* discussion @ p2p.wror.com e to Programmer
- =

=
N

HTMLS, JavaScript,
and JQuery

24-Hour Trainer

ﬂ Complete learning package with online video tutorials

Table of Contents

[ntroduction
Who This Book Is For
What This Book Covers
How This Book |Is Structured
Wheat You Need to Use This Book
Conventions
Source Code
Errata
P2p.Wrox.com
Part I: HTML and CSS
Lesson 1: Introduction to HTML5S
What Is a Markup Language?
The Simplest HTML Page Possible
An HTML Template
Understanding Elements and Attributes

Try It
Lesson 2: Basic HTML

Structuring Text
Links and Images

Try It

Lesson 3: Lists and Tables
Lists
Tables
Try It

L esson 4: Introduction to CSS
CSS Selectors
CSS Files and Inline Styles
Specificity
| nheritance
Browser Defaults
Chrome Scratch Pad

Try It
L esson 5: Structuring Pages with CSS

The Box Maodel
Display Type
Positioning Elements
Contralling Positions
Try It

Lesson 6: HTML Forms
What IsaForm?
Adding Fieldsto a Form
HTML5 Input Fields
Try It

Lesson 7: Semantic Tags
Grouping and Segmenting Content
Styling Semantic Tags with CSS
Microformats

Summing Up

Try It
Lesson 8 HTML5 Validation

Adding Validation Rules

Customizing Validation
Disabling Validation
Try It

Lesson 9: Drag and Drop
Understanding Events
Drag and Drop Example
Try It

Lesson 10: Dynamic Elements
Summary and Details Tags
Progress Bar and Meter
Range Element

Polyfills

Try It
Part 11: Dynamic HTML5 Web Applications with JavaScript and jQuery

Lesson 11: JavaScript
JavaScript Console

Data Types
Control Structures

Truthy and Falsy Values
Dynamic Typing
Try It
Lesson 12: Debugging
Try It
L esson 13: Functions
Closures
Hoisting and Block Scope
Arguments
Bind
Try It
L esson 14: Objects
Object Literals

Prototypes
Constructor Functions

Modules
Try It

Lesson 15: JSON
Replacing and Reviving
Try It

L esson 16: Document Object Model
Nodes and Objects
Try It

Lesson 17: |Query Selection
Loading jQuery
Selecting Elements
Pseudo-selectors
Selection Within a Context
Wrapped Objects
Try It

Lesson 18: jQuery Traversal and Manipulation
Traversa
Chaining
Manipulation
Changing Elements
[teration

Try It
Lesson 19: |Query Events

Reqistering Event Listeners
Delegated Event Listeners
Form Events
Screen Events
Animation
Try It
Lesson 20: Data Attributes and Templates
Template Tag
Data Attributes
Using the Template

Try It

Lesson 21: jQuery Plugins
jQuery Ul
Writing a Plugin
Try It

Part [11: HTML5 Multimedia

Lesson 22: HTML5 Audio

File Formats

Audio Tag
Controlling Playback

Try It

Lesson 23: HTML5 Video
File Formats
Controlling Volume
Controlling Playback Speed
Controlling Video Size
Media Source Extensions
Encrypted Media Extensions

Web Cryptography

Try It
Lesson 24: Canvas. Part |

Simple Drawing
Drawing Lines
Circles and Curves

Drawing Text
Try It

L esson 25: Canvas. Part 11
Linear Gradients
Shadows
Images
Transforming Shapes
Basic Animation
Try It

L esson 26: CSS3: Part |
Selectors
CSS Borders
Custom Fonts
Try It

Lesson 27: CSS3: Part 11
Linear Gradients
Calc Function
Text Effects
2D Transformations
Trangitions

Try It

Lesson 28: CSS3 Media Queries

Adding Media Queries
External Stylesheets
Try It
Part IV: HTML5 APIs

Lesson 29: Web Servers
URLs
Choosing a Web Server
Try It

L esson 30: Web Storage
Client-Side Storage
Web Storage API
Storing Structured Data

Try It
Lesson 31: IndexedDB

Creating a Database

Storing Data
Reading Data
Deleting Data

Try It
Lesson 32: Application Cache

Manifest Files
Updating Resources
Cache Events
Try It

L esson 33: Web Workers
JavaScript Event Model
Web Workers
Try It

Lesson 34 Files
FileReader API
Other File-Related APIs
Try It

Lesson 35: AJAX
AJAX Requests
Try It

L esson 36: Promises
Working with Promises
Creating Promises

Try It
Part VV: Mobile

L esson 37: Responsive Web Design
Testing Screen Resolution
Flexible Grids
Media Queries
Try It

L esson 38: Location AP
Monitor Movement
L oading the Application

Try It
Lesson 39: |Query Mobile: Part |

Understanding jQuery Mobile
JQUERY Mobile Pages

Try It

L esson 40: |Query Mobile: Part |1
Ul Components
Events

Try It

Copyright
About the Author

Credits

Acknowledgments
Advertisement

End User License Agreement

List of lllustrations

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.5
Figure 1.6
Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure4.1
Figure 4.2
Figure 4.3
Figure4.4
Figure 4.5
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8

Figure 5.9
Figure 5.10
Figure 5.11
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 7.1
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5
Figure 9.1
Figure 9.2
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 11.1
Figure 11.2
Figure 11.3
Figure 12.1
Figure 12.2

Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10
Figure 15.1
Figure 16.1
Figure 16.2
Figure 16.3
Figure 17.1
Figure 17.2
Figure 18.1
Figure 18.2
Figure 18.3
Figure 18.4
Figure 18.5
Figure 19.1
Figure 19.2
Figure 20.1
Figure 21.1
Figure 21.2
Figure 21.3
Figure 21.4
Figure 22.1
Figure 22.2
Figure 22.3
Figure 22.4
Figure 23.1
Figure 24.1

Figure 24.2
Figure 24.3
Figure 24.4
Figure 24.5
Figure 24.6
Figure 24.7
Figure 24.8
Figure 24.9
Figure 24.10
Figure 24.11
Figure 24.12
Figure 25.1
Figure 25.2
Figure 25.3
Figure 25.4
Figure 25.5
Figure 25.6
Figure 25.7
Figure 25.8
Figure 25.9
Figure 26.1
Figure 26.2
Figure 26.3
Figure 26.4
Figure 26.5
Figure 26.6
Figure 26.7
Figure 27.1
Figure 27.2
Figure 27.3
Figure 27.4
Figure 27.5

Figure 27.6
Figure 27.7
Figure 27.8
Figure 27.9
Figure 28.1
Figure 28.2
Figure 28.3
Figure 29.1
Figure 29.2
Figure 30.1
Figure 31.1
Figure 31.2
Figure 31.3
Figure 32.1
Figure 32.2
Figure 33.1
Figure 33.2
Figure 33.3
Figure 33.4
Figure 34.2
Figure 34.1
Figure 34.3
Figure 34.4
Figure 34.5
Figure 35.1
Figure 35.2
Figure 35.3
Figure 35.4
Figure 36.1
Figure 37.1
Figure 37.2
Figure 37.3

Figure 37.4
Figure 37.5
Figure 37.6
Figure 37.7
Figure 37.8
Figure 37.9
Figure 37.10
Figure 38.1
Figure 38.2
Figure 38.3
Figure 38.4
Figure 38.5
Figure 38.6
Figure 38.7
Figure 38.8
Figure 39.1
Figure 39.2
Figure 39.3
Figure 39.4
Figure 39.5
Figure 39.6
Figure 40.1
Figure 40.2
Figure 40.3
Figure 40.4
Figure 40.5
Figure 40.6
Figure 40.7
Figure 40.8

List of Tables

Table22.1
Table 23.1
Table 26.1

Introduction

THE BASIC TECHNOLOGIESBEHIND THE WEB are now almost a quarter of a
century old. HTML dates al the way back to 1993, the same year the first popular web
browser, Mosaic, appeared on the scene.

You may have thought, therefore, that the technol ogies behind the Web would have
entered a comfortable middie-agd still improving around the edges maybg but not
innovating with the pace and excitement of their early years.

In fact, nothing could be further from the truth. The last ten years have been some of the
most exciting and innovative in the history of the Web, and this pace of changeis
continuing to accelerate. As aresult, the Web is no longer the preserve of simple
—websites.ll It isthe realm of —web applicationsll: feature-rich applications that just happen
to run inside web browsers.

A whole new class of computing devices has accentuated the pace of this change. Web
browsers are no longer the preserve of desktops and laptops: They now appear on a
myriad of devices from smart phonesto smart TVs. The fact that web browsers are the one
universal feature across these diverse devices has served to enhance the appeal of browser-
based web applications. You write the web application once, and your users use it from
any device they choose.

Thisinnovation of the last decade did not happen by accident. Various standards
committees have been hard at work for more than a decade devising a set of standards that
have been grouped under the umbrella of -HTMLS5.Il These standards have now made
their way into all the maor web-browsers.

If you are familiar with HTML, the term HTML5 may simply imply anew version of the
HTML markup languagg which may beinteresting but not revolutionary. In fact,
HTMLS5 isfar more than a markup language; it is a set of programming APIs,
implemented by browsers, that allow web pages to perform tasks that had never before
been possible.

For example, it isnow possible for an HTML page to store massive amounts of datain
your browser, operate without a network connection, request more information from aweb
server as and when it needsit, and perform complex computations in the background
without interfering with your browsing experience.

The goal of thisbook is to teach you how to write web applications. In order to achieve
this, you need to understand more than HTML5. You need to understand a set of related
technologies. More importantly, however, you need to understand how these technol ogies
work together.

HTMLY5, for instance, is closely tied to JavaScript. In many cases, if you want to use
HTMLS5, you need to do so through a JavaScript API. It isthus not possible to master
HTML5 without also mastering JavaScript.

JavaScript is also approaching middle age, yet it too continues to evolve in tandem with

HTMLS. Historically considered something of an oddity, JavaScript has turned into arich
and expressive programming language, capable of much more than the simple tasks (such
as form validation) that it was consigned for so many years.

A large part of the appeal of JavaScript isthe myriad of enormously useful, freely
available libraries that are written in the language. Chief among these isjQuery, a
JavaScript library that has taken on alife of its own and come to redefine the way
programmers add dynamic features to their web pages. You can write web applications
without learning jQuery, but your code will lack the conciseness of expression the jQuery
library affords.

Finally, in order to produce visually appealing web applications you will need to learn
Cascading Style Sheets. Just like all other web technologies, CSS also continues to grow
and evolve, and the newest version of CSS called CSS3 means that web pages can
achieve dazzling visual effects.

Who This Book Is For

This book is for anyone who wants to learn how to build dynamic websites and web
applications using standards-based technologies.

You may have experience with HTML4, although that is not required because the early
lessons provide an in-depth look at all of the most important features of HTML. More
experienced readers may, on the other hand, choose to skip these lessons.

This book contains many code examples based on JavaScript. It is expected that you have
some programming experience before reading this book, although not necessarily with
JavaScript. If you have no experience with programming, you may want to prepare with
some online tutorials and exercises before beginning.

Finally, this book is for programmers who want to learn by doing.

What This Book Covers

HTMLS5 isa—versionlessll standard. The specifications behind HTMLS5 continue to grow
and evolve, but this evolution is not matched with —efficialll or versioned rel eases.

As such, this book does not focus on a specific version of HTMLY5; instead, it focuses on
the aspects of HTMLS5 that have achieved widespread adoption in all of the most common
web browsers.

The JavaScript |anguage does contain versioned releases, but unlike most programming
languages, you have no control over the version that your users will choose because thisis
a byproduct of the browser that they select. As aresult, this book will not focus on a
specific version of JavaScript: It will focus on the features that are universally available in
al the major browsers.

This book will use a number of JavaScript libraries that are subject to change over time.
Whenever alibrary is used, a specific version will be specified. In many cases, amore
recent version of the library will work without issue, although the code is only guaranteed
to work with the specified version.

Thisbook isintended as a hands-on guide. Each lesson includes code and exercises that
you can follow along with, and even augment if you choose. It isimportant that you
follow along with these exercises because it is this process that will consolidate your
understanding of how the technologies really work.

How This Book Is Structured

This book is split into five sections. The first two sections are intended to be read in order
because they provide you with the foundation knowledge required to add more complex
functionality. The remaining three sections can be read in any order you choose.

The first section of the book provides an introduction to HTML and CSS and |ooks at how
to build static web pages with these technologies. By the end of this lesson, you will have
a solid foundation on which to start adding more complex functionality.

In the second section, you turn your attention to JavaScript and jQuery, and look at how a
static web page can be converted into a dynamic web application.

The third section of the book looks at the multimedia capabilities of web browsers and
how you can harness these through technol ogies such as the Canvas APl and CSS3.

Once you have an understanding of JavaScript, you can turn your attention to the HTML5
APIsthat allow you to store datainside the browser, access data from web servers, and
execute tasks on background processes. It is these features that truly turn your website into
a feature-rich web application.

In the final section of the book, you will turn your attention to mobile devices and address
the question of how you can convert your web application into a mobile web application
that functions on any mobile device your users may choose to use.

A large portion of this book is structured around the development of a sample web
application. If you choose to skip alesson, you will therefore need to download a
completed version of that lesson-s web application before starting the next lesson.

What You Need to Use This Book

In order to complete most of the exercisesin this book, you will need nothing more than a
text editor and the Chrome web browser.

If you have afavorite text editor, you can continue to use it for this book. If you do not
have atext editor installed, Notepad++ (ht t p: / / not epad- pl us- pl us. org) iSagood
option for Windows, Text Wrangler

(htt p: // www. bar ebones. cont product s/ t ext wr angl er) iSagood choice for Macs, and
EMacsisagood choice for Linux. You may also choose to use an Integrated Devel opment
Environment (IDE) such as Eclipse.

The Chrome web browser has been chosen for this book not so much for the capabilities
of the browser itself, but for the developer tools that accompany it. You can choose to use
an alternative web browser if you wish, but the examples will focus on Chrome.

The Chrome web browser is subject to frequent updates, and it is assumed that you will
use the latest version of the browser.

In later sections of this book, you will also need aweb server. A lesson is provided to
guide you through the process of installing and configuring aweb server.

