
www.allitebooks.com

http://www.allitebooks.org

Node.js High Performance

Take your application to the next level of high
performance using the extensive capabilities
of Node.js

Diogo Resende

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Node.js High Performance

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1120815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-614-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Diogo Resende

Reviewers
Abhishek Dey

Glenn Geenen

Stefan Lapers

Aravind V.S

Commissioning Editor
Ashwin Nair

Acquisition Editor
Sonali Vernekar

Content Development Editor
Rashmi Suvarna

Technical Editor
Utkarsha S. Kadam

Copy Editor
Vikrant Phadkay

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Diogo Resende is a passionate developer obsessed with perfection in everything
he works on. He loves everything about the Internet of Things, which is the ability to
connect everything together and always be connected to the world.

He studied computer science and graduated in engineering. At that time, he deepened
his knowledge of computer networking and security, software development, and cloud
computing. Over the past 10 years, Diogo has embraced different challenges to develop
applications and services to connect people with embedded devices around the world,
building a bridge between old and uncommon protocols and the Internet of today.

ThinkDigital has been his employer and a major part of his life for the last few years.
It offers services and expertise in areas such as computer networking and security,
automation, smart metering, and fleet management and intelligence. Diogo has also
published many open source projects. You can find them all, with an MIT license
style, on his personal GitHub page under the username dresende.

First of all, I would like to thank my wife, Ana, for putting up with
my late-night writing sessions. She has given me enough of the space
and tranquility that I needed to take up this challenge. I would also
like to thank my son, Manuel, for being born exactly when I started
writing the book, for stealing my attention but also making my days
happier, and for giving me the strength to carry on and overcome
every obstacle.

Last but not least, I would like to thank everyone in my company
for putting up with me. I thank my business associate, Nuno, and
my work colleagues Sílvia, Luis, and Helder for collaborating and
helping the company go ahead and achieve all our dreams.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Abhishek Dey was born in Bandel, West Bengal, India. He holds an MS degree
in computer engineering from the University of Florida, Gainesville, USA. His
research interests lie primarily in the fields of compiler design, computer security,
networks, data mining, analyses of algorithms, and concurrency and parallelism.
He is a passionate programmer, who started programming in C and Java at the age
of 10. Shortly afterwards, he developed a strong interest in web technologies and
system implementation.

Abhishek possesses profound expertise in developing high-volume software using
C++, Java, C#, JavaScript, jQuery, AngularJS, and HTML5. He also enjoys coding in
functional programming languages, such as SML. Some of his recent projects can be
found at https://github.com/deyabhishek.

He is a Microsoft Certified Professional, an Oracle Certified Java Programmer,
an Oracle Certified Professional Java EE Web Component Developer, and an
Oracle Certified Professional Java EE Business Component Developer.

In his leisure time, Abhishek loves to listen to music, travel to interesting places,
and paint something on canvas, giving colors to his imagination. More information
about him can be found at http://abhishekdey.com.

He has reviewed Kali Linux CTF Blueprints, AngularJS UI Development, RESTful
Web API Design with Node.js, and Mastering AngularJS for .NET Developers, all by
Packt Publishing.

Glenn Geenen is a Node.js developer with a background in game and mobile
development. He worked mostly as an iOS consultant before becoming a Node.js
consultant for his own company, GeenenTijd.

www.allitebooks.com

https://github.com/deyabhishek
http://abhishekdey.com
http://www.allitebooks.org

Stefan Lapers started his career almost 20 years ago as an IT support engineer.
Then, he quickly grew in the field of Linux/Unix system engineering and software
development.

Over the years, he has gained experience in deploying and maintaining hosted
application solutions while working for prominent customers, such as MTV, TMF,
and many more. In recent years, Stefan was involved in multiple development
projects and their delivery as services on the Internet.

In his spare time, he enjoys being with his family and flying remotely controlled
helicopters.

Aravind V.S is an aspiring mind and a creative brain to look forward to in the
field of technology. He is a successful entrepreneur, developer, and technology
consultant whose interest in embedded systems and computers paved his way into
the programming world at the age of 15. At that time, he developed a full-fledged
stock and inventory management system for a family friend. He has cofounded
Entity Business Foundations, a web and mobile technology start-up based in Kerala
(https://teamebf.com/); founded ioStash, an open source Internet of Things platform
(http://iostash.com/); and tailored cloud:VAR, an open source backendless web
application framework (http://cloudvar.org/) written in NodeJS and MongoDB.

In his spare time, Aravind can be found outdoors, focusing his camera, reading
books, or writing articles for his blog at http://aravindvs.com/blog/. He has
previously reviewed NodeJS Cookbook and NodeJS Essentials by Packt Publishing.
Currently, he works as the chief technology officer at Entity Business Foundations.
You can contact him at mail@aravindvs.com.

I would like to take this opportunity to thank my friends—
Harikrishnan, Abdulla Ahsan, and Muhammed Anas—and my
parents for their support in completing the review of this book.
Thanks especially to my best friend, Kavya Babu, for her enduring
support, encouragement, and faith in me, without which I wouldn't
have been what I am today. Above all, I'd like to thank the Almighty
for giving me everything I needed at the right time.

www.allitebooks.com

https://teamebf.com/
http://iostash.com/
http://cloudvar.org/
http://aravindvs.com/blog/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Introduction and Composition 1

Performance analysis 2
Monitoring 3

Getting high performance 4
Testing and benchmarking 5
Composition in applications 6

Using NPM 7
Separating your code 7
Embracing asynchronous tasks 8
Using library functions 9
Using function rules 9
Testing your modules 10

Summary 11
Chapter 2: Development Patterns 13

What are patterns? 13
Node.js patterns 15
Types of patterns 16

Architectural patterns 16
Creational patterns 21
Structural patterns 23
Behavioral patterns 25

Event-driven architecture 27
Streams 28
Buffers 29

Optimizations 29
Hidden types 30
Numbers 30
Arrays 31

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Functions 31
The for-in loops 32
The infinite loops 32
The try-catch blocks 32
Eval 32

Summary 33
Chapter 3: Garbage Collection 35

Automatic memory management 35
Memory organization 37
Memory leaks 38
Event emitters 39
Referencing objects 40
Object representation 42
Object heaps 42
Heap snapshots 43
Third-party management 54

Summary 54
Chapter 4: CPU Profiling 55

The I/O library 56
Fibonacci 57
Flame graphs 62
Profiling alternatives 68

Summary 68
Chapter 5: Data and Cache 71

Data storage 72
Excessive I/O 72

Database management systems 73
Caching data 74
Asynchronous caching 75
Clustering data 78
Accessing data 80

Summary 81
Chapter 6: Test, Benchmark, and Analyze 83

Test fundamentals 84
The test environment 85
The Docker tool 85
The test tool 87
Continuous integration 92

Code coverage 93

Table of Contents

[iii]

Benchmark tests 96
Analyzing tests 98

Summary 99
Chapter 7: Bottlenecks 101

Host limits 102
Network limits 104
Client limits 107
Browser limits 108
Performance variables 110

Summary 110
Index 111

[v]

Preface
High performance on a platform such as Node.js means knowing how to take
advantage of every aspect of your hardware and helping memory management
act at its best and correctly decide how to architect a complex application. Do not
panic if your application starts consuming a lot of memory. Instead, spot the leak
and solve it fast. Better yet, monitor and stop it before it becomes an issue.

