px;

 float:right;

}

N otice that this is not sitting directly up against the content elem ent; instead, it is being
positioned directly against the right of the screen.

Finally, you com e to the footer. It m ay seem that you can sim ply add the follow ing:

#footer {

 height:50px;

 background:pink;

}

If you try loading this page, how ever, you w ill see that the footer div sits beside the
content div. You need to request that this elem ent drops below the floated elem ents
preceding it w ith the follow ing property:

clear: both;

In this case, both refers to the fact that this elem ent should drop below both left and right
floated elem ents.

If you load the page, you w ill see that it looks exactly as expected (see Figure 5.7). O nce
the page structure is in place, you can then start adding content to each of the divs.

Figure 5.7

Controlling Positions
U p until this point, the position elem ents that have been placed onscreen have been a
product of the elem ents that appear before them in the D O M and the properties of the
elem ent itself. Elem ents are sim ply laid out in the order they appear in the w eb page and
take up as m uch space as they need. This then im pacts the position assigned to elem ents
that appear after them in the D O M .

This is technically called static positioning, but it is only one of several w ays of
positioning elem ents. This section w ill briefly look at three other w ays of positioning
elem ents.

In order to dem onstrate positioning, start by creating the follow ing w eb page, w hich
consists of three boxes. These three boxes are sufficient to dem onstrate the various
approaches to positioning:

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <style>

 .box {

 height:200px;

 width:200px;

 display:inline-block

 }

 </style>

</head>

<body>

 <div class="box" style="background:red"/>

 <div id="middleBox" class="box" style="background:green"/>

 <div id="lastBox" class="box" style="background:blue"/>

</body>

</html>

If you view the w eb page, you w ill see that it consists of three boxes sitting alongside one
another (see Figure 5.8).

Figure 5.8

Im agine that that w e w ant to m ove the second box (w ith the id of middleBox) 50 pixels to
the right and 50 pixels dow n w ithout im pacting the third box at all. This is not possible

w ith static positioning because adding 50 pixels of w idth to the second elem ent w ould
push the third elem ent 50 pixels right.

In order to achieve this, add the follow ing rule to the style section:

#middleBox {

 position: relative;

 top:50px;

 left: 50px;

}

This starts by setting the position of the middleBox elem ent to relative. This m eans that
you w ant to set its position relative to the default position it w ould be given on the page.

O nce the position property has been set, you can start using the left, right, top, and
bottom properties to m ove the elem ent to a different position on the screen. In this case,
you then w ant to specify that you w ant 50 pixels of space added to the left and 50 pixels
of space added to the top. If you view this, you w ill see the screen displayed in Figure 5.9.

Figure 5.9

N otice that the elem ents now overlap one another: The third box is sim ply given the
position it w ould have held if you had not m oved the second elem ent to the right.

It is also possible to use a position of absolute to position an elem ent relative its parent.
Try changing the preceding style as follow s:

 #middleBox {

 position: absolute;

 top: 150px;

 left: 150px;

}

B ecause the parent of middleBox is the body elem ent itself, you are effectively positioning
the elem ent relative to the brow ser w indow . If you view the page now , it should look like
w hat you see in Figure 5.10.

Figure 5.10

U sing absolute positioning rem oves the elem ent from the flow of the page, and therefore
the position of the third box is also im pacted.

You can also control w hich of these elem ents sits in the foreground and w hich are
relegated to the background. This is controlled by a C SS property called z-index. The
elem ent w ith the highest z-index w ill be placed in the foreground. Therefore, if you add
the follow ing to the style of middleBox, it w ill be relegated to the background:

z-index:-1;

The final m ain type of positioning is fixed. This is sim ilar to absolute positioning,
except elem ents are positioned relative to the brow ser w indow . In the preceding exam ple,
fixed and absolute positioning w ould achieve the sam e result.

Try It
In this step-by-step, you w ill pick up the C R M application from the previous lesson and
add m ore structure to the overall w eb page. This w ill include adding a header, a footer,
and an area for adding new contacts (although w e w ill not populate this until the next
lesson).

Lesson Requirem ents
You w ill need the C R M application as it stood at the end of Lesson 4. You w ill also need a
text editor and the C hrom e w eb brow ser.

Step-by-Step
1. O pen the contacts.html page and add a div im m ediately after the opening body tag.

In the body of the tag, enter C ontacts. A ssign the id of header to this tag.