The source code for the samples is available for download from the Wrox website at:

wWWwW. Wr 0X. conmi go/ ht ml 5] sj quer y24hr

Conventions

To help you get the most from the text and keep track of what-s happening, weve used a
number of conventions throughout the book.

Vs

Warning

Warnings hold important, not-to-be-forgotten information that is directly relevant to
the surrounding text.

(&

Note

Notes indicate notes, tips, hints, tricks, or asides to the current discussion.

(. J

Asfor stylesin the text:

e We highlight new terms and important words when we introduce them.
e We show keyboard strokes like this: Ctrl+A.

¢ \We show filenames, URLS, and code within the text like so:
per si st ence. properties.

e We present code in two different ways.
We use a nonofont type with no highlighting for nost code exanpl es.

We use bold to enphasize code that is particularly inmportant in the present
context or to show changes from a previ ous code sni ppet.

Source Code

As you work through the examples in this book, you may choose either to typein all the
code manually or to use the source code files that accompany the book. All the source
code used in this book is available for download at www. wr ox. com For this book, the code
download is on the Download Code tab at:

wWwWw. Wr 0X. coml go/ ht ml 5j sj quer y24hr

You can also search for the book at www. wr ox. comby ISBN (the ISBN for this book is
978-1-1190-0116-4) to find the code. A complete list of code downloads for all current
Wrox booksis available at www. wr ox. coml dynani ¢/ books/ downl oad. aspx.

Most of the code on www. wr ox. comis compressed in a.ZIPor .RAR archive, or asimilar
archive format appropriate to the platform. Once you download the code, just decompress
it with an appropriate compression tool.

Errata

We make every effort to ensure that there are no errorsin the text or in the code. However,
no one is perfect, and mistakes do occur. If you find an error in one of our books, such asa
spelling mistake or faulty piece of code, we would be very grateful for your feedback. By
sending in errata, you may save another reader hours of frustration, and at the same time,
you will be helping us provide even higher quality information.

To find the errata page for this book, go to

www. W ox. cont go/ ht i 5j sj quer y24hr and click the Errata link. On this page you can
view all erratathat has been submitted for this book and posted by Wrox editors.

If you don+ spot —yourll error on the Book Errata page, go to

www. W ox. conl cont act / t echsupport . sht it and complete the form there to send us the
error you have found. We-l check the information and, if appropriate, post a message to
the book-s errata page and fix the problem in subsequent editions of the book.

p2p.wrox.com

For author and peer discussion, join the P2Pforumsat ht t p: // p2p. wr ox. com The forums
are a Web-based system for you to post messages relating to Wrox books and related
technologies and interact with other readers and technology users. The forums offer a
subscription feature to email you topics of interest of your choosing when new posts are
made to the forums. Wrox authors, editors, other industry experts, and your fellow readers
are present on these forums.

Athttp://p2p. wox. com you will find a number of different forums that will help you,
not only as you read this book, but also as you develop your own applications. To join the
forums, just follow these steps:

1. Gotohttp://p2p.w ox. comand click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join, as well as any optional information you
wish to provide, and click Submit.

4. You will receive an email with information describing how to verify your account
and complete the joining process.

Note

You can read messages in the forums without joining P2P, but in order to post your
own messages, you must join.

G J

Once you join, you can post new messages and respond to messages other users post. You
can read messages at any time on the Web. If you would like to have new messages from a
particular forum emailed to you, click the Subscribe to this Forum icon by the forum name
in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for
answers to questions about how the forum software works, as well as many common
questions specific to P2P and Wrox books. To read the FAQs, click the FAQ link on any
P2P page.

Part |
HTML and CSS

Lesson 1: Introductionto HTML5

Lesson 2: Basic HTML

Lesson 3: Lists and Tables

Lesson 4: Introduction to CSS

Lesson 5: Structuring Pages with CSS

Lesson 6: HTML Forms

Lesson 7: Semantic Tags
Lesson 8 HTML5 Validation
Lesson 9: Drag and Drop

Lesson 10: Dynamic Elements

Lesson 1

Introduction to HTML5

Thislesson is an introduction to the HTML5 markup language. The HTML5 markup
language is alanguage for structuring and expressing the content of aweb pagein a
manner that can be consistently interpreted by a web browser.

If you are already familiar with HTML, much of this chapter will look very familiar. It is
still important that you read through this lesson, however, because there are a number of
important changes in HTML5, and many of these are very subtle.

If you are not familiar with HTML, or have only a passing familiarity, this|esson will
provide you with the background you need to understand the basics of an HTML web
page. Thislesson is only an introduction, however; the material in thislesson will be

enhanced in the remainder of this section.

What Is a Markup Language?

A markup language is alanguage for annotating a document with a set of tags. These tags
are used to provide additional meaning and structure to the text of the document, or
provide instructions on the manner in which it should be displayed to the reader.

For instance, atag may state that one portion of the text is a header, while another portion
Is a paragraph of text. Consider the following document fragment:

<h1>This is a headi ng</ hl>
<p>This is a paragraph of text</p>

In this example, the tags can be clearly differentiated from the content of the document by
the angle brackets. The following represents the start of a heading:

<hil>

while this represents the end of the heading:

</ hl>

Note

HTML defines six categories of header from hl to h6. The lower the number, the more
important the header is.

(&

The entireh1 structurg including the start tag, the end tag, and itstextual contenf is
referred to as an element.

The HTML5 markup language specifies the tags that can be used in an HTML document,
how they should be used, and what additional information (called attributes) they can
contain.

In the early days of HTML, many of the tags included in the markup language instructed
the browser how to present information. For instance, tags were used to dictate font size
and color.

The HTML markup language is no longer responsible for dictating the presentation of a
document, and in HTML5 most of the remaining presentation tags have been removed.
Presentation is now the sole preserve of another technology called Cascading Style Sheets,
which will be examined later in this section.

Instead, the HTML5 markup language is responsible for conveying the meaning of the
various components of the document and how they interact with other components.

Note

Browsers can still provide their own default styles for tags, however, and this is why
an h1 element will appear in large, bold text.

G J

HTML5 greatly enhances the expressiveness of earlier version of HTML, however, and
allows sections of the document to be marked as, amongst other things, headers, footers,
and asides.

Earlier versions of HTML were based on atechnology called SGML, which is alanguage
for expressing markup languages. As of HTML5, the HTML markup language is not
based on any other technology. This has removed a number of restrictions from the
language; therefore, if you are familiar with HTML, you will notice in the sections that
follow that a number of the old rules no longer apply.

The Simplest HTML Page Possible

When learning any technology, it-s always a good ideato start out with the simplest
Implementation possible. In HTMLS5, the ssimplest page you can possibly writeis as
follows:

<! DOCTYPE htm >
hello world!!!

Open your favorite text editor, enter this text, and save the document ashel | o. ht m .

Now, open Chrome, and select Ctrl-O in Windows or -O on a Mac, navigate to the file you
have just saved, and select -Openll. This should look like Figure 1.1 when loaded in the
web browser.

C file://localhc

hello world!!!

Figurel1l.1

Thismay not look like aweb page; after all, there are no tags in the page except the
strange looking tag on the first line of the document.

With the page open in Chrome, now select to open the devel oper tools:
e Command+Option+l on OS X
e F12 or Ctrl+Shift+l on Windows

This should open the window shown in Figure 1.2 below the web page.

Q, | Elements | Network Sources Timeline Profiles Resources Audits Console

v <html=
<head=</head=>
=body>=hello world!!!
=/body>

</html>

Figure1.2

Thisisthe web-browser-s internal representation of the web page. As you can seg, this has
normalized the structure of the document, and does provide a set of tags nested inside one

another. On the outermost level istheht i element, and inside this are two elements: head
and body. The content of the body element is the text you wrote in the text editor.

The document has been normalized to conform to the rules of the Document Object Model
(DOM). The DOM will turn out to be enormously important throughout this book because
much of the power of modern web pages comes from their ability to manipulate the DOM
after the page has |oaded.

The manner in which a Document Object Model should be constructed from an HTML

page has been a contentious issue since HTML first appeared. Historically, different
browsers would generate different models for the same HTML, and this made it very
difficult to write cross-browser web pages.

In order to counteract cross-browser issues, the World Wide Web Consortium (W3C),
which is the standards body behind web standards such as HTML, decided to recommend
a set of standards placing the onus on the web page devel oper. These standards, called
HTML Strict and XHTML, forced the web page devel oper to create a normalized web
page, and therefore made it easy for web browsers to render pages consistently.

This approach did not work very well. The real power behind HTML is not the standards
bodies, but the browser vendors because they ultimately decide what is avalid web page.
They did not want to enforce this strictness on web pages because failing to load web
pages would only serve to make their browser ook deficient.

As the W3C continued on with their strict standards, arival group called WHATWG
started work on arival standard that would eventually become HTML5. The members of
this group were made up of participants from the main browser vendors, and their goals
were far more pragmatic. Rather than creating a whole new set of standards, this group
first looked at what browsers were already doing and, where possible, formed standards
from this.

W3C eventually abandoned their efforts for strictness and joined WHATWG-s efforts, and
the two groups each publish aversion of the HTML5 standard.

A large part of the HTML5 standard describes how browser vendors should create a
normalized DOM from a non-normalized HTML document. Thisiswhy Chrome created
the DOM that it did in the preceding example, and why Firefox, |E, and Safari would
create exactly the same structures.

An HTML Template

In the previous section, you wrote the simplest web page you could write. In this section,
you will write aweb page following a basic template that is intended to represent the
simplest HTML structure you should write.

I will first present the template, and then | will walk you through it line by line. Open a
new document in your text editor, and save the following ast enpl at e. ht i :

<! DCCTYPE htni >
<htm | ang="en">
<head>
<neta charset="utf-8">
</ head>
<body>
This is the body of the docunent.
</ body>
</htm >

If you open thisin Chrome, and then view the DOM in the developer tools, it will ook
like the example in Figure 1.3.

Q, | Elements | Network Sources Timeline Profiles Res

| ¥ <html lang="en">»
Y zhead>
«<meta charsete"utf-8">
</ head>
<body=>
This is the body of the document.

=/body>
zfhtml>

Figure1.3

Asyou can see, in this case there isfar closer alignment between the content you provided
inthe HTML file and the normalized structure generated by the browser.

L et-s now walk through each line in the document and examine its purpose.
Thefirst line in the document is as follows:

<! DOCTYPE ht ml >

Thisline defines the document type of the page. Because there have been many different
HTML standards over the years, the browser uses this line to understand which of these
standards the page is using, and then uses the rules applicable for this standard to interpret
the content of the page and render it accordingly.

Thisisthe HTML5 document type definition, and comes as a pleasant surprise for
developers who may be accustomed to copying and pasting DOCTY PE declarations such
as.

<I DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.01//EN'
"http://ww. w3.org/ TR htm 4/ strict.dtd">

The other main surprise about this document type definition is that it does not include a
version number: The document typeissimply htm .

Although the specification isreferred to as HTMLY5, it defines a—-Hving-standardll that will
be subject to incremental change as and when browser vendors implement, and agree on,
new features. Put another way, there will never be another version of HTML, but HTML
will always continue to evolve.

The next line contains the opening ht m tag, which encapsulates the remainder of the
document:

<htm |ang="en">

This tag contains an attribute called | ang, which has been given the value en. Attributes
provide a mechanism for providing extra meaning to tags. This particular attribute is
stating that the language of the document is English.

Note

The 10 standard 639-1 defines the set of two-letter codes that can be used for
languages. These can also be paired with a country code, for instance en-US. Country
codes are defined in the 1O standard 3166.

G J

Aswith many aspects of HTMLS5, although the specification defines the attributes and
their expected values, it is up to the browser to decide what to do with this information.
The browser may use this information to suggest a translation to a non-English speaker, or
it may do absolutely nothing with this information.

The next element in the document is the head element. Thisis the section of the document
where you can provide important metadata about the document, along with links to other
files needed by the document. The head section never contains any visual components of
the web page. In this particular case, the head contains one important piece of metadata:

<neta charset="utf-8"/>

This specifies that the character encoding of the document is UTF-8. | will not cover
character encodings in this section, but the specification recommends setting this.

There is one other element that is commonly added to the head element: the titl e
element. Thisisthe text that the browser will display in the title bar when the web pageis
loaded. Therefore, add the following inside the head section:

<title>Basic tenplate</title>

and then view the page in Chrome; the tab header will appear as follows:

aNs
e Basic template

Figurel4

Next you come to the body element. Thisiswhere all the visual elements of the page will
be described. In this particular example, the body consists of asingle text string, but it is
this area of the document that you will enhance in the chapters ahead to create interesting
web pages.

Understanding Elements and Attributes

Even though the examples you have created are very ssmple, you can already see that
elements can be nested inside one another, and as aresult, create atree-like structure.

Every HTML document has a single top-level element, which isawaystheht ni element
(the document type element is not part of the document as such).

In addition, every element in the document can have zero or more children. The ht n
element has two children: head and body. The head element in turn has a child of its own:
the net a element.

Every element in the document (except the ht M element) has one (and only one) parent.
The parent of the head element isthe ht i element. The parent of the net a element isthe
head element.

Asyou will see, the structure of pages will become considerably more complex, and the
degrees of nesting will increase enormously. No matter how complex the pages become,
however, all the elements will follow these ssimple rules.

You have examined how elements consist of an opening and closing tag; for instance the
opening of the head tag is <head> while the closing is an identically named tag preceded
by aforward slash </ head>.

Some elements do not require any content: The tag and its attributes provide all the
information that is required. In this case, the start and the end tag can be combined into the
following construct:

<neta charset="utf-8"/>

The forward slash before the end of the tag indicates that the tag is being closed. Thisis
the direct equivalent of the following:

<neta charset="utf-8"/>

You should always ensure that all tags are closed in the reverse order they are opened. For
example, you should never write markup as follows:

<p>Hel | o</ p></ strong>

In this case, the st r ong element is supposed to be the child of the p element, but the p
element ends before the st r ong element.