What this book covers
Chapter 1, Introduction and Composition, introduces the subject, emphasizing
performance analysis and the importance of benchmarking. It's about splitting
applications into several smaller components, reducing the complexity of each
component to a manageable level for the developers involved in the application.
Here, you understand the importance of developing methodologies to break
complexity into smaller and reusable modules that can more easily be analyzed
and exchanged with other new and better modules during the course of the
application's life cycle.

Chapter 2, Development Patterns, is about good programming patterns that help
avoid performance penalties or help find them. You'll value the importance of
carefully choosing techniques and patterns that are simple, and avoid future
problems. With this in mind, you'll better understand how the language works,
the importance of knowing the event loop, how asynchronous programming works
best, and some of the first-class citizens of the language—streams and buffers.

Chapter 3, Garbage Collection, covers GC, its importance, and its behavior. Here, you
get to understand V8 memory management, dead memory, and memory leaks.
You also learn how to profile an application and spot memory leaks caused by
bad programming where a developer hasn't deferenced objects correctly.

Preface

[vi]

Chapter 4, CPU Profiling, is about profiling the processor and understanding when
and why your application hogs your host. In this chapter, you understand the
limits of the language and how to develop applications that can be divided into
several components running across different hosts, allowing better performance
and scalability.

Chapter 5, Data and Cache, explains externally stored application data and how it can
affect your application's performance. It's about data stored locally in the application,
the disk, a local service, a local network service or even the client host. In this chapter,
you get to know that different types of data storage methods have different penalties,
and these must be considered when choosing the best one. You learn that data can
be stored locally or remotely and access to the data can be—and should be—cached
sometimes, depending on the importance of the data.

Chapter 6, Test, Benchmark, and Analyze, is about testing and benchmarking applications.
It's also about enforcing code coverage to avoid unknown application test zones. Then
we cover benchmarks and benchmark analytics. You get to understand how good tests
can pinpoint where to benchmark and analyze specific parts of the application to allow
performance improvements.

Chapter 7, Bottlenecks, covers limits outside the application. This chapter is about the
situations when you realize that the performance limit is not because of the application
programing but external factors, such as the host hardware, network or client. You'll
become aware of the limits that external components can impose on the application,
locally or remotely. Moreover, the chapter explains that sometimes, the limits are on
the client side and nothing can be done to improve the current performance.

What you need for this book
The only software needed is Node.js. Some modules might need compilation, so
a Linux or OS X operating system is easier for testing of the examples. No specific
hardware is needed.

Who this book is for
The book is intended for those with a basic Node.js background and those in need of
a more in-depth understanding of this platform. Maybe, you're comfortable with the
language and perhaps you know that it has a garbage collector, but you never really
understand how it works and how it fails to work depending on the way you use the
language. Basic language understanding and solid experience are required.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

 async.each(users, function (user, next) {
 // do something on each user object
 return next();
 }, function (err) {
 // done!
 });

Any command-line input or output is written as follows:

$ node --debug leaky.js
Debugger listening on port 5858
mem. nodes: 37293
mem. nodes: 37645
mem. nodes: 37951
mem. nodes: 37991
mem. nodes: 38004

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Now,
instead of choosing Take Snapshot, just click on the Load button and choose the
snapshots from your disk."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/6148OS.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the Errata Submission Form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/6148OS.pdf
https://www.packtpub.com/sites/default/files/downloads/6148OS.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[ix]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introduction and Composition
High performance is hard, and it depends on many factors. Best performance
should be a constant goal for developers. To achieve it, a developer must know the
programming language they use and, more importantly, how the language performs
under heavy loads, these being disk, memory, network, and processor usage.

Developers will make the most out of a language if they know its weaknesses. In a
perfect world, since every job is different, a developer should look for the best tool
for the job. But this is not feasible and a developer wouldn't be able to know every
best tool, so they have to look for the second best tool for every job. A developer will
excel if they know few tools but master them.

As a metaphor, a hammer is used to drive nails, and you can also use it to break
objects apart or forge metals, but you shouldn't use it to drive screws. The same
applies to languages and platforms. Some platforms are very good for a lot of jobs
but perform really badly at other jobs. This performance can sometimes be mitigated,
but at other times, can't be avoided and you should look for better tools.

Node.js is not a language; it's actually a platform built on top of V8, Google's open
source JavaScript engine. This engine implements ECMAScript, which itself is a
simple and very flexible language. I say "simple" because it has no way of accessing
the network, accessing the disk, or talking to other processes. It can't even stop
execution since it has no kind of exit instruction. This language needs some kind of
interface model on top of it to be useful. Node.js does this by exposing a (preferably)
nonblocking I/O model using libuv. This nonblocking API allows you to access the
filesystem, connect to network services and execute child processes.

The API also has two other important elements: buffers and streams. Since JavaScript
strings are Unicode friendly, buffers were introduced to help deal with binary data.
Streams are used as simple event interfaces to pass data around. Buffers and streams
are used all over the API when reading file contents or receiving network packets.

www.allitebooks.com

http://www.allitebooks.org

Introduction and Composition

[2]

A stream is a module, similar to the network module. When loaded, it provides
access to some base classes that help create readable, writable, duplex, and transform
streams. These can be used to perform all sorts of data manipulation in a simplified
and unified format.

The buffers module easily becomes your best friend when converting binary data
formats to some other format, for example, JSON. Multiple read and write methods
help you convert integers and floats, signed or not, big endian or little endian, from
8 bits to 8 bytes long.

Most of the platform is designed to be simple, small, and stable. It's designed and
ready to create some high-performance applications.