2. W rap a div tag around the table, and give this the id of contactList. The opening
tag should be im m ediately before the opening table tag, w hile the closing tag should
be im m ediately after the closing table tag.

3. A dd another div im m ediately before the closing body tag and give this the id of
footer. A dd a copyright statem ent to this div.

4. A dd one final div im m ediately after the header div, and give this the id of
contactDetails. This is w here you w ill eventually place a new form for adding
contacts. A dd an h2 elem ent to this w ith the text C ontact D etails.

5. O pen contacts.css. Start by adding a margin: 0 property to the body rule to ensure
you rem ove w hite space from around the header.

6. C reate a rule for the div w ith the id of header. This should specify that the
background and color are the sam e as for the thead elem ent rule from the last
lesson. A dditionally, add a text-align property w ith a value of center, and a line-
height property w ith a value of 70px.

line-height is sim ilar to height, but it w ill ensure that the text is vertically aligned.
If you had sim ply specified height, the text w ould be positioned near the top of the
div. A lso add a font-size of 3em: three tim es larger than the standard font.

7. contactDetails and contactList need to share a num ber of properties, so create a
rule that m atches both of these elem ents. A dd a border w ith a 1px solid line and a
color of #999999. A lso add margin and padding of 15px around all sides.

8. A dd a style for the footer div. This should be the sam e as the header, except the
line-height should be 40, and the font-size should be 0.8em.

9. B lack font can be quite overpow ering, so set the color property of the body to
color: #333333, w hich is a very dark grey.

If you open the page, it should look like the exam ple in Figure 5.11. If you need

assistance, the finished version can be dow nloaded from the Lesson 5 resources, or you
can w atch the screencast online.

Figure 5.11

Reference
Please select the video for Lesson 5 online at www.wrox.com/go/html5jsjquery24hr.
You w ill also be able to dow nload the code and resources for this lesson from the
w ebsite.

Lesson 6

HTM L Form s
The H TM L tags exam ined up until this point have all been used to display content to the
user. This lesson exam ines H TM L form s, w hich allow the user to subm it data back to the
w eb server. A ny tim e you enter data into text fields, or select values from drop-dow n lists,
you are using H TM L form s.

This lesson w ill provide an introduction to H TM L form s, but w ill also look at som e of the
interesting changes that have occurred to form s in H TM L5. These changes w ere originally
called W eb Form s 2.0, but have since been integrated into the H TM L5 standard.
Therefore, even if you are fam iliar w ith H TM L form s, this lesson is recom m ended.

W hat Is a Form ?
A form is a set of input fields, grouped together inside a single elem ent, w ith the purpose
of obtaining a set of inform ation from the user. Form s have historically consisted
prim arily of the follow ing fields:

Text fields

Select lists

Text boxes (m ultiline text fields)

C heckboxes

R adio buttons

Passw ord fields

A s you w ill see shortly, this list has been greatly enhanced w ith H TM L5.

In addition, fields contain a Subm it button that causes their contents to be posted to a
specified U R L on the server. The server can then process this data as required and return a
new w eb page as a result.

In this book, you w ill m ake extensive use of form s but w ill not post their contents to a
server. You w ill instead extract and process their data using JavaScript. In this chapter, I
w ill present a m ore conventional view of form s but w ill not provide server-side code for
processing the form inform ation because this w ould require m e to introduce a w hole new
set of technologies.

This section of the lesson introduces a very sim ple form and exam ines its com ponent
parts. You w ill then create a m ore com plicated form for the C ontacts w eb page.

C reate a new page called simpleform.html and add the follow ing body to it:

<body>

 <form action="submit.html" method="post">

 <label for="firstName">First Name</label>:

 <input id="firstName" name="firstName" type="text"/>

 <p>

 <label for="lastName">Last Name</label>:

 <input id="lastName " name="lastName" type="text"/>

 <p>

 <input type="submit" value="Submit">

 </form>

</body>

If you open this in C hrom e, it w ill look like Figure 6.1.

Figure 6.1

N otice that all the input fields are nested inside a form elem ent. A ll of the input fields
w ithin a form should represent a related set of data that is processed together.

The form elem ent contains tw o im portant attributes. The action attribute is the address on
the w eb server that the contents of the form w ill be posted to w hen the form is subm itted.
It is assum ed that this address w ill be capable of processing the contents of the form and
redirecting the user to a new w eb page as a result.

The method attribute refers to the H TTP m ethod that w ill be used to send the data to the
server. W hen you sim ply type an address in a brow ser address bar, you are using an H TTP
m ethod called GET. This is a sim ple m echanism for requesting a w eb page, although it can
contain data if required.