Note

The st r ong tag is used to indicate that a piece of text isimportant. Although thisis
often confused with the now deprecated bol d tag, it is, in fact, still a valid HTMLS
tag. Thistag is not considered a presentation tag because it indicates that text is
important, not how this text should be styled. You may decide that st r ong elements
are colored red rather than with a bold font.

G J

If you add thisto your t enpl at e. ht m file before the ending body tag, and then view the
normalized structure in Chrome, you will notice that the browser has rearranged these
tags, asyou can seein Figure 1.5.

¥ <DOCY>

This is the body of the document.

=strong=Hello=/strong=

Figure 1.5

Although the HTML5 specification does have rules for fixing up your mistakes, it is
generally best not to make mistakes in the first place because the rules of the HTML5
specification may not be what you intended.

| generally find it best to write tags in lowercase. Asit turns out, tag names are entirely
case insensitive because they are automatically converted to lowercase in the DOM. The
following is therefore valid, but should be avoided for obvious readability reasons:

<HEADER>t hi s is a header </ header >

Thefinal feature | will cover in thislesson is attributes. You have already seen two
examples of attributes, on the ht m tag and on the net a tag. Many other tags also support
attributes, and you will examine these throughout the book.

Attributes often consist of a name/value pair. When an attribute has a value, the value can
either be included in single or double quotes. The following are equivalent:

<neta charset="utf-8"/>
<nmeta charset="utf-8 />

A tag can contain more than one attribute, in which case they are smply separated by
white space:

<p id="firstParagraph" class="bol d">

Additionally, some attributes do not have avalue. These are referred to as Boolean
attributes. The presence of the attribute is all that is required. For instance:

<i nput read-only/>

In this case, the attribute is called r ead- onl y, but the presence of the attribute is enough to
indicate that the element is read-only. It is still possible to add a value to a Boolean
attribute, but it has no meaning. For instance, the following input field is still read-only:

<i nput read-only="fal se"/>

Attribute names should also be written in lowercase (because thisis how they will be
represented in the DOM). Generally attribute names will also use hyphensif they contain
more than one word.

Try It

In this Try It, you will duplicate the template html page outlined in the lesson. You may
choose to skip this portion if you are familiar with HTML, but the simple act of typing
code word for word enhances your understanding.

If you get stuck in this example, you can refer back to the example earlier in the lesson, or
use the screencast to guide you though the process.

Lesson Requirements

You will need atext editor and aweb browser.

Step-by-Step
1. Open your text editor and create a new document.
Add the HTML5 doct ype to the document.
Add anhtmi element (both the opening and closing tags) below the document type.
Indicate the language of the document using an attribute on the ht ni tag.

ok~ WD

Add ahead element insidethe ht M element. You will need both an opening and a
closing tag.

6. Addatitl e insidethe head element, and give the document a name. Remember that
this needsto be a child of the head element.

7. Add abody element insidethe ht m element just below the closing head tag.
8. Add anet a element to the head indicating that the charset is UTF-8.

9. Add any text you like to the body of the document. Any text that you add should be
displayed back to you when you open the web page in Chrome.

10. Savethe document with a. ht ni extension.

11. Open the document in Chrome and inspect the Document Object Model in the
devel oper tools.

When you open this in Chrome, and then open the devel opment tools to inspect the
elements, the markup should look like Figure 1.6.

Q, | Elements | Network Sources Timeline Profiles Resou

Select an element in the page to inspect it.

k <heads>..</head>
=body>
This is the body of the document.

=/body>
</html>

Figure 1.6

There is also acomplete example in the Lesson 1 folder on the book-s website called
tryit.htm.

Reference

Please select the video for Lesson 1 online at www. wr ox. cont go/ ht ml 5j sj quer y24hr .
You will also be able to download the code and resources for this lesson from the

website.

Lesson 2

Basic HTML

Thislesson provides a basic introduction to the most common HTML tags. If you are
already familiar with HTML and are reading this book primarily to learn about HTMLS5,
you could choose to skip the next two lessons, although each lesson does include material

that is specific to HTMLS5.

In the previous lesson, you created an HTML template. In thislesson, you will start adding
content to the body of this template using some of the most common HTML tags.

Structuring Text

You will begin by examining the ways you can structure text in aweb page. HTML
originally started life as a means of sharing research papers; thus, text formatting has
always been an important part of HTML.

Begin by opening thet enpl at e. ht ni file created in the previous chapter. Replace the
body of the web page, as shown in the following markup:

<I DOCTYPE htm >

<htm | ang="en">

<head>
<meta charset="utf-8">

</ head>

<body>
<h1>This is a top |l evel headi ng</hl>
<h2>This is a second | evel headi ng</h2>
<h3>This is a third | evel headi ng</h3>

</ body>

</htm >

The body now contains three separate header elements. If you open thisin Chrome, it
should look like Figure 2.1.

This is a top level heading

This is a second level heading

This is a third level heading

Figure2.1

Notice that the h1 element-stext is displayed in alarger font than the h2 element. Asit
happens, this has nothing to do with the HTML specification; thisis simply the default
style provided by the web browser, just as the font is the default font of the browser. In
L esson 4, you will see how this can be overridden with Cascading Style Sheets (CSS).

You will also notice that each heading is displayed on anew line. Thisis not because the
elements are placed on new linesin the HTML file; in fact, white space is mostly ignored
in HTML. In order to prove this, change the h1 tag asfollows:

<h1>This is a top
| evel headi ng</hl>

<h2>This is a second | evel headi ng</h2>

If you reload the web page, you will see that this change makes no difference to the way
the headings display. Although a single whitespace character is displayed as a space inside

an element, a sequence of whitespace characters, even if it contains new-line characters, is
collapsed down to a single white space character.

HTML does provide a special character sequence, , for adding extra whitespace
characters, but new lines should be created using the tags introduced shortly.

Note

The ampersand character, followed by a sequence of characters and terminated by a
semicolon, indicates that thisis a special character sequence.

There are a number of special character sequencesin HTML. Perhaps the most
common ones you will encounter are & t; and > ; , which are used for the less than
(<) and greater than (>) characters respectively. These are required because the <
and > characters have special meaning in HTML. In case you were wondering, nbsp
stands for —Aon-breaking space.|l

A\ J

So what did generate the new lines after each heading? These appear because the elements
h1 through he are bl ock elements. All visual HTML elements have adisplay type, the
most common of which are bl ock andi nl i ne. Whenever abl ock element ends, the next
element automatically begins on anew line.

Next, you can continue by adding some paragraphs to the body:

<p>This is the first paragraph</p>
<p>This is the second paragraph</p>

If you refresh the web page, it will 1ook like what you seein Figure 2.2.

This is a top level heading

This is a second level heading

This is a third level heading
This is the first paragraph

This is the second paragraph

Figure 2.2
Each paragraph appears on anew line, and there is a space between each paragraph.

It is actually possible to omit the ending tag from ap tag. In fact, there are many cases
where the ending tag can be omitted because the next tag in the document impliesit. |
usually find it easier to add the ending tag in these cases, but the specification makes this
entirely optional. You will see throughout the examples that | sometimes omit the closing
tag and sometimesincludeit.

What about XHTML?

If you are already familiar with HTML, you may be aware of XHTML, which isan
XML-based version of HTML. HTML5 extends and replaces XHTML aswell as
HTML. In order to serialize an HTMLS5 page to XML, all tags must be closed, and the
document as a whole must be well-formed. In addition, the ht m tag should be
declared as follows:

<htm xm ns="http://ww. w3. org/ 1999/ xhtm ">

and the content type of the document should be set to appl i cat i on/ xht mi +xm rather
thantext/ht M whenit is served to the browser.

If you are not already familiar with XHTML, you can ignore it for the duration of this
book: It istypically only used if you have a need to process an HTML page with XML
parsers and tools.

The text in a paragraph will automatically wrap if it reaches the far right side of the
browser. Additionally, if the user resizes their browser, the text will automatically be
adjusted: This processisreferred to as a browser reflow.

Sometimes the browser will break your paragraphs in an inconvenient place, especialy if
it contains very large words. In order to give you more control over line breaks, HTML5
has introduced atag called wor that can be added anywhere inside a paragraph as a hint to
the browser that this would be a good place to add a line break.

If you would like aline break within a paragraph, you can usethe br tag. Thisisaso a
self-closing tag so it can be used as follows:

<p>This is a paragraph
that spans two |ines</p>

HTML supports several other tags for encapsulating blocks of text. The final one you will
look at in this section isthe bl ockquot e element, which can be used to capture quoted
text, optionally with a citation:

<bl ockquot e>Tell ne and | forget. Teach ne and | renenber. Involve ne and |
| earn.

<cite>Benjam n Franklin</cite>
</ bl ockquot e>

This structure is slightly more complex: The bl ockquot e tag contains the quote, while
ci te, which isan optional child tag, captures the source of the quote. Figure 2.3 shows an
example of thistag in Chrome.

Tell me and I forget. Teach me and I remember. Involve me and I learn. Benjamin Franklin

Figure2.3
Notice that the bl ockquot e isindented and that theci t e element displaysin italics.

Again, these are browser defaults rather than part of the HTML5 specification.

Finally, as your web pages become more complex, you may find cases where you would
like to add comments to remind you what the markup means. Comments can be added as
follows, and will not display to the user:

<l-- This is a cotmment -->

Links and Images

HTML pages naturally consist of far more than text. This section will introduce two of the
most fundamental tags found in most web pages: hyperlinks and images.

| will assume you know what hyperlinks are: They are a mechanism for referencing
another HTML document and can be clicked to alow the user to navigate to that
document.

Start by creating a new page in the same folder as the page you developed in the previous
section, but call this one page2. ht m . Add some contents to this page so that you can
distinguish it when it loads.

Now, in the original HTML file, add the following paragraph:

<p>Pl ease click here to view page 2</p>

If you reload the page, this HTML will generate the text found in Figure 2.4.

Please click here to view page 2

Figure2.4

Notice that the text displayed to the user is derived from the content of the a tag, while the
page that is loaded when the link is clicked can be found in the hr ef attribute.

This particular URL isreferred to as arelative URL because it does not start with a
forward slash or a domain name. The browser will attempt to find page2. htmi ina
location relative to the page currently being displayed.

If you had created page2. ht ni in asubfolder called sub, the URL would be represented as
follows:

<p>Pl ease click here to view page 2</p>

When running awebsite inside aweb server, it is also possible to use absolute URLSs.
These begin with aleading / and require the full path for the file to be specified.

It is also possible to add URL s to other websites. For example:

Li nk to Googl e</ a>

You will also notice that the a tag does not cause an implicit new line to be generated in
the document. Thisis because, unlike most of the other tags you have examined, it has a

display type of i nl i ne.
Hyperlinks can be surprisingly complex. Asyou progress through the book you will see

more interesting features of hyperlinks, such as the manner in which they can encode
parameters, but for now a basic understanding is sufficient.

Images can be inserted into an HTML page with thei ng tag. | seldom usethei ny tag
anymore: | typically use CSS to embed images as the background of other tags because

this provides greater control for positioning the image, but it isimportant to understand
how this tag works.

You can either find an image you would like to use or download phot o1. j pg from the
L esson 2 files at the book-s website.

Now, add the following to the HTML page:
<p>This is a photo |I took in Canbridge

<i ng src="photol.jpg"

title="Canbridge, England" w dth="200"></p>

If you view thisin Chrome, it will display in much the same way as you see in Figure 2.5.

This is a photo I took in Cambridge | |

Figure 2.5
Thisisthefirst tag you have examined with multiple attributes.

e Thesrc attribute is used to specify the location of the file. Just like hyperlinks, this
can be an absolute or arelative URL, or it can even reference an image on another
website.

e Thetitl e atributeisused to specify atooltip that will be displayed to the reader
when the reader hovers over the image with her mouse cursor, and to describe the
Image to screen readers.

e Thewi dt h attribute is used to specify the width of theimage in pixels. It isalso
possible to specify ahei ght, but if just wi dt h or hei ght is specified, the image will
be scaled appropriately.

Browsers support many different image types, but by far the most common are PNG, GIF,
and JPEG images.

Thei ng tag previously supported a number of other presentation-orientated attributes.
These are deprecated in HTML5, and CSS properties should be used instead.

Note

When a feature is deprecated, it is still available to use, and will probably still work,
but it is strongly suggested that you find an alter native because support may be
removed entirely in the future.

Try It

This Try It isan opportunity to experiment with the tags that have been discussed in this
lesson. You do not necessarily need to follow this lesson exactly; just try to create an
interesting web page from the tags that have been introduced.

Lesson Requirements

You will need thetenpl ate. ht i filefrom Lesson 1, atext editor, and aweb browser.

Step-by-Step

1.
2.
3.

Openthetenpl ate. ht i pagein your text editor.
Add an h1 element to the page and include some header text.

Add some paragraphs to the web page using the p tag, and split some paragraphs
across multiple lines with the br tag.

4. Add aquote to the page along with acitation, using the bl ockquot e and ci t e tags.

Find an image you would like to include in the page, and add it at the bottom. Make
the image a fixed width, and allow the browser to determine the correct height.

Add ahyperlink to your page to point to another page in a subfolder of the current
page.

7. Add ahyperlink to an external website such as Google.

8. Although | have not covered it, attempt to turn the image into a hyperlink so that it

loads another page when it is clicked. Hint: The image will need to be a child element
of the hyperlink.

My example can be found in the Lesson 2 resourceson thetryit. ht M website.

Reference

Please select the video for Lesson 2 online at www. wr ox. cont go/ ht ml 5j sj quer y24hr .
You will also be able to download the code and resources for this lesson from the

website.

Lesson 3

Lists and Tables

In this lesson, you will look at two important ways content can be structured in web pages.
lists and tables.

Lists

Lists are common to anyone who has worked with word processing tools such as
Microsoft Word: They are the bulleted and numbered lists that are used for capturing a
sequence of points. HTML lists are very similar to these lists. In this section, | introduce
the three types of list provided by HTML.

Unordered lists

Unordered lists are used to create the familiar set of bullet points seen in Word documents.
In order to create an unordered list, aset of 1i elementsis placed inside an ul element. | i
stands for —hst item,ll whileul stands for —anordered list.ll

The following is an example:

<! DOCTYPE htm >
<htm | ang="en">
<head>
<meta charset="utf-8">
</ head>
<body>

This is the first point
<l i>This is the second point
This is the third point

</ body>
</htm >

If you savethisinan HTML file and open it in Chrome, it will display like the examplein
Figure 3.1.