Performance analysis
Performance is the amount of work completed in a defined period of time and with a
set of defined resources. It can be analyzed using one or more metrics that depend on
the performance goal. The goal can be low latency, low memory footprint, reduced
processor usage, or even reduced power consumption.

The act of performance analysis is also called profiling. Profiling is very important
for making optimized applications and is achieved by instrumenting either the
source or the instance of the application. By instrumenting the source, developers
can spot common performance weak spots. By instrumenting an application
instance, they can test the application on different environments. This type of
instrumentation can also be known by the name benchmarking.

Node.js is known for being fast. Actually, it's not that fast; it's just as fast as your
resources allow it. What Node.js is best at is not blocking your application because
of an I/O task. The perception of performance can be misleading in Node.js
applications. In some other languages, when an application task gets blocked—for
example, by a disk operation—all other tasks can be affected. In the case of Node.js,
this doesn't happen—usually.

Some people look at the platform as being single threaded, which isn't true.
Your code runs on a thread, but there are a few more threads responsible for I/O
operations. Since these operations are extremely slow compared to the processor's
performance, they run on a separate thread and signal the platform when they have
information for your application. Applications blocking I/O operations perform
poorly. Since Node.js doesn't block I/O unless you want it to, other operations can
be performed while waiting for I/O. This greatly improves performance.

Chapter 1

[3]

V8 is an open source Google project and is the JavaScript engine behind Node.js.
It's responsible for compiling and executing JavaScript, as well as managing your
application's memory needs. It is designed with performance in mind. V8 follows
several design principles to improve language performance. The engine has a
profiler and one of the best and fast garbage collectors that exist, which is one of
the keys to its performance. It also does not compile the language into byte code;
it compiles it directly into machine code on the first execution.

A good background in the development environment will greatly increase the chances
of success in developing high-performance applications. It's very important to know
how dereferencing works, or why your variables should avoid switching types. Here
are other useful tips you would want to follow. You can use a style guide like JSCS
and a linter like JSHint to enforce them to for yourself and your team. Here are some
of them:

• Write small functions, as they're more easily optimized
• Use monomorphic parameters and variables
• Prefer arrays to manipulate data, as integer-indexed elements are faster
• Try to have small objects and avoid long prototype chains
• Avoid cloning objects because big objects will slow the operations

Monitoring
After an application is put into production mode, performance analysis becomes
even more important, as users will be more demanding than you were. Users don't
accept anything that takes more than a second, and monitoring the application's
behavior over time and over some specific loads will be extremely important, as it
will point to you where your platform is failing or will fail next.

Yes, your application may fail, and the best you can do is be prepared. Create a backup
plan, have fallback hardware, and create service probes. Essentially, anticipate all the
scenarios you can think of, and remember that your application will still fail. Here are
some of those scenarios and aspects that you should monitor:

• When in production, application usage is of extreme importance to understand
where your application is heading in terms of data size or memory usage. It's
important that you carefully define source code probes to monitor metrics—
not only performance metrics, such as requests per second or concurrent
requests, but also error rate and exception percentage per request served.
Your application emits errors and sometimes throws exceptions; it's normal
and you shouldn't ignore them.

Introduction and Composition

[4]

• Don't forget the rest of the infrastructure. If your application must perform
at high standards, your infrastructure should too. Your server power supply
should be uninterruptible and stable, as instability will degrade your
hardware faster than it should.

• Choose your disks wisely, as faster disks are more expensive and usually
come in smaller storage sizes. Sometimes, however, this is actually not a bad
decision when your application doesn't need that much storage and speed
is considered more important. But don't just look at the gigabytes per dollar.
Sometimes, it's more important to look at the gigabits per second per dollar.

• Also, your server temperature and server room should be monitored. High
temperatures degrades performance and your hardware has an operation
temperature limit. Security, both physical and virtual, is also very important.
Everything counts for the standards of high performance, as an application
that stops serving its users is not performing at all.

Getting high performance
Planning is essential in order to achieve the best results possible. High performance
is built from the ground up and starts with how you plan and develop. It obviously
depends on physical resources, as you can't perform well when you don't have
sufficient memory to accomplish your task, but it also depends greatly on how you
plan and develop an application. Mastering tools will give much better performance
chances than just using them.

Setting the bar high from the beginning of development will force the planning to
be more prudent. Some bad planning of the database layer can really downgrade
performance. Also, cautious planning will cause developers to think more about
use cases and program more consciously.

High performance is when you have to think about a new set of resources (processor,
memory, storage) because all that you have is exhausted, not just because one resource
is. A high-performance application shouldn't need a second server when a little
processor is used and the disk is full. In such a case, you just need bigger disks.

Applications can't be designed as monolithic these days. An increasing user base
enforces a distributed architecture, or at least one that can distribute load by having
multiple instances. This is very important to accommodate in the beginning of the
planning, as it will be harder to change an application that is already in production.

Chapter 1

[5]

Most common applications will start performing worse over time, not because of
deficit of processing power but because of increasing data size on databases and
disks. You'll notice that the importance of memory increases and fallback disks
become critical to avoiding downtime. It's very important that an application be
able to scale horizontally, whether to shard data across servers or across regions.

A distributed architecture also increases performance. Geographically distributed
servers can be more closed to clients and give a perception of performance. Also,
databases distributed by more servers will handle more traffic as a whole and allow
DevOps to accomplish zero downtime goals. This is also very useful for maintenance,
as nodes can be brought down for support without affecting the application.

Testing and benchmarking
To know whether an application performs well or not under specific environments,
we have to test it. This kind of test is called a benchmark. Benchmarking is important
to do and it's specific to every application. Even for the same language and platform,
different applications might perform differently, either because of the way in
which some parts of an application were structured or the way in which a database
was designed.

Analyzing the performance will indicate bottleneck of your application, or if you
may, the parts of the application that perform not good as others. These are the parts
that need to be improved. Constantly trying to improve the worst performing parts
will elevate the application's overall performance.

There are plenty of tools out there, some more specific or focused on JavaScript
applications, such as benchmarkjs (http://benchmarkjs.com/) and ben
(https://github.com/substack/node-ben), and others more generic, such as
ab (http://httpd.apache.org/docs/2.2/programs/ab.html) and httpload
(https://github.com/perusio/httpload). There are several types of benchmark
tests depending on the goal, they are as follows:

• Load testing is the simplest form of benchmarking. It is done to find out
how the application performs under a specific load. You can test and find
out how many connections an application accepts per second, or how many
traffic bytes an application can handle. An application load can be checked
by looking at the external performance, such as traffic, and also internal
performance, such as the processor used or the memory consumed.

http://benchmarkjs.com/
https://github.com/substack/node-ben
http://httpd.apache.org/docs/2.2/programs/ab.html
https://github.com/perusio/httpload

Introduction and Composition

[6]

• Soak testing is used to see how an application performs during a more
extended period of time. It is done when an application tends to degrade
over time and analysis is needed to see how it reacts. This type of test is
important in order to detect memory leaks, as some applications can
perform well in some basic tests, but over time, the memory leaks and
their performance can degrade.