W hen you send form data to the server, you typically have a large quantity of data that
needs to be sent; therefore, you use the H TTP POST m ethod. W ith this m ethod, all the input
fields and their values are included in the body of the H TTP request rather than encoded in
the U R L. You do not need to understand H TTP m ethods to progress through the book,
although you w ill look at them in slightly m ore detail w hen A JA X is introduced.

In this particular case, the form consists of tw o labels and tw o input fields.

O bviously, labels do not allow the user to provide input; thus, you m ay be w ondering w hy
you need to use them rather than just adding text to the form . Labels have the follow ing
benefits:

C licking on the label puts the cursor focus in the input field. This relies on the fact
that the value of the for attribute is the id of the input field that it relates to.

Labels provide m ore structure to the docum ent because they m ake it obvious that the
label is associated w ith a specific input field.

H TM L uses an elem ent called input for m any, but not all, input fields. For this reason, an
attribute is added to the elem ent specifying the type of input it accepts. In this particular
case, you have specified that the type is text (w hich is the default).

Finally, a button is added to the form allow ing it to be subm itted. N otice that this is also an
input elem ent, but because it is given a type of submit, it displays as a button rather than
an input field.

W hen the subm it button is clicked, the fields are serialized into a textual string of
nam e/value pairs. The name attribute for each input field is used as the nam e, and the
current value of the field is used as the value. The textual string is then placed in the body
of an H TTP request and posted to the server.

If I enter Dane and Cameron into the tw o fields, and then press the subm it button, it w ill

post an H TTP request to the server, as show n in Figure 6.2 (this w as captured from the
N etw ork tab of C hrom e‒s developer tools after first clicking the Preserve Log option).

Figure 6.2

Adding Fields to a Form
In this section, you create the form for capturing inform ation about a person in your
C ontacts w eb application.

To com plete this section, open the contacts.html file as it stood at the end of Lesson 5,
or dow nload it from the book‒s w ebsite.

Start by adding the follow ing content to the contactDetails div:

<div id="contactDetails"><h2>Contact details</h2>

 <form method="post">

 <div class="formRow">

 <label for="contactName">Contact name</label>

 <input name="contactName" id="contactName" type="text"/>

 </div>

 </form>

</div>

This adds a form w ith a single input field. The label and input elem ents have been
placed in a div w ith a class of formRow, w hich ensures that each pair w ill be placed on a
row of its ow n.

B ecause you w ant all your labels and fields to have a consistent size, add the follow ing to
contacts.css:

label {

 width:150px;

 display: inline-block;

 vertical-align: top;

}

input {

 width:200px;

}

N otice that you need to change the display type of the label in order to set its w idth.

You can now add input fields for the em ail address and phone num ber fields:

<div class="formRow">

 <label for="phoneNumber">Phone number</label>

 <input name="phoneNumber" id="phoneNumber" type="text"/>

</div>

<div class="formRow">

 <label for="emailAddress">Email address</label>

 <input name="emailAddress" id="emailAddress" type="text"/>

</div>

B ecause you also w ant som e space betw een each row , add the follow ing to the style sheet.
Figure 6.3 show s w hat the form should look like.

.formRow {

 margin-bottom:10px;

}

Figure 6.3

N ext you w ill add a field for capturing the com pany of the contact. In this case, you m ay
w ant the user to select from a list of com panies that have already been added into the
system . This can be achieved w ith a different input type called a select list. Start by adding
this to the form :

<div class="formRow">

 <label for="companyName">Company name</label>

 <select name="companyName" id="companyName">

 <option value="-1">Please select</option>

 <option value="1">ABC Incorporated</option>

 <option value="2">XZY Ltd</option>

 <option value="3">ACME iInternational</option>

 </select>

</div>

N otice that the select list is encapsulated inside an elem ent called select. W ithin this, you
have a series of option elem ents providing the various possibilities. Each option consists
of tw o values: The text betw een the opening and closing option tag is the text that w ill be
presented to the user. Each option tag also has a value attribute, how ever, and this is the
value that w ill be assigned to the field w hen the form is subm itted.

It is possible for the text and the value to carry the sam e value, but it is also com m on for
them to differ. For instance, in this case the value m ay represent a unique code for each
com pany, as assigned by an accounting system .