+ This is the first point
¢ This is the second point
» This is the third point

Figure3.1

Theli tagisself-closing, so | have omitted the ending tag. Obviously, this could have
been included without affecting the display of the list.

Although unordered lists are ssmple, once they are combined with CSS, they can become
very powerful. Whenever you see a horizontal list of navigation links at the top of aweb
page, there is a good chance that they were created from an unordered list.

Ordered Lists

Ordered lists are identical to unordered lists, except they use the ol tag rather than the ul
tag. The only visual difference between the two listsis that ordered lists are numbered:

This is the first point

This is the second point
This is the third point
</ ol >

Figure 3.2 illustrates how this displays.

1. This is the first point
2. This is the second point
3. This is the third point

Figure 3.2

Any element can be used as the content for an | i tag; thus, it is possible to nest lists within
lists. The following example lists an unordered list inside an ordered list:

point 1

sub point 1
sub point 2
</ ul >

point 2

sub point 1</Ili>
sub point 2</Ili>
</ ul >

<l i>point wthout sub points
</ ol >

The result of this can be seen in Figure 3.3.

1. point 1
> sub point 1
o sub point 2
2. point 2
o sub point 1
o sub point 2
3. point without sub points

Figure 3.3

Description Lists

Description lists are probably the least used type of list. They are atype of list where each
entry captures a name-value group. Each group in turn consists of one or more names,
followed by one or more definitions. Consider the following list, which captures
information about the drinks served by a cafe:

<dl >
<dt >Cof f ee</ dt >
<dd>Cappucci no</ dd>
<dd>Espr esso</ dd>
<dd>Mbcha</ dd>
<dt >Tea</ dt >

<dd>Ear| grey</dd>

<dd>Green tea</dd>

<dd>Chai tea</dd>
</dl >

Thislist contains two groups. coffee and tea. Each group then consists of a set of
beverages relating to that group. You can see the result of thisin Figure 3.4.

Coffec
Cappuccino
Espresso
Mocha

Tea
Earl grey
Green tea
Chai tea

Figure3.4

Definition lists were originally specified purely in terms of terms and definitions. The
HTMLS5 standard broadens the suggested uses of definition lists and encourages you to
think in terms of groups with names and values.

Tables

Tables are amore complex structure than lists and support the familiar notion of rows and
columns.

Throughout the course of this book, you will write a web application from scratch, and
this web application will utilize atable. The web application will perform basic Customer
Relationship Management (CRM) capabilities; in particular, it will keep track of a set of
contacts and the |ast date they were contacted.

In order to start this web application, create afolder somewhere on your file system called
CRM. Thiswill hold all the files needed by the web application.

Next, add afile caled cont act s. ht ni to thisfolder, and populate it with the basic
HTMLS5 template outlined in Lesson 1.

You will now create atablein the body of the web page for capturing the following
information:

e Contact name
¢ Phone number
e Email address
¢ Contact-s company
e Datelast contacted
To start, begin by creating an opening and closing t abl e tag in the body of the web page:

<t abl e>
</t abl e>

HTML tables are row orientated: You add onerow at atime using thet r (table row)
element and provide values for all the relevant columns. The rows can either be added to
the header, body or footer of the table. Add the following inside thet abl e element:

<t head>
<tr>
<t h>Cont act nane</th>
<t h>Phone nunber </t h>
<t h>Enmai | address</th>
<t h>Conpany nane</t h>
<t h>Last contacted</th>
</[tr>
</t head>

Therow in thet head element contains five children of itsown: Theset h (table heading)
elements are the individual cellsin the row of the table.

Next, you will add two rows to the body of the table. The body of the table is encapsulated
inat body element. The individual cellsin the body use thet d (table datum) element
rather than the t h element. Add the following after the end of thet head element:

<t body>
<tr>
<td>WI1liam Smth</td>
<t d>555-642- 7371</td>
<td>wi || i am@ esting. conx/td>
<t d>ACME | ndustries</td>
<t d>2014- 10- 21</t d>
</[tr>
<tr>
<t d>Bob Morris</td>
<t d>555- 999- 2991</td>
<t d>bob@ esti ng. conx/t d>
<t d>ABC Cor p</td>
<t d>2014- 09- 12</td>
</[tr>
</t body>

Next, you will add afooter row to the table. The footer will ssimply state how many rows
areinthetabl e; thus, it only needs to occupy asingle cell. This presents adilemma
because you want all the rowsin the able to have the same number of columns. The
solution to thisisto utilize the col span attribute with thet d element to specify that a
singlet d spans multiple columns. Add the following after the end of thet body element:

<t f oot >
<tr>
<td col span="5">2 contacts displ ayed</td>
</[tr>
</tfoot>

Finally, you will add a caption for the table. This can be added anywhere in the table,
provided it isadirect child of thet abl e element itself:

<capti on>Sal es | eads</capti on>

The complete web page should now look as follows:

<t abl e>
<t head>
<tr>
<t h>Cont act nane</t h>
<t h>Phone nunber </t h>
<t h>Emai | address</th>
<t h>Conpany nane</t h>
<t h>Last contacted</th>
</tr>
</t head>
<t body>
<tr>
<td>WIIliam Snith</td>
<t d>555-642-7371</td>
<td>wi | | i am@ esting. conx/td>
<t d>ACME | ndustries</td>
<t d>2014-10-21</td>
</tr>
<tr>

<td>Bob Morris</td>
<t d>555- 999- 2991</t d>
<t d>bob@esti ng. conx/t d>
<t d>ABC Cor p</td>
<t d>2014- 09- 12</t d>
</[tr>
</t body>
<t f oot >
<tr>
<td col span="5">2 contacts di spl ayed</td>
</[tr>
</tfoot>
<capti on>Sal es | eads</capti on>
</t abl e>

If you open the page in Chrome, it should display as you seein Figure 3.5.

Sales leads
Contact name Phone number Email address Company name Last contacted
William Smith 555-642-7371 william@testing.com ACME Industries 2014-10-21
Bob Morris 555-999-2991 bob@&testing.com ABC Corp 2014-09-12
2 contacts displayed

Figure 3.5

You will notice that the columns in the table have sized themsel ves according to the data
that has been added to them, but the last row in the table spans column boundaries.

Technically, you could have avoided using thet head, t body, and t f oot tags, and just
wrapped every row in atr element directly within thet abl e element. There are, however,
anumber of reasons why it is worth adding the extra structure to the t abl e that these tags
afford:

e [t will help you style the different components of the table differently. Usually, the
header and footer rows will be styled differently from the rows in the body of the
table.

¢ You can add extrafunctionality to the table such as sorting and filtering. In this case,
you would not want to sort or filter the header and footer rows.

Prior to HTMLY5, thet abl e tag supported a number of attributes for controlling the
presentation of the table such as the border size, the width of the table, the background
color of the table, and the padding that should surround each cell. These have all been
removed in HTML5, and you should not use them.

Note

In the early days of website development, it was common to use tables as a layout
mechanism. Thisis now strongly discouraged because CSS provides more than
enough power to lay out complex web pages by itself. Tables should only be used for
data where data needs to be stored in columns and rows.

Try It

In this Try It, you will experiment with lists and tables. As with the previous lesson, you
do not need to follow this lesson implicitly, the most important thing is to experiment with
the tags and discover for yourself the way they can be combined to create interesting web

Lesson Requirements

You will need thetenpl ate. ht i filefrom Lesson 1, atext editor, and aweb browser.

Step-by-Step
1. Openthetenpl ate. htm pagein your text editor.

2. Start by creating a simple numbered list of all the tags that you have learned about in
thislessori forinstancet abl e, t f oot , and t head.

3. Now, imagine that you want to categorize these based on whether they are relevant to
tables or lists. Try to convert the numbered list into a description list. Each category
should be captured in adt element, while the tag names should be placed in dd
elements. The goal isto create a structure that 1ooks like Figure 3.6.

4. Now you will add atable to the web page to present the same information in the same
way. Create atable with the following columns:

e Tag name
e Category (for example, list, table)

e Description

Lists
ul
ol
li
dd
dl
dt

Table
table
thead
tfoot
thody
r
td

Figure 3.6

Ensure that the table utilizesthe t head and the t body € ements.
Provide a caption for the table.
Thefirst few rows of the table may look like Figure 3.7.

Figure 3.7

Tags in lesson 3
Tag name Category Description

ul List creates an unordered list
ol List creates an ordered list

i List creates a list item

dl List creates a description list

Reference

Please select the video for Lesson 3 online at www. wr ox. cont go/ ht ml 5j sj quer y24hr .
You will also be able to download the code and resources for this lesson from the

website.

Lesson 4

Introduction to CSS

The first three lessons of the book introduced you to alarge number of tags, but it has so
far not been possible to style the presentation of these tags when they appear onscreen. As
mentioned, HTML5 has removed most of the remaining presentation-based tags and
attributes, and presentation and style are instead the responsibility of another technology
called Cascading Style Sheets (CSS).

The main reason for thisis a concept called —separation of concerns.ll The HTML markup
language is responsible for providing the content of the page, while CSSis responsible for
the presentation and styling of this content. This meansit is possible to change either
without affecting the other.

For instance, it is usually possible to completely restyle an existing web page without
changing the HTML at all. Additionally, it is possible to change the content of a web page
without needing to change the CSS at all.

Thislesson will introduce the fundamentals of CSS, and will mainly focus on the way
individual elements can be styled. In the next lesson, you will consolidate this knowledge,
and also look at how CSS behaves when elements interact with one another.

The HTMLS5 specification includes a companion specification called CSS3 version 3 of

Cascading Style Sheet§ that greatly enhances the power of CSS. You will look in-depth

at CSS3 later in the book, but for the next two lessons you will focus on the fundamentals
of CSS.

Note

The capabilities of CSSare truly astounding, so thislesson will not introduce you to
everything CSS can do. The aim of thislesson isinstead to provide you with a sound
under standing of the fundamentals: once these are understood it is easy to find
Information about specific features.

(&

CSS Selectors

In this section, you will get started with CSS by styling the web page developed in Lesson
2. This page utilized header and paragraph elements to format text, and also included
images and hyperlinks. Ensure you have the following HTML available to work with in
this section:

<I DOCTYPE htm >
<htm | ang="en">
<head>

<nmeta charset="utf-8">
</ head>
<body>

<h1>This is a top |l evel headi ng</hl>

<h2>This is a second | evel headi ng</h2>

<h3>This is a third | evel headi ng</h3>

<p>This is the first paragraph</p>

<p>This is the second paragraph</p>
<bl ockguot e>

Tell me and | forget. Teach ne and | renenber. Involve ne and |
| earn.
<cite>Benjam n Franklin</cite>

</ bl ockquot e>
<p>Pl ease click here to vi ew page 2</p>
<p>This is a photo | took in Canbridge
<ing src="photol.|pg" title="Canbridge, England" w dth="200"></p>
</ body>
</htm >

Asyou will see, CSS can be included in aweb page in three different ways. This section
will focus on a single approach: adding CSS within astyl e element in the head of the
web page.

In order to apply a style to an element, you first need away of selecting the elements that
you wish to style. CSS provides four key selection mechanisms, the most ssmple of which
Isto select the elements based on their tag name. For instance, if you wanted to select all
the h1 elementsin the document and display them in ared font, you could add the
following to the head section:

<styl e>
hl {
color: red;
}
</styl e>

If you refresh the web page, the top header will display in red.

Note

A number of colors can be referenced directly by name, but it is more common to
represent colors as a string such as #FF0000. Thisis a hash, followed by three sets of
hexadecimal numbers specifying the ratio of red, green, and blue respectively. There
are many resources online for finding colors using this format, and you will see many
exampl es throughout this book.

G J

This simple example demonstrates most of what you need to know about the syntax of
CSS. You start by specifying the selector: h1 in this case. Next, you place a set of stylistic
properties between curly brackets where each stylistic property isin the form of a
name/value pair. In this case, the name of the property iscol or (technicaly thisis
foreground color), while the valueisr ed. A colon separates the name and value, and the
whole construct is concluded with a semicolon. | will refer to this entire construct as a
CSSrule.

It is possible to add multiple stylistic properties to the same selection. The following rule
also specifiesthef ont - f ani | y and the fact that the text should be underlined.

<styl e>
hl {
color: red;
t ext -decorati on: underli ne;
font-famly: Arial, Helvetica, sans-serif;
}
</styl e>

Figure 4.1 shows the result.

This is a top level heading

Figure4.1

Thefont-fani | y property has a more interesting value than col or . Many fonts are
proprietary; therefore, you cannot be sure which fonts the user-s browser will provide. The
value of the property therefore contains alist of fontsin priority order. In this case, the
value states:

e TrytouseArid if itisavailable.
e |f that isnot available use Helvetica.
e |f that isnot available use any sans-serif font.

Imagine now that you want this style to apply to all the headingsin the web page.
Obvioudly, you could duplicate this rule three times and select h1, h2 and h3 in three
separate rules. You always want to avoid duplication if you can, however, because it leads
to maintenance issues,

There are, in fact, two ways you can achieve this without duplication. Thefirst is by
specifying the three different tags separated by a comma:

hl, h2, h3 {
color: red;
t ext -decorati on: underl i ne;
font: Arial, Helvetica, sans-serif;

}

A more elegant solution, however, isto use classes. Any element can be assigned one or
more classes with the cl ass attribute. A classisjust an arbitrary name you choose and
usually describes some aspect that a set of elements have in common. For example:

<hl cl ass="redHeader">This is a top | evel headi ng</hl>
<h2 cl ass="redHeader">This is a second | evel headi ng</ h2>
<h3 cl ass="redHeader">This is a third | evel headi ng</ h3>

In this case, r edHeader isthe class name. It isthen possible to style all elements with this
cl ass using the following selector:

. redHeader {
color: red;
t ext -decorati on: underli ne;
font: Arial, Helvetica, sans-serif;

}

Notice the dot at the start of the selector: This always implies that you are selecting
elements by acl ass. If you redisplay the web page, all three headers will display with the
specified properties.