• Spike testing is used when a load is increased very fast to see how the
application reacts and performs. This test is very useful and important in
applications that can have spike usages, and operators need to know how the
application will react. Twitter is a good example of an application environment
that can be affected by usage spikes (in world events such as sports or religious
dates), and need to know how the infrastructure will handle them.

All of these tests can become harder as your application grows. Since your user base
gets bigger, your application scales and you lose the ability to be able to load test
with the resources you have. It's good to be prepared for this moment, especially
to be prepared to monitor performance and keep track of soaks and spikes as your
application users start to be the ones responsible for continuously test load.

Composition in applications
Because of this continuous demand of performant applications, composition
becomes very important. Composition is a practice where you split the application
into several smaller and simpler parts, making them easier to understand, develop,
and maintain. It also makes them easier to test and improve.

Avoid creating big, monolithic code bases. They don't work well when you need to
make a change, and they also don't work well if you need to test and analyze any
part of the code to improve it and make it perform better.

The Node.js platform helps you—and in some ways, forces you to—compose your
code. Node.js Package Manager (NPM) is a great module publishing service. You
can download other people's modules and publish your own as well. There are tens
of thousands of modules published, which means that you don't have to reinvent
the wheel in most cases. This is good since you can avoid wasting time on creating
a module and use a module that is already in production and used by many people,
which normally means that bugs will be tracked faster and improvements will be
delivered even faster.

The Node.js platform allows developers to easily separate code. You don't have to
do this, as the platform doesn't force you to, but you should try and follow some
good practices, such as the ones described in the following sections.

Chapter 1

[7]

Using NPM
Don't rewrite code unless you need to. Take your time to try some available modules,
and choose the one that is right for you. This reduces the probability of writing faulty
code and helps published modules that have a bigger user base. Bugs will be spotted
earlier, and more people in different environments will test fixes. Moreover, you will
be using a more resilient module.

One important and neglected task after starting to use some modules is to track
changes and, whenever possible, keep using recent stable versions. If a dependency
module has not been updated for a year, you can spot a problem later, but you will
have a hard time figuring out what changed between two versions that are a year
apart. Node.js modules tend to be improved over time and API changes are not rare.
Always upgrade with caution and don't forget to test.

Separating your code
Again, you should always split your code into smaller parts. Node.js helps you do
this in a very easy way. You should not have files bigger than 5 kB. If you have, you
better think about splitting it. Also, as a good rule, each user-defined object should
have its own separate file. Name your files accordingly:

 // MyObject.js
 module.exports = MyObject;

 function MyObject() {
 // …
 }
 MyObject.prototype.myMethod = function () { … };

Another good rule to check whether you have a file bigger than it should be; that is,
it should be easy to read and understand in less than 5 minutes by someone new to
the application. If not, it means that it's too complex and it will be harder to track and
fix bugs later on.

Remember that later on, when your application becomes huge, you
will be like a new developer when opening a file to fix something.
You can't remember all of the code of the application, and you need
to absorb a file behavior fast.

Introduction and Composition

[8]

Embracing asynchronous tasks
The platform is designed to be asynchronous, so you shouldn't go against it.
Sometimes, it can be really hard to make some recursive tasks or even simply cycle
through a list of tasks that have to run serially. You should avoid creating a module
to handle asynchronous tasks, as there are some used and tested by hundreds of
thousands of people out there. For instance, async is a simple and very practical way
of helping the developer perform better, and the learning curve is very smooth:

 async.each(users, function (user, next) {
 // do something on each user object
 return next();
 }, function (err) {
 // done!
 });

This module has a lot of methods similar to the ones you find in the array object,
such as map, reduce, filter, and each, but for iterating asynchronously. This is
extremely useful when your application gets more complex and some user actions
require some serialized tasks. Error handling is also done correctly and the execution
stop is done as expected. The module helps run serial or parallel tasks.

Also, serial tasks that would usually enforce a developer to nest calls and enter
the callback hell can simply be avoided. This is especially useful when, for example,
you need to perform a transaction on a database with several queries involved.

Another common mistake when writing asynchronous code is throwing errors.
Callbacks are called outside the scope where they are defined, and so you cannot
just put the callback inside a try/catch block. Therefore, avoid doing this unless
it's a very critical error that should make your application stop and quit. In Node.js,
throwing an exception without catching it will trigger an uncaughtException event.

The platform has a rule that is consensual for most developers—the so-called error-
first callback style. This rule is of extreme importance, since it allows an easier reuse
of your code. Even if you have a function where there's no chance of throwing an
error, or when you just don't want it to throw and use some kind of error handling
inside the function, your callback should always reserve the first argument for an
error event if it's always null. This will allow your function to be used with an async
module. Also, other developers will be counting on this style when debugging, so
always reverse the first argument as an error object.

Plus, you should always reserve the last argument of the function as the callback.
Never define arguments after your callback:

 function mySuperFunction(arg1, ..., argN, next) {
 // do some voodoo

Chapter 1

[9]

 return next(null, my_result); // 1st argument reserved for
 error
 }

Using library functions
Library functions are another type of module you should use. They help in handling
repetitive tasks, and every developer has to perform such tasks. Some of these
repetitive tasks can be done with no effort, just by using a library function from
lodash or underscore. They are an important part of your code and have good
optimizations that you don't even have to think about. Many cycling tasks, such
as finding an object in an array based on an object key, or mapping an array of
objects to an array of keys of every object, are one-liners in these libraries. Read the
documentation first to avoid using the library and not fully using its potential.

Although these kinds of modules can be useful, they can also downgrade performance
if they are not chosen well. Some modules are designed to help developers in some
tasks, but do not target performance—just convenience. In other words, these modules
can help you develop faster, but you shouldn't forget the complexity of each function.
Otherwise, you will be calling the same function several times because you forget
about its complexity, instead of calling it once and saving the results.

Remember that high performance is not seen when you develop the
application and test with one or two users. At that time, the application
performs at a good speed, since data size and user count is still small.
It's later on that you may regret some of your design decisions.