B y default, a select list selects the first option, although it is possible to add a selected
attribute to any other option to m ake it the default. This is a B oolean attribute; thus, it does
not require a value. For exam ple:

<option value="3" selected>ACME iInternational</option>

You w ill now add one m ore field for capturing notes about the contact. This w ill be
slightly different from the other text-based fields because you w ant to provide space for a
large am ount of text to be captured. You w ill notice that the input fields you have used up
until now do not even allow line breaks, so they are not appropriate for capturing large
quantities of text.

You therefore w ant to add a different input type called a textarea:

<div class="formRow">

 <label for="notes">Notes</label>

 <textarea cols="40" rows="6" name="notes" ></textarea>

</div>

N otice that the text area allow s you to specify the num ber of colum ns and row s that the
textarea contains. A lthough these dictate the size of the elem ent, and therefore are sem i-
presentational, they are still valid attributes in H TM L5.

W ith this in place, the form should now look like Figure 6.4.

Figure 6.4

Finally, add a subm it button to the bottom of the form . B ecause you w ant this to be
sm aller than other input fields, you w ill use an inline style.

<div class="formRow">

 <input style="width:70px" type="submit" value="Save"/>

</div>

HTM L5 Input Fields
There is one final field you should add: You w ant to capture the date that the contact w as
last spoken to or em ailed by your staff. U sers generally expect to provide this inform ation
by selecting a date from a calendar.

U p until the release of H TM L5, you needed to resort to JavaScript libraries in order to
achieve this. O ne of the great enhancem ents in H TM L5 is the introduction of a w hole set
of new input types, including a date input type. This allow s brow sers to provide native
support for selecting dates.

In order to see this in action, add the follow ing row to the form , before the row w ith the
subm it button:

<div class="formRow">

 <label for="lastContacted">Last contacted</label>

 <input name="lastContacted" id="lastContacted" type="date"/>

</div>

N otice that the only difference betw een this and other input fields is that the type has been
specified as date. If you open this in C hrom e, how ever, you w ill see that a date picker has
been provided for you, as show n in Figure 6.5.

Figure 6.5

The great thing about native support for calendars is that different brow sers can im plem ent
them in the m ost appropriate w ay they see fit. For instance, if you view ed this page on an
iPad, the date picker w ould look like the exam ple in Figure 6.6.

Figure 6.6

A s you can see, this has been optim ized for a touch-based operating system .

The m ain problem w ith the date input type is that all brow sers do not support it. This

m eans that, for now , you w ill probably need to rely on a technique called polyfills, as
outlined later in Lesson 10.

H TM L5 actually specifies m any additional input types. A s w ith the date input type, the
specification does not tell brow sers how they should im plem ent each type, and in fact,
m any are not w idely supported, but the follow ing are som e of the input types that have
been included in the specification:

email: A llow s the user to capture an em ail address.

color: A llow s the user to capture a color, presum ably from a color picker.

number: Lim its the user to entering a num ber in an input field, and allow s the user to
increase or decrease the value by a step am ount.

range: Lets the user specify a num ber from a possible range of num bers. This w ill
also be introduced in Lesson 10.

tel: Lets the user capture a telephone num ber.

url: This lets the user capture a U R L.

datetime: This is sim ilar to date, but allow s the user to select tim e as w ell as date
inform ation.

time: This is also sim ilar to date, but lim its the selection to the tim e of day.

In order to see w hat these elem ents do, change the em ail address and phone num ber fields
to use email and tel respectively. If you now reload the page, you probably w ill not
notice any difference.

A s you w ill see in Lesson 8, this is not entirely true; H TM L5 provides native support to
validate fields based on their type. In addition, although C hrom e on a desktop does not
treat these types any differently from text fields, this m ay not be true of other brow sers.

For instance, if you w ere to click on either of these fields in a m obile phone or tablet
brow ser, you can envisage that the softw are-based keyboard w ould change to reflect the
keys needed by the input type. The sam e w ould be true if the input type w as set to number.

It is w orth reiterating that one of the key strengths w ith the H TM L5 specification is that it
does not second-guess how brow sers should im plem ent features. A brow ser on a phone
m ay therefore attem pt to auto-com plete phone num bers based on the user‒s phone book if
it determ ines this is useful to the user.