If you want to assign two classes to an element, the class names are separated by a space.
For example:

<hl cl ass="redHeader pageHeadi ng">This is a top |evel headi ng</hl>

You can then select elements based on either of these classes.

Another common way to select elementsis by their i d. Any element can be givenani d,
but, unlike classes, |Ds must be unique within a document. The following is an example of
aparagraph with ani d:

<p id="firstParagraph">This is the first paragraph</p>
It isthen possible to create a CSSrule that selects this element as follows:

#firstParagraph {
font-wei ght: bol d;
}

Notice that the selector begins with a#to indicate it isbased oni d. This particular
example will display the paragraph with the matchingi d in bol d.

The final common way to select elementsis via pseudo-classes. These allow you to select
elements based on features that cannot be expressed by the other selectors, for instance,
every even numbered row in atable.

If you consider thef i r st Par agr aph example, you may notice that there is a potential
issue lurking here. If anew paragraph is added before the current first paragraph, you
would need to remember to swap thei d onto thiselemenf which would be easy to
forget. A better option isto state that you want the first paragraph to be in bold, without
specifying which paragraph is the first in the document. This can be achieved as follows:

p:first-of-type {
font-wei ght: bol d;
}

This selector first selects al the p elements, and then limits this selection to just the first
element found of itstype. Because all the elements returned have the type of p, thefirst -
of - t ype selector will return the first p element in the document. Pseudo-class selectors
always begin with asingle or double colon.

Pseudo-classes are also useful for providing styles to elements based on their state. For
instance, if you wanted links to turn green when the user hovered over them, you could
use the following selector:

a: hover {
col or: green;

}

There is no way to perform this selection without pseudo-classes.

Note

CSSactually supports two related, but technically distinct, mechanisms. pseudo-
classes and pseudo-elements. Technically, the selectors you have looked at are
pseudo-classes because they select elements that you could not select via other
selectors. CSS also supports pseudo-elements. These allow a portion of an element to
be selected, such asthefirst letter in a paragraph, or thefirst linein a paragraph.

Pseudo-element selectors are supposed to use a double colon rather than a single
colon, but some browsers do not support the double colon syntax, so the single colon
syntax is regularly used for both types of selector.

G J

When selecting the first paragraph in the document, you are actually combining two types
of selector: an element selector and a pseudo-class selector. It turns out that you can
combine selectors in many interesting ways.

For example, if | wanted to select all the h1 elements that had the classr edPar agr aph, |
could use the following selector:

hl. redHeader {
text-align: center;

}

Notice that there is no space between the element selector and the class selector.
Alternatively, if | wanted to select all h1 elements that had both the r edHeader and
pageHeader classes, | could use the following:

hl. redHeader. pageHeader {
text-align: center;

}

Alternatively, you can select elements only when they are children of elements returned by
other selections. For instance, you can specify that the ci t e element should be capitalized,
but only when it isachild of abl ockquot e element (which, as it happens, it awaysis):

bl ockquote cite {
text-transform uppercase;

}

Notice in this case there is a space between the two selections. Thiswill maichcite
elementsif they are a descendant of abl ockquot e element, even if bl ockquot e IS not their
Immediate parent. Another way to think about thisis two distinct selections. CSSfirst
selects all the bl ockquot e elements, and then it searches for any ci t e elementsthat are
descendants.

With the > operator, it is possible to specify that the selection should only occur if the
element is an immediate child of the first selection:

bl ockquote > cite {

text-transform uppercase;

CSS Files and Inline Styles

So far, you have used the st yI e element to add CSS to a web page. Although thisisan
easy way of adding CSS, it has the disadvantage that you cannot use the same CSS across
multiple pages.

It is therefore far more common to place all the CSSin afilewith a. css extension and
link it to each web page that needs to use it. In order to try this out, save the styles you
have added so far in afile called exanpl es. css. Place thisin the same folder as the
HTML page, but do not include the st yl e element.

Now, remove the whole st yl e element from the head of the document, and replace it with
the following:

<link rel ="styl esheet" type="text/css" href="exanpl es.css">

Again, thehref attributeisusing arelative URL to load the style sheet, but it could also
use an absolute URL. If you reload the web page it should display the same as before.

An dternative way of specifying CSS propertiesisviathe styl e attribute on individual
elements. Although this approach is generally discouraged, it can be useful when astyleis
unigue to asingle element. Asyou will also see, these styles have a higher precedence, so
It can be a useful approach for overriding global styles. The following is an example:

<bl ockquot e styl e="col or: #888888; font-size: 12px; ">

Notice that the inline styles use the same basic syntax: Colons separate names and
properties, and semicolons separate styles. Obviously, they do not include a selector
because they are applied to the element they are declared on.

Specificity

The same element may match multiple CSS rules. When this occurs, al the properties
defined in all the rules are applied to the element. You have already seen an example of
thiswith the h1 element.

Imagine, however, if you had the following in your style sheet:

hl {
col or: bl ue;
}

hl. redHeader {
color: green;
}

. redHeader {
col or: pink;
}

All three of these styles match the first header in the document; therefore, what col or
should it be assigned? The answer to this liesin a concept called specificity. In order to
determine the style to use, CSS assigns points to each rule that matches an element based
on its selector:

¢ |f the selector matches on an element or pseudo-element 1 point is assigned.
¢ |f it matches on class or pseudo-class, 10 points are assigned.
e |f it matches based oni d, 100 points are assigned.

o |f thestyleiscontained in astyl e attribute on the element, 1,000 points are assigned
T which usually ensuresit automatically wins.

You can therefore determine which of these three rules should be used:
¢ Rule 1 matches on an element so it receives 1 point.
¢ Rule 2 matches on an element and a class so it receives 11 points.
¢ Rule 3 matcheson aclass so it receives 10 points.

As aresult, the color of the header should be green.

It is, of course, possible that two styles will have the same specificity. In this case, therule
defined last will have precedence. If the two rules are in the same external style sheet, the
rule that occurs closest to the end will win. If they are in separate style sheets, the last
style sheet declared in the web page will win.

There is one important exception to thisrule. If astyle is so important that you never want
it to be overwritten by arule with a higher specificity, you can assign it atag called
i mpor t ant . For instance, if the following two rules were defined:

hl {
col or: bl ue;
text-align: center !inportant;

hl. redHeader {
color: green;
text-align: left

}

the color will be green because of specificity, but the text will be aligned in the center
because it ismarked asi nport ant . It is best not to overuse this approach, but it works
well in an emergency.

Inheritance

Obvioudly, it isannoying to need to style every single element. There are many cases
where you want many elements to share the same style, and therefore it would be
convenient to specify that the style appliesto an element and all its descendants. This
concept is called inheritance because styles are inherited from a parent.

CSS supports this concept for many, but not al, styles. For instance, you may want all the
text in the document to use the same font family. You could therefore specify the
following:

body {
font-famly: Arial, Helvetica, sans-serif;
}

Because all the visual elementsin the document have the body element as a parent (even if
not a direct parent), al the elements in the document will inherit this style. Likewise, if
you were to specify the following:

bl ockquot e {
t ext -decoration: underline;

}

the text for both the bl ockquot e and ci t e elements will be underlined.

Inheritance does not always make sense, however. Imagine that you used the bor der
property to add a 1-pixel solid black border around the bl ockquot e.

bl ockquot e {
border: 1px solid bl ack;
}

Should a separate border be drawn around theci t e element? | think you can probably
agree that borders should not be inherited, and, in fact, they are not.

If you would like to inherit a non-inherited style, you can do so by using the following
syntax:

cite {
border: inherit;
}

Browser Defaults

All browsers have a set of default styles that they apply to elements. These defaults
include font types and sizes, the space between lines and paragraphs and the weight of the
fonts on table headers. Browser defaults are only used when you do not provide your own
style for an element.

One problem with browser defaultsis that they tend to vary between browser vendors.
This may mean your web page |ooks perfect in Chrome but looks terrible in 1E because it
IS picking up a default.

Because of these issues, it is common to completely remove the browser defaults. Thisis
typically performed using a separate style sheet called r eset . css (you will find examples
on the Internet), which is then the first style sheet that isloaded on each page.

Chrome Scratch Pad

When experimenting with CSS, it can be an annoyance to make changes to the style shest,
save the changes, and reload the web page. Fortunately, Chrome makes it easy to
experiment with styles directly in the browser. In order to demonstrate this, right-click on
thefirst h1 element and choose Inspect Element.

On the left-hand side of the console, you will see the control shown in Figure 4.2.

Styles | Computed Ewvent Listeners »
element.style { + Tk
}
hl.redHeader { gxample

color: Mgreen;

B e L

}

hl. redHeader {

}

. redHeader { example.himl:17

}

. redHeader {
i bt [l e
text-decoration: Punderline;

}

hl { example.html:7
e
text-align: center !important;

}

hl { user agent

display: block;

font-size: 2em;
-webkit-margin-before: @.67em;
-webkit-margin-after: @.567em;
-webkit-margin-start: B@px;
—webkit—margin—-end: Bpx;
font—weight: bold;

1

Inherited from body _

body 4 example, html:38
font-family: Arial, Helvetica,

sans-serif;

}

Figure4.2

Thisistelling you al the rules that match the element, from the most specific at the top, to
the least specific at the bottom. Any time that a style is not used because of specificity, a
line is drawn through it.

At the bottom of this panel, you can see the styles inherited from the browser defaults
(called —user agent stylesheetll) and those inherited from other elements (for instance,
body).

This can be very useful for determining why certain styles are used. For instance, have a
look at the example in Figure 4.2 and determine which rule provided thet ext - al i gn
property and why.

You can aso change styles, or add stylesto any of these rules: Thesechanges will be

reflected in the web page in real time. You can also eliminate any styles you want by
clearing the checkbox that appears next to them when you hover over them.

Additionally, if you click on the very first rule called el enent . styl e, you can add new
rules just for this element. For instance, you could make the color of the header bl ue by
adding the property demonstrated in Figure 4.3.

Styles | Computed Ewvent Listeners »
element.style { + I

}

Figure4.3

Try It

In this Try It, you will style the table that you created in Lesson 4 to hold contact
information.

Lesson Requirements

You will need thecontacts. ht mi file from Lesson 4, atext editor, and a web browser.

Step by Step

1.
2.

10.

Start by creating afile called cont act s. css in the same folder ascont acts. ht i .

Add alink in the head section of cont act s. ht ni to the CSSfile following the
instructions earlier in the lesson.

Set the font family for the entire document to use Ari al , Hel vetica, sans-serif.
Remember that you will need arule that matches the body element.

Add a1-pixel solid black border to the elementst abl e, t h, and t d. You will find an
example of aborder style earlier in this lesson.

L oad the page in Chrome. You will notice that there is a double border around cells
(see Figure 4.4) because each cell has its own border, and there is a gap between
these. To fix this, add anew style to this rule with the property bor der - col | apse,
and avalue of col | apse. Thiswill collapse the duplicate borders into a single border.

Add some space between the content and the border of each cell (t d element). Add a
property called paddi ng, and set thisto 5px.

Add astylefor thet head element. Set the backgr ound to the color #3056A0, and set
thecol or towhi te.

Set the capt i on for the table to display in bol d, but ensure thisis only applied if
capti on isachild of at abl e element.

Set thef ont of thet f oot element to be three-quarters the size of the font used
elsewhere. Hint: Setting the font to 2emwould double the size of the font (you will
look at this setting further in the next lesson). In addition, set the text alignment to be
on the right-hand side of the table.

Every second row of the table body should be given a background color of #E6E6F5.
In order to select every second row, use the pseudo-class selector t r : nt h-

chi | d(even), but ensure thisis only applied to children of t body becauset head and
t body also havetr elements.

When complete, the table should look like the screenshot in Figure 4.5.

Sales leads

Contact name || Phone number || Email address Company name | Last contacted
William Smith || 555-642-7371 || william@testing.com || ACME Industries || 2014-10-21
Bob Morris 555-999-2991 || bob@testing.com ABC Corp 2014-09-12
2 contacts displayed
Figure4.4
Sales leads

Contact name Phone number

William Smith

555-642-7371

Emaill address

william@testing.com

Company name Last contacted

ACME Industries

2014-10-21

Bob Morris

555-099-2991

bob@testing.com

ABC Corp

2014-08-12

2 contacts displayed

Figure4.5

Reference

Please select the video for Lesson 4 online at www. wr ox. cont go/ ht il 5j sj quer y24hr .
You will also be able to download the code and resources for this lesson from the

website.

Lesson b5

Structuring Pages with CSS

In the previous lesson, you looked at how individual elements could be styled with CSS.
Thislesson builds on this knowledge and looks at how elements come to occupy the
screen position that they do, how this can be manipulated, and how this impacts other
elements around them.

The Box Model

The box model is one of the most important CSS concepts and dictates the width and
height each element will occupy onscreen. The box model starts from the observation that
al elementsin the document occupy rectangular boxes, but the rules for calculating their
height and width are not as straightforward as you may think.

For a start, the height and width occupied by an element is greater than the height and
width required for the content of the element for several reasons. For instance, the element
may have a border that occupies additional space. In the previous lesson, you created
borders that were 1 pixel in size. Thus, these borders added 2 pixels to the height and
width required for the element.

Padding may also be added between the content and the border, as with the table cellsin
the previous lesson. Finally, it may also be necessary to add additional margin between the
element and its neighboring elements.

The total space occupied by the element-s box can therefore be visualized in Figure 5.1.

Margin

Figure5.1
In order to see thisin action, create a web page as follows:

<! DOCTYPE htm >
<htm | ang="en">

<head>
<nmeta charset="utf-8">
<styl e>
hl {
wi dt h: 400px;
hei ght : 30px;
paddi ng: 10px;
border: 2px solid #999999;
backgr ound: #dddddd,;
mar gi n: 10px 20px 20px 10px;
}
</styl e>

</ head>

<body>

<h1>This is a header</hl>
</ body>
</htm >

This code declares an h1 element with the following sizes (working from the inside of the
box to the outside):

e Awidth of 400 pixelsand ahei ght of 30 pixels. If these were omitted, the element
would have a default height and width calculated from the content of the element.

e Ten pixels of padding between the content and the border. When specifying asingle
value, the value is automatically applied to the top, right, left, and right of the box.

o A 2-pixel border.

e A margin between itself and its neighbors, but this has different values on each side.
Therefore, four values are provided. You can remember which side these apply to
with the acronym TRouBLe (Top, Right, Bottom, Left). For instance, in this case the
left marginis

10 pixels.