Using function rules
Functions are very important in this platform. This is no surprise since the language is
functional and has first-class functions. There are some rules you should follow when
writing functions that will make your life easier when debugging or optimizing it later.
They also avoid some errors as they try to enforce some common structure. Once again,
you can enforce these rules using, for example, JSCS (http://jscs.info/):

1. Always name your functions, especially when they're closures used as
callbacks. This allows you to identify them in stack traces when your code
breaks. Also, they allow a new developer to rapidly know what the function
is supposed to do. Still, avoid long names:
socket.on("data", function onSocketData(data) {

 // …

});

http://jscs.info/

Introduction and Composition

[10]

2. Don't nest your conditions, and return as early as possible. If you have a
condition that must return something in a function and if you return, you
don't have to use the else statement. You also avoid a new indent level,
reducing your code and simplifying its revision. If you don't do this, you
will end up in a condition hell, with several levels if you have two or more
conditions to satisfy:
// do this
if (someCondition) {
 return false;
}
return someThing;

// instead of this:
if (someCondition) {
 return false;
} else {
 return someThing;
}

3. Create small and simple functions. Don't span your functions for more lines
than your screen can handle. Even if your task cannot be reused, split the
function into smaller ones. It is even better to put it into a new module and
publish it. In this way, you can reuse them at the frontend if you need them.
This can also allow the engine to optimize some smaller functions when it is
unable to optimize the previous big function. Again, this is important if you
don't want a developer to be reading your application code for a week or two
before being able to touch anything.

Testing your modules
Testing your modules is a hard job and is usually neglected, but it's very important
to make tests for your modules. The first ones are the hard ones. Look for a test tool
that you like, such as vows, chai, or mocha. If you don't know how to start, read a
module's documentation, or another module's test code. But don't give up on testing.

If you need help, read the test tools' websites mentioned earlier, as
they usually help you get started. Alternatively, you can take a look at
Igor's post (https://semaphoreci.com/community/tutorials/
getting-started-with-node-js-and-mocha)at semaphore.

https://semaphoreci.com/community/tutorials/getting-started-with-node-js-and-mocha
https://semaphoreci.com/community/tutorials/getting-started-with-node-js-and-mocha

Chapter 1

[11]

After you start adding one or two tests, more will follow. One big advantage of
testing your module from the beginning is that when you spot a bug, you can make
a test case for it, to be able to reproduce it and avoid it in the future.

Code coverage is not crucial but can help you see how your tests cover your module
code base, and if you're just testing a small part. There are some coverage modules,
such as istanbul or jscoverage; choose the one that works best for you. Code
coverage is done together with testing, so if you don't test it, you won't be able to see
the coverage.

As you might want to improve the performance of an application, every dependency
module should be looked at for improvements. This can be done only if you test
them. Dependency version management is of great importance, and it can be hard to
keep track of new versions and changes, but they might give you some good news.
Sometimes, modules are refactored and performance is boosted. A good example of
this is database access modules.

Summary
Together, Node.js and NPM make a very good platform for developing
high-performance applications. Since the language behind them is JavaScript
and most applications these days are web applications, these combinations make
it an even more appealing choice, as it's one less server-side language to learn
(such as PHP or Ruby) and can ultimately allow a developer to share code on the
client and server sides. Also, frontend and backend developers can share, read, and
improve each other's code. Many developers pick this formula and bring with them
many of their habits from the client side. Some of these habits are not applicable
because on the server side, asynchronous tasks must rule as there are many clients
connected (as opposed to one) and performance becomes crucial.

In the next chapter, we will cover some development patterns that help applications
stay simple, fast, and scalable as more clients come along and start putting pressure
on your infrastructure.

www.allitebooks.com

http://www.allitebooks.org

[13]

Development Patterns
Developing is just great. It gives you a sense of freedom to create new things. This
is true for almost every language—a freedom to create something in your own way.
This means that there are good ways and not-so-good ways to do the same task. A
developer, during the course of their life, will face different problems with similar
solutions and will adopt patterns. For some problems, they will know the patterns
they are using; for others, they will be using patterns that they probably don't
even know.

Some patterns directly increase performance, and others do it indirectly because of
an architecture pattern that is able to scale. Creating high-performance applications
involves knowing every bit of running code, which results in knowing the patterns
used across an application. Sometimes, they're unintentional. At other times, they are
enforced because of the benefits of a specific pattern. Patterns are everywhere, from
the creation of objects to the interaction between objects and first-class services of
an application.

Similarly, there are patterns specific to languages and platforms. This is because the
compiler or interpreter handles some pieces of code better than others. Sometimes,
it is because it's designed and targeted for best performance on the most common
scenarios. At other times, it's just because of how the language treats some entities,
such as functions, types of variables, or some loops. Because of all this, knowing how
the interpreter treats some code patterns is important.

What are patterns?
Patterns are not libraries or classes. They're concepts—reusable solutions to common
programming problems, tested and optimized for specific use cases. As they're just
concepts meant to solve specific problems, they have to be implemented in your
language. Every pattern has its advantages and disadvantages, and choosing a
wrong pattern for a problem can cause you a big headache.

Development Patterns

[14]

Patterns can speed up the development process because they provide well-tested
and well-proven development paradigms. Reusing patterns helps prevent issues
and improves code readability between developers who are familiar with them.

Patterns have a lot of importance in high-performance applications. Sometimes,
in order to achieve some flexibility, patterns introduce a new level of indirection in
the code, which may reduce performance. You should choose when to introduce
a pattern and know when that introduction will hurt the performance metric that
you're targeting.

Knowing good patterns is essential in order to avoid the opposite—anti-patterns.
An anti-pattern is a solution to a recurring problem that is both ineffective and
counterproductive. Anti-patterns are not specific patterns but more like common
errors. They are seen by the majority of mature developers/community as strategies
that you shouldn't use. Some of the most common and frequent anti-patterns seen
are as follows:

• Repeating yourself: Don't repeat excessive parts of the code. Lean back,
look at the big picture, and refactor it. Some developers tend to look at
this refactoring as a complexity of the application, but it can actually make
your application simpler. If you think you won't be able to understand the
simplicity of your refactoring, don't forget to add a couple of introductory
comments to the code.

• Golden hammer or silver bullet: Specifically in the Node.js ecosystem,
and thanks to NPM, there are literally thousands of modules available
out there. Don't reinvent the wheel. Invest your time in using the most
common modules for your needs, and avoid recreating them.