Datalist Elem ent
H TM L5 also contains a new input type called a datalist. This is sim ilar to a select list,
but it does not lim it the user to the values in the list: It allow s the user to type his or her
ow n value if required. The follow ing is an exam ple:

<input list="companies" name="companyName">

<datalist id="companies">

 <option value="ABC Incorporated">

 <option value="XZY Ltd">

 <option value="ACME iInternational">

</datalist>

A s you can see, this elem ent is m ade up of tw o distinct tags. The first is an input field,
w hich, because its type is not specified, defaults to a text input field. This specifies a
special attribute called list.

The next elem ent is a datalist, w hich has the sam e id as the list specified on the input
field. This then provides a default list for the user to select from , and also allow s the value
to be autocom pleted as the user types.

A lthough you w ill not use this in the contacts w eb page, if you w ere to add it, it w ould
display as you see Figure 6.7.

Figure 6.7

Form Attributes
In addition to new input types, H TM L5 provides a num ber of new attributes for existing
input types. You w ill look at several of these in Lesson 8 w hen you look at H TM L5
validation, but it is w orth m entioning a num ber of them in this lesson.

The placeholder attribute allow s you to provide a hint to users to help them enter a value.
For instance, if you changed the telephone input field as follow s:

<input placeholder="Include area code" name="phoneNumber" type="tel"/>

the field w ould display as you see in Figure 6.8. N otice the gray text in the field. This w ill
disappear as soon as the user starts typing in the field.

Figure 6.8

The autocomplete attribute can be used to specify w hether the brow ser should attem pt to
autocom plete text entered by the user based on values that they have provided before. The
follow ing is an exam ple that turns autocomplete off on the contact nam e field:

<input autocomplete="off" name="contactName" type="text"/>

The autocomplete attribute can also be used on the form as a w hole.

The autofocus attribute is used to autom atically set the cursor in a specific field w hen the
page loads. It has alw ays been possible to do this w ith JavaScript, but this attribute m akes
it far sim pler. For instance, if you added the follow ing to contact nam e field, you w ill
notice that the cursor is in this field w hen the page loads:

<input autofocus autocomplete="off" name="contactName" type="text"/>

Finally, the form attribute can be used to specify that an input field is part of a form , even
if it is not nested inside of it. If this attribute is given a value corresponding to the id of a
form , it w ill be included in the post to the server w hen the form is subm itted, regardless of
w here it is placed in the page.

This can be useful if you have a field that is located in a com pletely different area of the
screen from other fields.

Try It
In this Try It, you w ill experim ent w ith the various form elem ents and input fields
introduced in this lesson. This Try It also covers the few rem aining form elem ents not
covered so far in the lesson.

You are encouraged to experim ent here; the goal is to gain an understanding of how the
form elem ents w ork. If you get stuck, m y version is available on the book‒s w ebsite in a
file called tryit.html, or you can w atch the screencast online.

Lesson Requirem ents
You w ill also need a text editor and a w eb brow ser.

Step-by-Step
1. Start by creating a sim ple H TM L5 w eb page that you can use to add the elem ents

outlined in this lesson.

2. B egin by adding a form elem ent to the w eb page and adding a method of post to this.
B ecause you w ill not subm it this form , you do not need to add an action.

3. Start by adding a sim ple text input field w ith the nam e of fullName. U se the
placeholder attribute to provide a hint to the user, and request that this field receives
focus w hen the page loads.

4. A dd a label for this field, and use the for attribute to specify the id of the field that
this relates to.

5. You w ant to add radio buttons to specify w hether the person is m ale or fem ale. A dd
the follow ing m arkup to the w eb page:

<label for="male">Male</label>

<input checked type="radio" name="gender" id="male" value="male">

<label for="female">Female</label>

<input type="radio" name="gender" id="female" value="female">

N otice in this exam ple that both input types are given the sam e nam e. This is how the
brow ser know s that the tw o radio buttons are connected, and ensures that only one
can be selected. W hen the form is subm itted, the field w ill be given the value of the
radio button currently selected.

6. A dd a checkbox to the form asking if the user w ants to subscribe to your new sletter.
A checkbox is identical to a radio button, but the type of the input field is checkbox.
In addition, you do not need to specify a value w ith checkboxes: The value of the
field w ill be set to either on or off.

7. A dd a textarea for capturing notes. This should be sized to capture 5 row s and 30
colum ns.

8. A dd a ―D ate of birth‖ input field that uses an input type of date.

9. A dd a salary field to the form . Specify this as type number, and define a step
attribute w ith a value of 500.

10. A dd a subm it button to the bottom of the form to allow the contents to be subm itted.

11. Ensure that you have added a
 before each label to m ake sure the inputs are
placed on separate lines.

The finished result should look som ething like the screenshot in Figure 6.9, but you
are encouraged to experim ent, and try out the other features outlined in this lesson.