It is also possible to specify the border, padding, or margin for any side individually by
using properties such as mar gi n- 1 ef t, bor der - t op, and paddi ng-ri ght .

Open this web page and view it in Chrome. Right-click on the h1 element, and select
Inspect Element. Ensure the element is selected in the Elements tab, and then take alook
to the bottom right of the console. It should show abox like the onein Figure 5.2, which is
avisualization of the box model for the element.

i ' padding 10 . '
'10|2i10) 400x30 [10}2(20

...................

Figure5.2

You can therefore use this to determine how much height and width the element will need
onscreen:

e Thewidth will need 10 + 2 + 10 + 400 + 10 + 2 + 20 = 454 pixels.
e Theheight will need 10+ 2+ 10+ 30+ 10 + 2+ 20 = 74 pixels.

One other interesting aspect you may notice about the box model is the scope of the
background color. The background color fills the content and the padding, but not the
margin or border.

If you add two more h1 elements to the document and then refresh the web page, you will

notice that there is a margin between the elements, as shown in Figure 5.3.

This is a header

This is a header

This is a header

Figure5.3

You may notice something unusual here however. Each of the headers has a top margin of
10 pixels and a bottom margin of 20 pixels. You might therefore expect that there would
be 30 pixels between each element.

If you select the top element in Chrome, however, you will notice that the bottom margin
isonly 20 pixels (as demonstrated by the fact the space taken by the element extends
down to the top of the next element). You can see thisin Figure 5.4. The top margin for
the second header has been ignored.

This is a header

|£'1- 424, 54px
'This is a header

Figure5.4

Thisisreferred to as collapsed margins. The top and bottom margin of bl ock elements are
collapsed into asingle margin that is calculated as the greatest of the top and bottom
margin: 20 pixelsin this case. Working around collapsing margins can be a headache;
therefore, it is often better to rely on only top or bottom margins, not both.

Display Type

| have alluded to display types several times already in this book, but now isthetimeto
look at this property in more depth. Every element has a display type and isinitially
defaulted to the appropriate type for each tag. There are quite a number of display types,
but you really need to understand only four of them.

By default, h1 elements have adisplay type of bl ock. As mentioned previoudly, bl ock
elements insert a break in the document meaning the next element will appear below the
previous element. It is possible to control both the hei ght and wi dt h of ablock element,
as you saw in the previous section.

The next most widely used block typeisi nl i ne. Add the following ruleto thestyl e
section and refresh the web page:

hl {
di splay: inline;
}

Thiswill now display asyou seein Figure 5.5. Asyou can see, i nl i ne elements sit
alongside one another. If they exceed the width of the page, they will then automatically
wrap to anew line. Although it is possible to control thewi dt h of ani nl i ne element, itis
not possible to control their hei ght : Thisis automatically calculated.

This is a header | This is a header This is a header

Figure5.5

Additionally, it is only possible to add nar gi n and paddi ng to the left and right of the
element, not to the top and bottom. As you can see, the elements are positioned at the very
top of the web page, without any margin between the headers and the address bar.

The third major category of display typeisi nl i ne- bl ock. When elements are assigned
this display type, they sit alongside one another, just likei nl i ne elements, but it is
possible to specify their height, and add margin and padding to all four sides.

Thefinal display type to understand is none. When an element is assigned this display
type the element is hidden from the viewer but remains in the document. Change the
second header as follows and then refresh the web page:

<hl styl e="di splay: none">This is a header that is hidden</hl>

If you reload the page, you will see that thereis no sign of this element: It does not even
leave an empty space for the position it would hold if it had visibility. It is common to
dynamically hide and show content with JavaScript by manipulating the display type, as
you will see later in this book.

Positioning Elements

Now that you understand the box model, it is possible to start looking at how different
elements interact.

|magine that you want to create a web page split into five sections:
e A 100-pixel high header that spans the width of the page
e A 50-pixel high footer that spans the width of the page
¢ A content section broken into three sections:

An areato the left where menus can be positioned: This should occupy 20
percent of the width and have a minimum height of 500 pixels.

An areaon theright for advertising material: Thiswill also occupy 20 percent of
the width and have a height of 500 pixels.

A main content section in the middle occupying as much of the remaining space
asit requires.

The screen therefore consists of the five boxes seen in Figure 5.6. The first question you
might want to ask yourself is; What type of element is each of these boxes? Essentially,
they are just containers for other elements, and you may want to encapsulate many
different elements inside each of these containers.

Figure 5.6

HTML supports atag | have not discussed so far called adi v. Thisis potentially the most
widely used tag in HTML.: It isabl ock element with no default presentation itself; it is
simply used as a container to group other elements together.

HTML supports a second related tag called aspan (perhaps the second most widely used
tagin HTML). Thisisthe sameasadi v, except itisani nl i ne element rather than a
bl ock €lement.

You will start by creating apage called st ruct ure. ht i with the following body:

<body>
<div id="header">This is the header</div>
<div id="sidebar">This is the sidebar</div>

<div id="content">This is the main content</div>
<di v id="advertising">These are adverts</div>
<div id="footer">This is the footer</div>

</ body>

Because these are block elements, you will notice that the five elements simply sit on top
of each other for now. | have added i d attributes to the elementsto allow them to be styled
individually in CSS.

In order to style the header element, add a st yl e element with the following value:

#header {
hei ght : 100px;
backgr ound: pi nk;
}

When | am laying out aweb page, | find it convenient to give every element adistinctive
background color to starf this allows me to see exactly how much space has been
allocated to each element.

If you view this web page in Chrome, you will see that the header has a white margin
around it. Thisisthe result of a style inherited from the body element; therefore, you
should also add the following to the styles section to remove this:

body {
mar gi n: 0O;

}
Now, add the following for the si debar element:

#si debar {
wi dt h: 20%
backgr ound: or ange;
hei ght : 500px;
float:|eft;

}

Notice that the wi dt h element uses a percent for the unit rather than pixels: This means it
will utilize 20 percent of the space potentially available to it, which for atop-level element
like thisis the entire width of the screen. Sizes are also commonly expressed in the
following formats:

e mi Millimeters
¢ in:Inches

e enm 1 emisthe equivalent size of the current font; this measurement therefore allows
elements to be sized in relation to the standard font size.

This element also declares ahei ght . This property ensures that the element occupies 500
pixels of vertical space.

The most interesting property here, however, isthef | oat property. Because you need
three bl ock elementsto sit alongside each other, you need to control how they interact
with each other horizontally. Thef | oat property can be used to position block elementsto

either the left or the right of the area available to them, and in addition, this suppresses the
break that would normally accompany block elements in the left-to-right flow.

Although using thef | oat property is similar to declaring the display type asi nl i ne-

bl ock, it has the additional benefit that it is possible to position elements to the left or the
right of their available space. By comparison, i nl i ne- bl ock elements aways float to the
left of the available space.

Next, you will add style for the cont ent element. You will leave this without any style,
except you will specify that it should float to the left of its available space, which will
position the element directly to the right of the si debar element. Add the following to the
styles:

#content {
float:left;
}

With thisin place, you want to place the element with thei d of adver ti si ng on the right
side of the screen. The style for this element is therefore virtually identical to si debar,
except you will request that it floatsri ght :

#advertising {
wi dt h: 20%
backgr ound: bl ue;
hei ght : 500px;
float:right;

}

Notice that thisis not sitting directly up against the cont ent element; instead, it is being
positioned directly against the right of the screen.

Finally, you cometo thef oot er . It may seem that you can simply add the following:

#f ooter {
hei ght : 50px;
backgr ound: pi nk;
}

If you try loading this page, however, you will see that the f oot er di v Sits beside the
cont ent div. You need to request that this element drops below the floated elements
preceding it with the following property:

cl ear: both;

In this case, bot h refers to the fact that this element should drop below both left and right
floated elements.

If you load the page, you will seethat it looks exactly as expected (see Figure 5.7). Once
the page structure is in place, you can then start adding content to each of the di vs.

[T bs the header

Thes bs e sidebar This is the main conicnt

Thus s e fooles

Figure5.7

Controlling Positions

Up until this point, the position elements that have been placed onscreen have been a
product of the elements that appear before them in the DOM and the properties of the
element itself. Elements are ssmply laid out in the order they appear in the web page and
take up as much space as they need. This then impacts the position assigned to elements
that appear after them in the DOM.

Thisistechnically called static positioning, but it is only one of several ways of
positioning elements. This section will briefly look at three other ways of positioning
elements.

In order to demonstrate positioning, start by creating the following web page, which
consists of three boxes. These three boxes are sufficient to demonstrate the various
approaches to positioning:

<! DOCTYPE ht m >
<htm |ang="en">

<head>
<neta charset="utf-8">
<styl e>
.box {
hei ght : 200px;
wi dt h: 200px;
di spl ay: i nline-bl ock
}
</styl e>
</ head>
<body>

<di v class="box" styl e="background: red"/>
<di v id="m ddl eBox" class="box" styl e="background: green"/>
<div id="I|astBox" class="box" styl e="background: bl ue"/>

</ body>

</htm >

If you view the web page, you will see that it consists of three boxes sitting alongside one
another (see Figure 5.8).

Figure5.8

Imagine that that we want to move the second box (with thei d of ni ddi eBox) 50 pixelsto
the right and 50 pixels down without impacting the third box at al. Thisis not possible

with static positioning because adding 50 pixels of width to the second element would
push the third element 50 pixels right.

In order to achieve this, add the following rule to the st yI e section:

#m ddl eBox {
position: relative;
t op: 50px;
left: 50px;

}

This starts by setting the posi ti on of the ni ddi eBox element tor el at i ve. This means that
you want to set its position relative to the default position it would be given on the page.

Once the posi ti on property has been set, you can start using thel eft, ri ght, t op, and
bot t omproperties to move the element to adifferent position on the screen. In this case,
you then want to specify that you want 50 pixels of space added to the| ef t and 50 pixels
of space added to thet op. If you view this, you will see the screen displayed in Figure 5.9.

Figure5.9

Notice that the elements now overlap one another: The third box is simply given the
position it would have held if you had not moved the second element to the right.

It isalso possibleto use aposi ti on Of absol ut e to position an element relative its parent.
Try changing the preceding style as follows:

#m ddl eBox {
position: absol ute;
top: 150px;
| eft: 150px;

}

Because the parent of ni ddl eBox isthe body element itself, you are effectively positioning
the element relative to the browser window. If you view the page now, it should look like
what you see in Figure 5.10.

Figure5.10

Using absolute positioning removes the element from the flow of the page, and therefore
the position of the third box is also impacted.

You can also control which of these elements sitsin the foreground and which are
relegated to the background. Thisis controlled by a CSS property called z- i ndex. The
element with the highest z- i ndex will be placed in the foreground. Therefore, if you add
the following to the style of ni ddl eBox, it will be relegated to the background:

Z-i ndex: - 1;

The final main type of positioning isfi xed. Thisissimilar to absol ut e positioning,
except elements are positioned relative to the browser window. In the preceding example,
fi xed and absol ut e positioning would achieve the same resullt.

Try It

In this step-by-step, you will pick up the CRM application from the previous lesson and
add more structure to the overall web page. Thiswill include adding a header, a footer,
and an area for adding new contacts (although we will not populate this until the next
lesson).

Lesson Requirements

You will need the CRM application asit stood at the end of Lesson 4. You will also need a
text editor and the Chrome web browser.

Step-by-Step

1.

Open thecont act s. ht M page and add adi v immediately after the opening body tag.
In the body of the tag, enter Contacts. Assignthei d of header to thistag.

Wrap adi v tag around the table, and give thisthei d of cont act Li st . The opening
tag should be immediately before the opening t abl e tag, while the closing tag should
be immediately after the closing t abl e tag.

Add another di v immediately before the closing body tag and give thisthei d of
f oot er . Add a copyright statement to thisdi v.

Add onefinal di v immediately after the header di v, and givethisthei d of
cont act Det ai | s. Thisiswhere you will eventually place a new form for adding
contacts. Add an h2 element to this with the text Contact Details.

Opencont act s. css. Start by adding anar gi n: 0 property to the body rule to ensure
you remove white space from around the header.

Create arulefor the di v with thei d of header . This should specify that the

backgr ound and col or arethe same asfor thet head element rule from the last
lesson. Additionally, add at ext - al i gn property with avalue of center, and al i ne-
hei ght property with avalue of 70px.

| i ne- hei ght issimilar to height, but it will ensure that the text is vertically aligned.
If you had simply specified hei ght , the text would be positioned near the top of the
di v. Also add af ont - si ze of 3ent three times larger than the standard font.

cont act Det ai | s and cont act Li st need to share a number of properties, so create a
rule that matches both of these elements. Add abor der with alpx solid lineand a
color of #999999. Also add nar gi n and paddi ng of 15px around all sides.

Add astyle for the footer di v. This should be the same as the header, except the
| i ne- hei ght should be 40, and the f ont - si ze should be 0. 8em

Black font can be quite overpowering, so set the col or property of the body to
col or: #333333, whichisavery dark grey.

If you open the page, it should look like the example in Figure 5.11. If you need

assistance, the finished version can be downloaded from the Lesson 5 resources, or you
can watch the screencast online.

Contact details

Sales leads

Contact name Phone number Emaill addrese Company name Last contacted

William Smith | 555-642-73T1 | william@testing.com | ACME Industries | 2014-10-21
Bob Morris 555-0999-2091 | bob@testing.com ABC Corp 2014-09-12

2 contacts displayed

Figure5.11

Reference

Please select the video for Lesson 5 online at www. wr ox. cont go/ ht il 5j sj quer y24hr .
You will also be able to download the code and resources for this lesson from the

website.