• Coding by exception: Your code should handle all types of common errors.
If the application is well planned, this accidental complexity should be
avoided, as it won't bring anything new to the application. Avoid coding for
every type of error, handle the most common ones, and default to the most
general error. This does not mean that you shouldn't record the error in your
backend. Do this so that you can analyze it later, but avoid handling all types
of errors. This decreases your code maintenance.

• Programming by accident: Don't program by trial and error. Success in this
method is pure luck and a question of odds. This is something you should
really avoid. Programming by accident can make your code work in some
cases, but have erroneous behavior in unplanned situations.

Chapter 2

[15]

Node.js patterns
Because of the structure and API model of the Node.js platform, some patterns are
more biased or natural. The most obvious are the event-driven and the event stream
patterns. They're not enforced but strongly engrained in the core API, and you're
forced to use it in some parts of your application, so it's better to know how they
work individually, how they work together, and how you can benefit from them.

Using the core API, you can access the filesystem, for example, to read a file with
a single method and a callback; or you can request a read stream and then check
the data and end events or pipe the stream to somewhere else. This is very useful
when, say, you don't want to look at the file and just want to serve it to a client. This
architecture was designed to work for core modules such as http and net. Similarly,
when listening for client connections, you'll have to listen for a connection event
(unless you have defined a connection listener during socket creation) and then listen
for data and end events for each connection. Remember not to ignore error events as
they trigger exceptions if not listened and will force your application to stop. Events
are the core feature of the Node.js platform:

• Streams are also present, and one might think they're two distinct things,
but they're not. Every stream is an extension of an event emitter. In the most
basic form, a stream is a process of emitting data events with content from
some kind of buffer. Events, streams, and buffers together make a very good
example of an event-driven architecture—a pattern that goes very well with
the JavaScript language.

• Streams of different types might be connected to each other, especially when
sharing common data and end events. It's very common to use an fs stream
and pipe it to an http stream. This usability enables the developer to avoid
unnecessary memory allocations in the application and just pass the task to
the platform.

• Events enable a loose coupling between application components, enabling
it to change and evolve without a strict connection between the components
emitting events and the ones listening to them. As a downside, there are
some edge cases to look out for, such as losing an emitted event because we
were not listening, or leaking memory because of forgetting to stop listening
for events that no longer exist.

• Buffers are objects that you should use when manipulating data that might
get broken with strings because of the string encoding. They're used by the
platform to read files and write data to sockets. Many string manipulation
functions are available for buffers to use.

Development Patterns

[16]

Types of patterns
Your application won't be using only the core API. In a complex application, you
will be using a lot of other modules, some made by you and others that you simply
downloaded. Patterns exist everywhere in your application. When you use a
module and you need to create a different interface, you would be using the adapter
pattern, a structural pattern. If you need to extend the module you just downloaded
with a couple of functionality methods, you can use the decorator pattern, another
structural pattern. When the downloaded module might need some complex
information to initialize, you may want to use the Factory pattern, a creational
pattern. If your application evolves and this initialization needs more flexibility,
you'll be using the Builder pattern, another creational pattern. If your application
accesses relational data, you might have to use the Active Record pattern. If you use
some kind of software framework, you might be using the MVC pattern.

Many developers don't notice that they're using some of these patterns. It's important
to know them and especially to know the problems that some patterns have in some
contexts. In order to be able to analyze and test these patterns, they're categorized
into several types. Let's see some of these types and some of the most common
patterns for every type.

Architectural patterns
An architectural pattern is the pattern that is usually implemented inside software
frameworks. These solve common problems found across most applications. They
avoid code duplication by creating some kind of layer to common broader problems.
This image is a description of the Front Controller:

Chapter 2

[17]

• The Front Controller pattern, most commonly seen in web applications, is the
case where a unique controller handles all incoming requests. This is achieved
by having a single entry point that loads common libraries, such as data
access and session management, and then loads the specific controller for each
request. This is a very common practice, as the alternative—having several
entry points for different actions—would substantially increase and duplicate
code, making the application more complex to manage and maintain.
Present in most frameworks, this pattern allows your application to grow
with different modules without duplicating unnecessary code. It has a central
point that can handle many common tasks, such as database access, session
management, access logging and error logging, generic access, authorization
and accounting, and so on.
This pattern is essential in any well-structured application, as it substantially
reduces repeated code by forcing a common part of your application to run
first and perform every check that you need. It can also increase security;
if you find any breach, it's easier to seal a single entry point than multiple
entry points. Using a central point where your application can use all kinds
of performance methods to give a better feeling of a responsive application
also increases overall performance. The following image is a description of
the MVC

• The Model-View-Controller (MVC) pattern is a pattern that divides an
application component into three parts: a model, a view, and a controller
(hence the name). The model is your data structure, or your information
logic. This can be, for example, one or more tables in a relational database.
The view is a visual representation, usually the user interface. It can be
graphical or text-based. It's a representation of your model in a way that
the user can see and manipulate. The controller is the part responsible for
actually manipulating your model—sometimes directly updating the
view—as per the actions in the view made by the user.

Development Patterns

[18]

There are many variations of this pattern and you should choose the one
that fits your task and language best. Some of these variations are Model-
View-ViewModel (MVVM) and Model-View-Adapter (MVA), which try to
decouple the view from the model, causing the model to be not necessarily
aware of the view. This makes it possible to have several views of the
same model.
The main purpose of this pattern is to clearly separate what the user sees
(the view, or the design) from the programming logic (the model). This
is important in order for designers to be able to change the view without
affecting the logic. Also, developers can fix the logic without breaking
the design. This pattern is essential if you consider yourself at least an
intermediate developer. This is because, more than a pattern, it is
considered an essential practice.

• The Active Record pattern is an abstraction layer used to access relational
databases by providing a simple data object. Manipulating this object can
trigger changes in the database without the developer needing to know what
type of database is behind the application. Normally, a table or view in the
database is mapped to a class, and instances are mapped to rows. Usually,
foreign keys are handled by referencing instances. Logic can be given to
the data objects for common application tasks, for example, to calculate a
full name based on two different table columns, such as the first name and
last name. This, altogether, gives a better approach to the business logic,
making it possible to have your data as well as an extra layer on the top
extending it to match the projected behavior of the application. The pattern is
normally used in object-relational mapping (ORM) libraries that extend the
functionalities to new levels. An example of this is the possibility to have two
or more different places of your application referencing the same row in the
database and (without knowing) having the same referenced data object.