Figure 6.9

You should notice one new feature on this form : if you enter a value into the salary
field, C hrom e provides up and dow n arrow s for increasing and decreasing this value
by the step am ount. This also ensures that the value is rounded dow n to a m ultiple of
the step am ount.

Reference
Please select the video for Lesson 6 online at www.wrox.com/go/html5jsjquery24hr.
You w ill also be able to dow nload the code and resources for this lesson from the
w ebsite.

Lesson 7

Sem antic Tags
M ost of the tags you have encountered up until this point w ill be fam iliar to anyone w ho
has w orked w ith earlier versions of H TM L. In this lesson, you w ill explore a new set of
tags defined in H TM L5 called sem antic tags.

If you consider the lessons you have looked at so far, thanks to the pow er of C SS, it is
possible to create the body of even com plex w eb pages entirely from span and div tags. In
fact, m any w eb pages are created exactly like this.

Each elem ent that appears on a page‍ from a header banner, to a table cell, to an im age‍
is responsible for providing the presentation for a rectangular area of the screen, and
therefore a div or span can fulfill this role.

A lthough this approach w orks from a presentation perspective, the individual tags do not
contain any m eaning about their purpose in the w eb page: They are therefore said to lack
sem antic m eaning. N ot only that, it w ould be very difficult to deduce from the m arkup
w hat role each elem ent played in the w eb page.

Note
The ―sem antic w eb‖ w as a term coined by the inventor of the W orld W ide W eb, Tim
Berners-Lee. H e envisaged a w eb of data that could be processed by m achines as w ell
as people. Although Tim ‒s vision rem ains largely unfulfilled, the tags you w ill look at
in this chapter are one step along the line to achieving this.

Let‒s look at a concrete exam ple. A header section for a w eb page could be defined as
follow s:

<div class="header">This is the header</div>

You w ill notice that the class nam e does describe the purpose of the div, but is just an
arbitrary nam e: I could just as easily have called this class headSection or head.

In m any w ays, it w ould be better if there w ere a sem antic tag called header, and everyone
used this to indicate the header of their pages.

The rationale for sem antic tags com es from the observation that if the brow ser know s this
is a header, it m ay be able to provide additional services or features to the reader based on
this fact:

It m ay decide to render the inform ation differently on different devices. For instance,
on a sm all screen device such as a phone, it m ay only show the header w hen the user
taps near the top of the page.

It m ay support different m odes. For instance, a user m ay indicate that he or she w ants
to read the content of the page w ithout any distractions (sim ilar to the R eader m ode
in Safari); therefore, the header could be tem porarily rem oved.

It m ay provide support for alternative brow sers, such as screen readers for the
visually im paired. For instance, it w ould help the screen reader understand that this is
the title section of the page and should be read first.

In addition to these benefits, there are clear benefits to the w eb page developer. Pages
consisting of heavily nested div tags can becom e very difficult to m aintain. N ot only is it
easy to m iss an ending tag, but it becom es difficult to determ ine w hich tag needs w hich
style applied to it.

In order to support these benefits, there needs to be a w ay to definitively m ark an elem ent
as the header. Therefore, the H TM L5 specification defines a set of sem antic tags,
including the follow ing:

<header>This is the header</ header >

This lesson w ill w alk you through the m ost im portant sem antic tags and look at how you
can structure a w eb page w ith these tags.

A s it happens, few of these tags do currently provide any of the potential benefits outlined.

Still, I recom m end that you take advantage of these tags because they w ill m ake your code
easier to read and com prehend, and they m ay offer advantages in the future.

G rouping and Segm enting Content
M any of the sem antic tags are used for building the core structure of a w eb page‍ for
instance, the header, the footer, sections of content, and asides. The exam ple that follow s
contains a num ber of sem antic tags: Start by reading through this exam ple. you w ill then
look at the m eaning of each tag:

<body>

 <header>This is the header</header>

 <main>

 <aside>This is where the advertising goes</aside>

 <section>This is the first section in the page</section>

 <section>This is the second section in the page</section>

 </main>

 <footer>This is the footer</footer>

</body>

A s you can see, this exam ple is taking advantage of a num ber of tags that you have not
encountered so far. The next sections w ill describe these tags and explain w here they
should be used. It w ill also cover a num ber of other tags not found in this exam ple.