Lesson 6

HTML Forms

The HTML tags examined up until this point have al been used to display content to the
user. Thislesson examines HTML forms, which allow the user to submit data back to the
web server. Any time you enter datainto text fields, or select values from drop-down lists,
you are using HTML forms.

This lesson will provide an introduction to HTML forms, but will also look at some of the
Interesting changes that have occurred to formsin HTML5. These changes were originally
called Web Forms 2.0, but have since been integrated into the HTML5 standard.
Therefore, even if you are familiar with HTML forms, this lesson is recommended.

What Is a Form?

A formisaset of input fields, grouped together inside a single element, with the purpose
of obtaining a set of information from the user. Forms have historically consisted
primarily of the following fields:

o Textfields
o Selectlists
o Text boxes (multiline text fields)
e Checkboxes
¢ Radio buttons
e Password fields
Asyou will see shortly, thislist has been greatly enhanced with HTMLS5.

In addition, fields contain a Submit button that causes their contents to be posted to a
specified URL on the server. The server can then process this data as required and return a
new web page as aresult.

In this book, you will make extensive use of forms but will not post their contentsto a
server. You will instead extract and process their data using JavaScript. In this chapter, |
will present amore conventional view of forms but will not provide server-side code for
processing the form information because this would require me to introduce a whole new
set of technologies.

This section of the lesson introduces a very ssmple form and examines its component
parts. You will then create a more complicated form for the Contacts web page.

Create anew page called si npl ef orm ht i and add the following body to it:

<body>
<form action="submt.htm" method="post">
<l abel for="firstNanme">First Nanme</| abel >:
<i nput id="firstNanme" nanme="firstNanme" type="text"/>
<p>
<l abel for="|astName">Last Nanme</| abel >:
<input id="|astNane " nanme="|ast Nane" type="text"/>
<p>
<i nput type="submt" val ue="Submt">
</ fornmp
</ body>

If you open thisin Chrome, it will look like Figure 6.1.

First Name:

Last Name:

Submit

Figure6.1

Notice that all the input fields are nested inside af or melement. All of the input fields
within aform should represent arelated set of datathat is processed together.

The f or melement contains two important attributes. The act i on attribute is the address on
the web server that the contents of the form will be posted to when the form is submitted.
It is assumed that this address will be capable of processing the contents of the form and
redirecting the user to a new web page as a result.

The net hod attribute refers to the HT TP method that will be used to send the data to the
server. When you simply type an address in a browser address bar, you areusingan HTTP
method called GET. Thisis asimple mechanism for requesting a web page, although it can
contain dataif required.

When you send form data to the server, you typically have a large quantity of data that
needs to be sent; therefore, you use the HTTP posT method. With this method, all the input
fields and their values are included in the body of the HT TP request rather than encoded in
the URL. You do not need to understand HT TP methods to progress through the book,
although you will look at them in slightly more detail when AJAX isintroduced.

In this particular case, the form consists of two labels and two input fields.

Obvioudly, labels do not allow the user to provide input; thus, you may be wondering why
you need to use them rather than just adding text to the form. Labels have the following
benefits:

e Clicking on the label puts the cursor focus in the input field. Thisrelies on the fact
that the value of thef or attributeisthei d of theinput field that it relatesto.

¢ | abels provide more structure to the document because they make it obvious that the
label is associated with a specific input field.

HTML uses an element called i nput for many, but not all, input fields. For this reason, an
attribute is added to the element specifying thet ype of input it accepts. In this particular
case, you have specified that the typeist ext (which isthe default).

Finally, a button is added to the form allowing it to be submitted. Notice that thisis also an
i nput element, but because it isgiven at ype of subni t, it displays as a button rather than
an input field.

When the submit button is clicked, the fields are serialized into atextual string of
name/value pairs. The nane attribute for each input field is used as the name, and the
current value of the field is used as the value. The textual string is then placed in the body
of an HTTP request and posted to the server.

If | enter Dane and Caner on into the two fields, and then press the submit button, it will

post an HT TP request to the server, as shown in Figure 6.2 (this was captured from the
Network tab of Chrome-=s developer tools after first clicking the Preserve Log option).

v Request Headers CAUTION: Provisional headers are shown.
Content-Type: application/x—www-form-urlencoded

Origin: null

Referer:

User-Agent: Mozilla/5.2 (Macintosh; Intel Mac 05 X 10_8_5) Apg
¥ Form Data view source view URL encoded

firstName: Dane
lastName: Cameron

Figure 6.2

Adding Fields to a Form

In this section, you create the form for capturing information about a person in your
Contacts web application.

To complete this section, open the cont act s. ht m file asit stood at the end of Lesson 5,
or download it from the book-s website.

Start by adding the following content to the cont act Det ai | s di v:

<di v id="contact Det ai | s"><h2>Cont act detail s</ h2>
<f or m met hod="post " >
<di v class="fornRow'>
<l abel for="contact Nane">Cont act nane</| abel >
<i nput nane="cont act Nane" id="contact Nane" type="text"/>
</ di v>
</form
</ di v>

Thisadds af or mwith asingleinput field. Thel abel andi nput elements have been
placed in adi v with a class of f or mRow, which ensures that each pair will be placed on a
row of itsown.

Because you want all your labels and fields to have a consistent size, add the following to
contacts. css.

| abel {
wi dt h: 150px;
di splay: inline-block
vertical-align: top
}
i nput {
wi dt h: 200px;
}

Notice that you need to change the display type of thel abel in order to set its width.
You can now add input fields for the email address and phone number fields:

<di v cl ass="for nRow'>

<| abel for="phoneNunber">Phone nunber</I| abel >

<i nput nane="phoneNunber" id="phoneNunber"” type="text"/>
</ di v>
<di v cl ass="for mRow'>

<l abel for="ennil| Address">Enmai| address</| abel >

<i nput nane="emai | Address" id="ennil Address" type="text"/>
</ di v>

Because you also want some space between each row, add the following to the style sheet.
Figure 6.3 shows what the form should look like.

. fornRow {
mar gi n- bott om 10px;
}

Contact details

Contact name
Phone number

Email address

Figure6.3

Next you will add afield for capturing the company of the contact. In this case, you may
want the user to select from alist of companies that have already been added into the
system. This can be achieved with a different input type called a select list. Start by adding
this to the form:

<di v cl ass="for mRow' >
<l abel for="conpanyNane">Conpany nane</| abel >
<sel ect nanme="conpanyNane" i d="conmpanyNane" >
<option val ue="-1">Pl ease sel ect</option>
<option val ue="1">ABC | ncor por at ed</ opti on>
<option val ue="2">XZY Ltd</option>
<option val ue="3">ACME il nternational </ opti on>
</ sel ect >
</div>

Notice that the select list is encapsulated inside an element called sel ect . Within this, you
have a series of opt i on elements providing the various possibilities. Each opt i on consists
of two values: The text between the opening and closing opt i on tag is the text that will be
presented to the user. Each opt i on tag also has aval ue attribute, however, and thisisthe
value that will be assigned to the field when the form is submitted.

It is possible for thet ext and the val ue to carry the same value, but it is also common for
them to differ. For instance, in this case the val ue may represent a unigue code for each
company, as assigned by an accounting system.

By default, a select list selects the first option, athough it is possible to add a selected
attribute to any other option to make it the default. Thisis a Boolean attribute; thus, it does
not require avalue. For example:

<option value="3" sel ected>ACME il nternational </ option>

You will now add one more field for capturing notes about the contact. Thiswill be
dlightly different from the other text-based fields because you want to provide space for a
large amount of text to be captured. You will notice that the input fields you have used up
until now do not even alow line breaks, so they are not appropriate for capturing large
guantities of text.

You therefore want to add a different input type called at ext ar ea:

<di v cl ass="for mRow' >
<| abel for="notes">Notes</I| abel >

<textarea col s="40" rows="6" nanme="notes" ></textarea>
</ di v>

Notice that the text area alows you to specify the number of columns and rows that the
t ext ar ea contains. Although these dictate the size of the element, and therefore are semi-
presentational, they are still valid attributesin HTMLS.

With thisin place, the form should now look like Figure 6.4.

Contact details

Contact name

Phone number

Email address

Company name Please select

MNotes

Figure6.4

Finally, add a submit button to the bottom of the form. Because you want this to be
smaller than other input fields, you will use an inline style.

<di v class="fornRow'>
<i nput style="w dth: 70px" type="submt" val ue="Save"/>
</ div>

HTML5 Input Fields

Thereisonefinal field you should add: You want to capture the date that the contact was
last spoken to or emailed by your staff. Users generally expect to provide thisinformation
by selecting a date from a calendar.

Up until the release of HTML5, you needed to resort to JavaScript librariesin order to
achieve this. One of the great enhancementsin HTMLS5 is the introduction of a whole set
of new input types, including a date input type. This allows browsers to provide native
support for selecting dates.

In order to seethisin action, add the following row to the form, before the row with the
submit button:

<di v cl ass="for nRow"' >

<| abel for="I|astContacted">Last contacted</| abel >

<i nput nane="| ast Cont act ed" id="1|ast Contacted" type="date"/>
</ div>

Notice that the only difference between this and other input fields is that thet ype has been
specified asdat e. If you open thisin Chrome, however, you will see that a date picker has
been provided for you, as shown in Figure 6.5.

Last contacted @/ m / yyyy Dw
July 2014 ~ ollo]lel

5un Mon Tue Wed Thu Fri 5Sat

£ @ & & 5
Contact name P ho I TR
William Smith [555- | 13 14 15 16 17 18 19

: 20 21 22 23 24 2% 26
Bob Morris 556-
27 28 2% 30 131

Lmil ™

Figure 6.5

The great thing about native support for calendars is that different browsers can implement
them in the most appropriate way they see fit. For instance, if you viewed this page on an
IPad, the date picker would look like the example in Figure 6.6.

June {11 | 2012

July |12 §2013
August |13 | 2014

Figure 6.6
Asyou can see, this has been optimized for atouch-based operating system.
The main problem with the date input type is that all browsers do not support it. This

means that, for now, you will probably need to rely on atechnique called polyfills, as
outlined later in Lesson 10.

HTMLS actually specifies many additional input types. Aswith the date input type, the
specification does not tell browsers how they should implement each type, and in fact,
many are not widely supported, but the following are some of the input types that have
been included in the specification:

emai | : Allows the user to capture an email address.
e col or: Allows the user to capture a color, presumably from a color picker.

e nunber : Limitsthe user to entering a number in an input field, and allows the user to
increase or decrease the value by a step amount.

e range: Letsthe user specify a number from a possible range of numbers. Thiswill
also be introduced in Lesson 10.

e tel: Letsthe user capture atelephone number.
e url: Thisletsthe user capture a URL.

e datetine: Thisissmilar to dat e, but allows the user to select time as well as date
information.

e tinme: Thisisalso similar to dat e, but limits the selection to the time of day.

In order to see what these elements do, change the email address and phone number fields
touseemai | andtel respectively. If you now reload the page, you probably will not
notice any difference.

Asyou will seein Lesson 8, thisis not entirely true; HTML5 provides native support to
validate fields based on their type. In addition, although Chrome on a desktop does not
treat these types any differently fromt ext fields, this may not be true of other browsers.

For instance, if you were to click on either of these fields in a mobile phone or tablet
browser, you can envisage that the software-based keyboard would change to reflect the
keys needed by the input type. The same would be true if the input type was set to nunber .

It isworth reiterating that one of the key strengths with the HTML5 specification is that it
does not second-guess how browsers should implement features. A browser on a phone
may therefore attempt to auto-compl ete phone numbers based on the user-s phone book if
it determinesthisis useful to the user.

Datalist Element

HTMLS5 also contains a new input type called adat al i st. Thisissimilar to asel ect ligt,
but it does not limit the user to the values in the list: It allows the user to type his or her
own valueif required. The following is an example:

<i nput |ist="conpani es" nanme="conpanyNane">
<dat al i st i d="conpani es" >
<option val ue="ABC | ncor por at ed" >
<option val ue="XZY Ltd">
<option value="ACME il nternational">

</ datalist>

Asyou can see, this element is made up of two distinct tags. Thefirst isan input field,
which, because its type is not specified, defaultsto at ext input field. This specifiesa
specia attribute called | i st .

The next element isadat al i st, which hasthe samei d asthel i st specified on the input
field. Thisthen provides adefault list for the user to select from, and also allows the value
to be autocompl eted as the user types.

Although you will not use thisin the contacts web page, if you wereto add it, it would
display asyou see Figure 6.7.

XTI Lrd v
ABC Incorporated
XZY Led

ACME ilnternational

Figure6.7

Form Attributes

In addition to new input types, HTML5 provides a number of new attributes for existing
Input types. You will look at several of thesein Lesson 8 when you look at HTML5
validation, but it is worth mentioning a number of them in this lesson.

The pl acehol der attribute allows you to provide a hint to users to help them enter avalue.
For instance, if you changed the telephone input field as follows:

<i nput pl acehol der="1ncl ude area code" nanme="phoneNunber" type="tel"/>

the field would display as you see in Figure 6.8. Notice the gray text in the field. This will
disappear as soon as the user startstyping in the field.

Phone number

Email address

Figure 6.8

The aut oconpl et e attribute can be used to specify whether the browser should attempt to
autocomplete text entered by the user based on values that they have provided before. The
following is an example that turns aut oconpl et e off on the contact name field:

<i nput autoconpl ete="of f" nane="cont act Nane" type="text"/>

The aut oconpl et e attribute can also be used on the form as awhole.

The aut of ocus attribute is used to automatically set the cursor in a specific field when the
page loads. It has aways been possible to do this with JavaScript, but this attribute makes
it far ssimpler. For instance, if you added the following to contact name field, you will
notice that the cursor is in this field when the page loads:

<i nput aut of ocus aut oconpl ete="of f" nane="cont act Nane" type="text"/>

Finaly, the f or mattribute can be used to specify that an input field is part of aform, even
If it isnot nested inside of it. If this attribute is given a value corresponding to thei d of a
form, it will be included in the post to the server when the form is submitted, regardless of
whereit is placed in the page.

This can be useful if you have afield that is located in a completely different area of the
screen from other fields.