Chapter 2

[19]

This pattern is criticized mainly because of two aspects. The first is that there
is an abstraction layer between application and data, which can decrease
performance substantially and improve memory leaks in data-intensive
applications. Another aspect is the testability; the tight coupling between
the data object and database makes it difficult to have a real database for
proper testing.

• The Service Locator pattern is the concept of abstracting access to a service
by the use of a central registry, called the service locator, that allows
services to register and get to know each other's access methods. Although
this pattern involves adding an extra layer between the components of an
application, it can give adaptation and scalability to it.
There are a couple of advantages to this approach, the most important being
the possibility to adapt to the workload. The service locator can control
access to the registered services and, if you have several instances of the same
service spread across servers, this locator can rotate access to every one of the
instances, making it possible to add more instances of the same service and
handle more load. Another great advantage is the possibility to unregister
services and register new ones with better performance or bug fixes, giving
you the possibility to keep zero downtime.

Development Patterns

[20]

Not everything is good news, however; there are some disadvantages that
have to be weighted. The service locator can potentially become a single point
of failure, which is something that no one wants. Security is also important,
and service registration must be handled with caution to prevent outsiders
from hijacking the registry. Also, as services are decoupled from the service
locator and the application, they act as black boxes and it might get harder to
handle errors and recover from them.

• The Event-driven pattern is a pattern that promotes production and
consumption of events. This architecture forces the programming logic to react
to events. An event is a state change, for example, when a network connection
is established, data arrives, or a file handle is closed. An object that needs to
be notified of an event (called a consumer) registers (listens) for an event in an
appropriate event emitter object (the producer). When this object detects state
changes related to it, it notifies (emits) the events to the consumers.

Events can have data information. For example, if a file reader object is an
event emitter, it will probably notify consumers when the respective file is
opened, when it has data from the file (whether it is complete or not), when
the file is closed (no more data), and if any error occurs eventually (no access
permission or filesystem being two examples). The data event could eventually
get the file itself and the error event should get the associated error.
Building applications around this pattern usually makes them more
responsive because these systems are, by design, targeted at unpredictable
and asynchronous environments, which exist in the case of any system that
uses the network or the filesystem. This architecture is extremely loosely
coupled, as an event can be almost anything and anywhere, making this
pattern scalable and distributable.
Frameworks with this pattern normally allow developers to create their own
products, the event emitters, with custom events and data, extending the
core functionality and making it possible to make the entire application
event-driven.

Chapter 2

[21]

Creational patterns
Creational patterns are the patterns that developers use when creating new data
or objects. These patterns give your application the flexibility to choose when to
instantiate new objects or reuse current ones. In this type of pattern, you can find
some of the patterns that are described as follows:

• The Factory method pattern is used to abstract the application from specific
classes. It is used to create new objects. In this pattern, a method is called, a
new (or reused) object is returned, and the logic of the creation (if needed)
is handled by another subclass. This pattern is specifically useful when the
component that needs to create the new object might not have all of the
necessary information (for example, database information) Another use case
is when this object is reused across components, the code necessary to create
the object might be too complex, and duplication of many pieces of code
may be required. Again, a database connection or another data information
service access is a good case for this pattern.

• The Lazy initialization pattern is when you delay the creation of an object or
the calculation of a complex expression. This is also called lazy loading. This
pattern is usually seen with the factory method when you save an instance after
you call some factory function so that you can later return that very instance
when the function is called again. This is another way of getting a singleton.

www.allitebooks.com

http://www.allitebooks.org

Development Patterns

[22]

• The Singleton pattern is used when a single object instance is required or
desired for your application to work efficiently. This pattern is usually made
in the class itself, where the developer of the class creates a method to create
a new instance, and if an instance was previously created, it is returned
instead. It can also appear inside the Factory pattern, where the application
might have a library for creating a database connection pool and would
prefer that all the modules use the same pool instead of creating new ones.
This is especially important for web applications where you want to avoid
connecting to the database every time a request comes in. It is also used,
for example, in the Active Record pattern, when the same row is needed
by several components, and instead of returning different objects, the same
object is returned.

• The Builder pattern is a class that is responsible for creating new instances of
other classes. This is similar to the Factory method pattern—more flexible but
also more complex. A developer normally starts with the factory pattern and
it evolves into this pattern. This is especially useful when abstracting a class
with several constructing combinations, for example, when constructing a
database query.
The classes behind the builder are usually complex, and the builder sometimes
addresses this complexity by exposing simpler methods and evolving as the
need arrives. It's a good pattern, where you can cascade or chain the methods
to create a more fluent interface.

Chapter 2

[23]

• In the Object pool pattern, a set of objects, called the pool, is kept ready for
use by other components. This pattern is usually associated with connection
pools and other operations that might involve significant initialization time.
Usually, such pools are initialized at a lower value (reduced pool size) and
grow as per the demand to a higher or limit value.

This pattern is frequently used in database connections, as they may be
expensive to create, considering connecting and authenticating. Always
keeping a few connections alive drastically reduces the initialization time
and improves performance.

Structural patterns
Another type of pattern is the structural type. In this type, there are patterns that
help in relationships and communication between components. These are commonly
used to connect third-party modules together as a common interface. Examples of
this type are described as follows:

• The Adapter pattern is the most common pattern, where two components
that are not compatible are connected by a common interface. One rule to
distinguish this pattern from similar patterns is that the adapter that connects
the two components should not have any logic and should only allow the
two interfaces to connect in a new common interface.
This pattern shows up when you have two interfaces and one needs to be
refactored, and the interface will change the methods. While you don't
have to refactor the other interface, you'll need an adapter to keep your
application running.

Development Patterns

[24]

• The Composite pattern is used when a group of objects or a single object
should be treated and accessed in the same way. This pattern should be
used when components don't know when accessing a group of objects or an
individual object. It is particularly useful when the complexity of code that
is meant to treat the two variations are: an element or a set of elements is not
much. Examples of this pattern appear in jQuery and other libraries that treat
groups of elements the same as a single element.
An easy way of creating this pattern is by always assuming a group of objects.
If the interface supports a group, it should be fairly easy to check the input
and convert a single object into a group of objects before continuing. In this
way, the user of the interface won't need to care about it. It's always a good
pattern when you make your interfaces more tolerant to user input.

• The Decorator pattern is used when a functionality is added to an object
without affecting the behavior of other objects of the same class. It is actually
the base of prototypal inheritance, which is a fundamental principle of
JavaScript. This is achieved by wrapping the object in another class, saving
a reference to it, and adding the new functionality to the new class. You use
this when a module you want to use does not have all of the functionality you
want, and you decide to wrap it and give extra methods. This is an extension,
or the next step, of the Adapter pattern. It's common that you find a module
that almost fits your needs, but then you realize that there are one or two
missing features, so instead of looking for another module (maybe because
you're used to it already), you just decorate the first.