Header
The header tag is used to group introductory inform ation such as the title of the page and
any relevant header im agery. The header should also contain the m ain navigation links for
the page.

There can, in fact, be m ore than one header on a page: Each section m ay have its ow n
header elem ent, w hile the page as a w hole m ay have its ow n header elem ent.

Footer
The footer tag is used to group inform ation that should appear at the bottom of a w eb
page or section. For instance, this m ay contain copyright inform ation or contact
inform ation.

A s w ith headers, it is possible to have m ultiple footers in a page, and footers do not
need to be paired w ith headers.

M ain
The main tag should surround the content that form s the central functionality or content of
the w eb page. There should only be one main tag on a page, and it cannot be nested inside
other elem ents such as header, section, or footer.

I have not placed the headers and footers inside the m ain elem ent, but this is a choice I
have m ade. The H TM L5 specification leaves you a w ide degree of discretion over how
and w here you use the tags, and how they interact w ith other tags. It w ould therefore also
be perfectly valid to nest the header and footer inside the main elem ent.

Section
Sections are used to capture discreet subdivisions of a docum ent. For exam ple, in the w eb
page you have been developing, the editable portion of the screen m ay be considered a
section, and the list of contacts m ay be considered another section.

In order to determ ine if a portion of the w eb page is a section, consider w hether you
could pick up this w hole area of the page and reposition it elsew here w ithin the w eb page.
If so, it is a good candidate to be tagged as a section.

Aside
Asides are used for content that is loosely associated w ith other content around it, but
w hich could be considered separate. It m ay also be used for advertising m aterial or other
unrelated inform ation. A n aside w ill often be visually separated from the content around
it w ith a border or font.

Article
A n article is sim ilar to a section in that it contains self-contained inform ation, but it is
generally used for segregating textual content, such as blog posts or review s, rather than
just generic sections of the docum ent.

Som e people prefer to see the article tag not as a m agazine article, but instead like an
article of clothing: som ething that exists in its ow n right, but can be m ixed and m atched
w ith other articles.

I personally prefer to use article only for self-com posed text blocks that could be
extracted from one w eb page and em bedded in another. For this reason, article is not
appropriate for the contacts w eb page because this page does not contain self-contained
text blocks.

Nav
A nav elem ent provides a container for the m ain navigation links on the page. This allow s
them to be located by alternative brow sers such as screen readers.

This is an easy elem ent to overuse: The specification does not expect all navigation links
to be encapsulated in a nav elem ent, only the prim ary navigation options for the page.

Address
The address tag is not new at all, but it does fit in w ith the other sem antic tags, and is part
of the H TM L5 specification. This elem ent is used to define the address or contact details
of the m aintainer of the page.

Styling Sem antic Tags w ith CSS
If you save the m arkup from the previous section in a file called semantic.html and then
open it in C hrom e, you m ay be disappointed w ith the results (see Figure 7.1).

Figure 7.1

A lthough the sem antic tags im ply presentation inform ation in their nam es, brow sers
typically do not style them differently from regular div elem ents: They are sim ple block
com ponents. For instance, the header tag tells the brow ser the content of the elem ent
contains header inform ation; it does not tell it w hat to do w ith this.

Sem antic elem ents need to be styled w ith C SS, just like regular elem ents. In addition, you
can style these tags any w ay you like‍ there is nothing (except com m on sense) to stop
you from placing the footer at the top of the page and the header at the bottom of the
page.

In order to style these tags, place the follow ing in a style section in the head of the page:

header, footer {

 padding: 30px 0 30px 0;

 width:100%;

 background:#B3B2CF;

 text-align:center;

}

header {

 font-size:22px;

}

section {

 float: left;

 padding: 10px;

 margin:20px;

 width:70%;

 border: 1px solid black;

}

aside {

 position:relative;

 float:right;

 padding: 10px;

 margin:20px;

 width:150px;

 height:200px;

 border: 1px solid black;

}

footer {

 clear: both;

 margin-top: 50px;

 font-size:18px;

}

If you now refresh the page the various elem ents w ill be displayed in an appropriate style
for their nam es.

M icroform ats
So far you have exam ined the w ay sem antic tags can be used for encapsulating a portion
of a page, and labeling it according to its role in the page. Sem antic tags can, how ever,
also exist on a m icro scale.