Try It

In this Try It, you will experiment with the various form elements and input fields
introduced in thislesson. This Try It also covers the few remaining form elements not
covered so far in the lesson.

You are encouraged to experiment here; the goal is to gain an understanding of how the
form elements work. If you get stuck, my version is available on the book-s websitein a
filecalledtryit. htm , or you can watch the screencast online.

Lesson Requirements

You will also need atext editor and aweb browser.

Step-by-Step

1.

8.

Start by creating asimple HTML5 web page that you can use to add the elements
outlined in this lesson.

Begin by adding af or melement to the web page and adding a net hod of post to this.
Because you will not submit this form, you do not need to add an act i on.

Start by adding a simple text input field with the name of f ul | Narre. Use the
pl acehol der attribute to provide a hint to the user, and request that thisfield receives
focus when the page | oads.

Add al abel for thisfield, and usethef or attribute to specify thei d of the field that
thisrelates to.

You want to add radio buttons to specify whether the person is male or female. Add
the following markup to the web page:

<l abel for="mal e">Mal e</| abel >

<i nput checked type="radi 0" nane="gender" id="nmale" val ue="nmale">
<l abel for="fenmal e">Femal e</| abel >

<i nput type="radi 0" nane="gender" id="female" value="fenal e">

Notice in this example that both input types are given the same name. Thisis how the
browser knows that the two radio buttons are connected, and ensures that only one
can be selected. When the form is submitted, the field will be given the val ue of the
radio button currently selected.

Add a checkbox to the form asking if the user wants to subscribe to your newsl etter.
A checkbox isidentical to aradio button, but thet ype of theinput field is checkbox.
In addition, you do not need to specify a value with checkboxes: The value of the
field will be set to either on or of f .

Add at ext ar ea for capturing notes. This should be sized to capture 5 rows and 30
columns.

Add a-Bate of birthll input field that uses an input type of dat e.

9. Add asdlary field to the form. Specify this astype nunber , and define ast ep
attribute with a value of 500.

10. Add a submit button to the bottom of the form to allow the contents to be submitted.

11. Ensure that you have added a
 before each | abel to make sure the inputs are
placed on separate lines.

The finished result should look something like the screenshot in Figure 6.9, but you
are encouraged to experiment, and try out the other features outlined in this lesson.

Last contacted
Male(s) Female
Subscribe to newsletter?

Notes
Date of birth | ad /mm 7 yyyy

Salary soooo

Submit

Figure 6.9

You should notice one new feature on this form: if you enter avalue into the salary
field, Chrome provides up and down arrows for increasing and decreasing this value
by the step amount. This also ensures that the value is rounded down to a multiple of
the step amount.

Reference

Please select the video for Lesson 6 online at www. wr ox. comt go/ ht ml 5j sj quer y24hr .
You will also be able to download the code and resources for this lesson from the

website.

Lesson 7/

Semantic Tags

Most of the tags you have encountered up until this point will be familiar to anyone who
has worked with earlier versions of HTML. In this lesson, you will explore a new set of
tags defined in HTML5 called semantic tags.

If you consider the lessons you have looked at so far, thanks to the power of CSS, it is
possible to create the body of even complex web pages entirely from span and di v tags. In
fact, many web pages are created exactly like this.

Each element that appearson apagdg from aheader banner, to atable cell, to an imagdg
Isresponsible for providing the presentation for arectangular area of the screen, and
therefore adi v or span can fulfill thisrole.

Although this approach works from a presentation perspective, the individual tags do not
contain any meaning about their purpose in the web page: They are therefore said to lack
semantic meaning. Not only that, it would be very difficult to deduce from the markup
what role each element played in the web page.

Note

The —semantic webll was a term coined by the inventor of the World Wide Web, Tim
Berners-Lee. He envisaged a web of data that could be processed by machines as well
as people. Although Tims vision remains largely unfulfilled, the tags you will look at
In this chapter are one step along the line to achieving this.

(&

Let-s look at a concrete example. A header section for aweb page could be defined as
follows:

<di v class="header">This is the header</div>

You will notice that the class name does describe the purpose of the di v, but isjust an
arbitrary name: | could just as easily have called this class headSect i on Or head.

In many ways, it would be better if there were a semantic tag called header , and everyone
used this to indicate the header of their pages.
The rationale for semantic tags comes from the observation that if the browser knows this
isaheader, it may be able to provide additional services or features to the reader based on
this fact:
¢ |t may decide to render the information differently on different devices. For instance,
on asmall screen device such as a phone, it may only show the header when the user
taps near the top of the page.
¢ |t may support different modes. For instance, a user may indicate that he or she wants

to read the content of the page without any distractions (similar to the Reader mode
in Safari); therefore, the header could be temporarily removed.

¢ |t may provide support for alternative browsers, such as screen readers for the
visually impaired. For instance, it would help the screen reader understand that thisis
the title section of the page and should be read first.

In addition to these benefits, there are clear benefits to the web page devel oper. Pages
consisting of heavily nested di v tags can become very difficult to maintain. Not only isit
easy to miss an ending tag, but it becomes difficult to determine which tag needs which

style applied to it.

In order to support these benefits, there needs to be away to definitively mark an element
as the header. Therefore, the HTML5 specification defines a set of semantic tags,
including the following:

<header >This is the header</ header >

Thislesson will walk you through the most important semantic tags and look at how you
can structure a web page with these tags.

As it happens, few of these tags do currently provide any of the potential benefits outlined.

Still, I recommend that you take advantage of these tags because they will make your code
easier to read and comprehend, and they may offer advantages in the future.

Grouping and Segmenting Content

Many of the semantic tags are used for building the core structure of aweb pagg for
Instance, the header, the footer, sections of content, and asides. The example that follows
contains a number of semantic tags: Start by reading through this example. you will then
look at the meaning of each tag:

<body>
<header>Thi s i s the header</header >
<mai n>
<aside>This is where the advertising goes</asi de>
<section>This is the first section in the page</section>
<section>This is the second section in the page</section>
</ mai n>
<footer>This is the footer</footer>
</ body>

Asyou can see, this example is taking advantage of a number of tags that you have not
encountered so far. The next sections will describe these tags and explain where they
should be used. It will also cover a number of other tags not found in this example.

Header

The header tag is used to group introductory information such as thetitle of the page and
any relevant header imagery. The header should also contain the main navigation links for
the page.

There can, in fact, be more than one header on apage: Each sect i on may have its own
header €lement, while the page as awhole may have its own header element.

Footer

Thef oot er tag is used to group information that should appear at the bottom of aweb
page or section. For instance, this may contain copyright information or contact
information.

Aswith header s, it is possible to have multiple f oot er Sin apage, and f oot er s do not
need to be paired with header s.

Main

The mai n tag should surround the content that forms the central functionality or content of
the web page. There should only be one nmai n tag on a page, and it cannot be nested inside
other elements such as header , secti on, Or f oot er .

| have not placed the header S and f oot er sinside the main element, but thisis achoicell
have made. The HTML5 specification leaves you a wide degree of discretion over how
and where you use the tags, and how they interact with other tags. It would therefore also
be perfectly valid to nest the header and f oot er inside the mai n element.

Section

Sect i ons are used to capture discreet subdivisions of a document. For example, in the web
page you have been developing, the editable portion of the screen may be considered a
secti on, and the list of contacts may be considered another sect i on.

In order to determine if a portion of the web pageisasect i on, consider whether you
could pick up thiswhole area of the page and reposition it elsewhere within the web page.
If so, it isagood candidate to be tagged asasect i on.

Aside

Asi des are used for content that is loosely associated with other content around it, but
which could be considered separate. It may also be used for advertising material or other
unrelated information. An asi de will often be visually separated from the content around
it with aborder or font.

Article

Anarticleissimilartoasection inthat it contains self-contained information, but it is
generally used for segregating textual content, such as blog posts or reviews, rather than
just generic sections of the document.

Some people prefer to seethearti cl e tag not as a magazine article, but instead like an
article of clothing: something that exists in its own right, but can be mixed and matched
with other articles.

| personally prefer tousearti cl e only for self-composed text blocks that could be
extracted from one web page and embedded in another. For thisreason, arti cl e isnot
appropriate for the contacts web page because this page does not contain self-contained
text blocks.

Nav

A nav element provides a container for the main navigation links on the page. This allows
them to be located by alternative browsers such as screen readers.

Thisis an easy element to overuse: The specification does not expect al navigation links
to be encapsulated in anav element, only the primary navigation options for the page.

Address

The addr ess tag isnot new at al, but it doesfit in with the other semantic tags, and is part
of the HTMLS5 specification. This element is used to define the address or contact details
of the maintainer of the page.

Styling Semantic Tags with CSS

If you save the markup from the previous section in afile called semant i c. ht i and then
open it in Chrome, you may be disappointed with the results (see Figure 7.1).

This is the header

This is where the advertising goes
This is the first section in the page
This is the second section in the page
This is the footer

Figure7.1

Although the semantic tags imply presentation information in their names, browsers
typically do not style them differently from regular di v elements. They are ssmple bl ock
components. For instance, the header tag tells the browser the content of the element
contains header information; it does not tell it what to do with this.

Semantic elements need to be styled with CSS, just like regular elements. In addition, you
can style these tags any way you likg there is nothing (except common sense) to stop
you from placing the f oot er at the top of the page and the header at the bottom of the

page.
In order to style these tags, place the following in ast yl e section in the head of the page:

header, footer {
paddi ng: 30px 0 30px O;
wi dt h: 100%
backgr ound: #B3B2CF
text-align:center;

}
header {
font-size: 22px;
}
section {
float: left;
paddi ng: 10px;
mar gi n: 20px;
wi dt h: 70%
border: 1px solid bl ack;
}
asi de {
position:rel ative;
float:right;
paddi ng: 10px;
mar gi n: 20px;
wi dt h: 150px;
hei ght : 200px;
border: 1px solid bl ack;
}
footer {

cl ear: both;
mar gi n-top: 50px;

font-size: 18px;

}

If you now refresh the page the various elements will be displayed in an appropriate style
for their names.

Microformats

So far you have examined the way semantic tags can be used for encapsulating a portion
of apage, and labeling it according to itsrole in the page. Semantic tags can, however,
also exist on amicro scale.

Consider the elementsin the contacts web page displaying date information. Currently,
these are placed int d elements, but HTML5 provides anew element called t i ne for
encapsul ating date and time information in a more meaningful way. This element allows
the date and time information to be provided in a human-readable and machine-readable
manner simultaneously. For instance

<time datetinme="2014-08-20">20th August 2014</ti nme>

This could aso have been written:

<tinme datetinme="2014-08-20">August 2014</ti me>

Notice that in each case, the same information is provided twice. The first version of the
date is presented in an attribute and conforms to the 1SO standards for dates (and times if
required). The second version appears between the tags and is the version that will be
displayed to the user.

Although dates and times, in all their myriad of formats, are very easy for a human to read
and comprehend, they can be notoriously difficult for a computer to process. By allowing
tags to always provide an | SO-compliant version of the date, it suddenly becomes trivial
for a computer to process the element and comprehend its meaning.

Features such asthis are referred to as microformats and are widely used in computing to
provide semantic meaning to search engines and other automated clients, while providing
human-friendly versions of the same data to humans.

Microformats have not been officialy included in the HTML5 specification at this point,
although thet i me element is an example of a microformat. There are several standards for
additional microformats, and it is likely that HTML5 will be expanded to support these in
the future.

Summing Up

It would be overly optimistic to think that semantic tags are going to revolutionize your
approach to web page development. They are, in many ways, one of the least interesting
features of HTML5 because they do not provide any visual or functional capabilities that
could not be achieved with HTMLA4.

They do, however, have an important role to play in enhancing the readability of your
code, and may provide other benefits in the future once browsers begin incorporating
features that rely on semantic tags. In many ways, it is not until web page developers start
using these tags consistently, and en masse, that browser vendors will begin to provide
functional support for them.

Asafinal note, it is also important not to overuse the semantic tags. Thereis still nothing
wrong with using di v and span elements for structuring sections of a page: Save the
semantic tags for the main building blocks of the web page.

Try It

In this Try It, you will take the web application from Lesson 6 and add semantic tagsin
the appropriate places.

Lesson Requirements

You will need the files from the end of Lesson 6, atext editor, and aweb browser.

Step-by-Step

1.
2.

Openthecontacts. ht i pagein your text editor.

Locate the di v with the class header and convert thisinto aheader e ement without a
class.

Locate the di v with the class footer and convert thisinto af oot er element without a
class.

4. Convertthedi v withthei d= contactDetails intoasection.

5. Convertthedi v withthei d= contactLi st Intoasection.

6. Surround the two sections with amai n element and give this an attributei d=

cont act Scr een .

Find the t d elements containing dates and convert theseto t i nre elements with both a
human readable and machine-readable form.

8. Savecontacts. htni.

9. Open cont act s. css and change the selector for the header classfrom ani d selector

10.
11.
12.
13.
14.

to an element selector.

Also change the selector for thef oot er from ani d selector to an element selector.
Savecont act s. css.

Open cont act s. ht i in Chrome. The page should not look any different.
Right-click the header element and choose —-Hhspect Element. I

Confirm that this has the element type header .

Reference

Please select the video for Lesson 7 online at waw. wr ox. cont go/ ht ml 5j sj quer y24hr .
You will also be able to download the code and resources for this lesson from the

website.

Lesson 8

HTML5 Validation

When the user submitsaform, it is common to perform validation of the data the user has
entered within the browser. This allows any issues, such as missing data, to be resolved
before the form is sent to the server, and generally provides a superior user experience.

Form validation has traditionally been performed with JavaScript: In fact, until recently
this was the most common use of JavaScript within web pages. HTMLS5 provides built-in
form validation, and allows fields to be validated based on attributes added directly to the
fields themselves. Thislesson will look at how you can enable validation on the form
created in Lesson 6.

The HTMLS form validation specification is not perfect it lacks some of the rules you
would expect in a complete validation framework. It does, however, have the advantage of
being a native solution and is very easy to use. It is therefore necessary to decide at the
outset of aproject whether HTML5 validation is sufficient, or whether you will use one of
the many JavaScript libraries availablg for instance, jQuery validation.