C onsider the elem ents in the contacts w eb page displaying date inform ation. C urrently,
these are placed in td elem ents, but H TM L5 provides a new elem ent called time for
encapsulating date and tim e inform ation in a m ore m eaningful w ay. This elem ent allow s
the date and tim e inform ation to be provided in a hum an-readable and m achine-readable
m anner sim ultaneously. For instance

<time datetime="2014-08-20">20th August 2014</time>

This could also have been w ritten:

<time datetime="2014-08-20">August 2014</time>

N otice that in each case, the sam e inform ation is provided tw ice. The first version of the
date is presented in an attribute and conform s to the ISO standards for dates (and tim es if
required). The second version appears betw een the tags and is the version that w ill be
displayed to the user.

A lthough dates and tim es, in all their m yriad of form ats, are very easy for a hum an to read
and com prehend, they can be notoriously difficult for a com puter to process. B y allow ing
tags to alw ays provide an ISO -com pliant version of the date, it suddenly becom es trivial
for a com puter to process the elem ent and com prehend its m eaning.

Features such as this are referred to as m icroform ats and are w idely used in com puting to
provide sem antic m eaning to search engines and other autom ated clients, w hile providing
hum an-friendly versions of the sam e data to hum ans.

M icroform ats have not been officially included in the H TM L5 specification at this point,
although the time elem ent is an exam ple of a m icroform at. There are several standards for
additional m icroform ats, and it is likely that H TM L5 w ill be expanded to support these in
the future.

Sum m ing Up
It w ould be overly optim istic to think that sem antic tags are going to revolutionize your
approach to w eb page developm ent. They are, in m any w ays, one of the least interesting
features of H TM L5 because they do not provide any visual or functional capabilities that
could not be achieved w ith H TM L4.

They do, how ever, have an im portant role to play in enhancing the readability of your
code, and m ay provide other benefits in the future once brow sers begin incorporating
features that rely on sem antic tags. In m any w ays, it is not until w eb page developers start
using these tags consistently, and en m asse, that brow ser vendors w ill begin to provide
functional support for them .

A s a final note, it is also im portant not to overuse the sem antic tags. There is still nothing
w rong w ith using div and span elem ents for structuring sections of a page: Save the
sem antic tags for the m ain building blocks of the w eb page.

Try It
In this Try It, you w ill take the w eb application from Lesson 6 and add sem antic tags in
the appropriate places.

Lesson Requirem ents
You w ill need the files from the end of Lesson 6, a text editor, and a w eb brow ser.

Step-by-Step
1. O pen the contacts.html page in your text editor.

2. Locate the div w ith the class header and convert this into a header elem ent w ithout a
class.

3. Locate the div w ith the class footer and convert this into a footer elem ent w ithout a
class.

4. C onvert the div w ith the id=  contactDetails  into a section.

5. C onvert the div w ith the id=  contactList  into a section.

6. Surround the tw o sections w ith a main elem ent and give this an attribute id=
 contactScreen .

7. Find the td elem ents containing dates and convert these to time elem ents w ith both a
hum an readable and m achine-readable form .

8. Save contacts.html.

9. O pen contacts.css and change the selector for the header class from an id selector
to an elem ent selector.

10. A lso change the selector for the footer from an id selector to an elem ent selector.

11. Save contacts.css.

12. O pen contacts.html in C hrom e. The page should not look any different.

13. R ight-click the header elem ent and choose ―Inspect Elem ent.‖

14. C onfirm that this has the elem ent type header.

Reference
Please select the video for Lesson 7 online at www.wrox.com/go/html5jsjquery24hr.
You w ill also be able to dow nload the code and resources for this lesson from the
w ebsite.

Lesson 8

HTM L5 Validation
W hen the user subm its a form , it is com m on to perform validation of the data the user has
entered w ithin the brow ser. This allow s any issues, such as m issing data, to be resolved
before the form is sent to the server, and generally provides a superior user experience.

Form validation has traditionally been perform ed w ith JavaScript: In fact, until recently
this w as the m ost com m on use of JavaScript w ithin w eb pages. H TM L5 provides built-in
form validation, and allow s fields to be validated based on attributes added directly to the
fields them selves. This lesson w ill look at how you can enable validation on the form
created in Lesson 6.

The H TM L5 form validation specification is not perfect‍ it lacks som e of the rules you
w ould expect in a com plete validation fram ew ork. It does, how ever, have the advantage of
being a native solution and is very easy to use. It is therefore necessary to decide at the
outset of a project w hether H TM L5 validation is sufficient, or w hether you w ill use one of
the m any JavaScript libraries available‍ for instance, jQ uery validation.