Chapter 2

[25]

• The Facade pattern is in place when you wrap a complex library in an
interface easier to use and understand. Sometimes libraries become very
versatile with many different options and this pattern is used when you
create a less versatile but simpler interface to a complex library.
This pattern appears when a couple of repeating or complex tasks are common
and you decide that it's better to have an interface to do it. It's not an adapter
pattern since it's not an interface change; it's a simplified interface. You can see
this if, for example, you have a class that understands and talks SMTP. You
need to send an e-mail and prefer to have a single method to send a message
than a log of complex methods of the original class.

• The Proxy pattern, normally used to simplify a more complex task, is a
pattern where an object acts as a proxy to access something. It can be another
object, a file, a folder, or some database information. This pattern is used,
for example, to add a security layer to something else, as it can restrict how
and when the application will access a specific resource. An example of this
pattern is a REST interface to a service.

Behavioral patterns
Behavioral patterns are characterized by identifying communication patterns
between objects. They classify kinds of behavior and how objects communicate.
Some of the most common types are described as follows:

Development Patterns

[26]

• The Mediator pattern creates an abstraction layer, called the mediator, that
handles communication with multiple classes. As your application becomes
complex, the need for a mediator to lower the complexity of communication
between classes arises. This mediator encapsulates communication with all
the classes, reducing dependency and lowering coupling by keeping objects
from interacting directly with each other. If your application is modular
and different modules can be loaded at runtime, this can be called—kind
of—your internal API.

• The Template method pattern is used by several frameworks. It is usually
a method that takes a set of options and compiles part of your information,
leaving placeholders to some modifiable parts. This is used, for example,
as a way of precompiling a graphic user interface view, leaving some
placeholders, such as internationalization text, and eventually some code
logic to be run later. This pattern is very effective when some part of the
template doesn't change, reducing the time to compile from the template
every time it's needed. This is also a typical example of Inversion of Control,
where it's the template that can call parts of your application instead of your
application calling the methods of the template.

• The Observer pattern maintains a list of dependents, called observers, and
notifies them of the changes by calling a method provided by each dependent.
This is commonly called an event system, and it's used in event-driven
architectures, such as Node.js. This pattern is very effective and useful in
asynchronous programming. On the other hand, if not properly used, it can
cause memory leakage when an event listener is not properly deregistered and
the observer keeps a strong reference to it, preventing garbage collection from
disposing it (the lapsed listener problem). This pattern is heavily used by the
Node.js platform and it is essential that you embrace and understand it if you
want to create a performant application.

Chapter 2

[27]

Event-driven architecture
Developing in Node.js is no different from other languages. You have some more or
less native patterns, widely adopted and fully supported. One very common pattern
is event-driven architecture. This pattern promotes production and consumption of
events. This means that your code should be reactive to events instead of constantly
trying to detect changes. Usually, many listeners can consume an event. There are
some variations, such as having a way of stopping the event propagation or only
allowing the first listener to consume the event, but normally all listeners will be
able to consume all the events that they're listening to.

This pattern is very effective when you need to communicate inside your application
in a one to many module of your code, as it gives you a very lose coupling. This is
specifically interesting in service-oriented architecture (SOA) as it ensures your
application components (your services) remain loosely coupled and can be upgraded
over time without affecting other services. Imagine you have an application with
many services attached and a service called Sessions, responsible for managing
user sessions, creating them, and destroying them. This service may eventually
produce events when sessions change. In this way, other services may listen for the
events and act accordingly. This means that a service that only wants to know when
sessions are created can, for example, just listen for the create event, and another
service that only needs to know when they're destroyed can listen only for that
specific event. Other services can then be added without having to change much
of your application. This is also good for somehow creating a boundary between
services when, for example, you don't want to trust third-party services.

There are some related patterns—sort of variations of this pattern. One widely used
pattern is the publish-subscribe pattern. One widely used and very similar pattern
is the publish-subscribe pattern. Instead of events, you have messages; instead of
listeners, you have subscribers; and instead of event emitters, you have publishers.
The main advantage of this pattern is that it's usually implemented to work using
the network layer, and so it can be used by services to communicate with each other
over the Internet. However, this pattern is actually not that simple and can get
quite complex compared to Node.js core events, as it allows message filtering, in
which subscribers can decide what kind of messages they want to receive based on
message attributes.

Usually, this pattern involves a third element, which is responsible for accepting
publisher messages and delivering them to subscribers. This element can possibly
scale and allow a more distributed architecture. On the other hand, as it decouples
publishers and subscribers, publishers can lose the ability to know who is subscribed
to which channels. Also, be aware of the message delivery, because the network
layer can introduce many complications and slow down your workflow. This is not
something you would want to depend on.

Development Patterns

[28]

An event-driven architecture allows you to create an application in which the flow
of information is determined by events. This is great but there are two things you
shouldn't forget:

1. Be careful not to create a kind of deadlock when your flow is expecting
an event and it's never triggered or you've registered to listening too late.
Usually, this is not fatal to your application, usually, this is not fatal to your
application as you're not blocked waiting for the event, but your application
will be in an intermediate state from where it can't get out and will probably
be leaking memory. From the user perspective, your application is failing.

2. Always handle errors gracefully; don't ignore them. Core modules such
as http and net throw exceptions when you don't properly handle error
events. This means that an uncaught exception will be triggered and your
application will stop fatally. You're not listening and ignoring uncaught
exceptions, right?

Overall, this is a nice generic pattern that fits perfectly into the Node.js platform,
and is very handy when you need to communicate between several parts of your
application. Also, the language itself, JavaScript, handles this pattern quite well by
supporting anonymous functions, called closures.

Streams
You might have noticed that events and streams are somehow related in Node.js.
This is not by accident; it helps make a great workflow that is simple to understand
and adapt. Streams use events to inform consumers about the data available for
consumption and when the data reaches an end.

One way of looking at streams is to look as if they were Unix pipes (https://
en.wikipedia.org/wiki/Pipeline_(Unix)). The goal is to be as useful as piping
data across commands to read data, process it, transform it, and then output it.
Streams are a fast and easy interface for creating readable, writable, duplex, and
transform streams. Let's look at the different types of streams, as follows:

• readable: This is, for example, a file parser that reads some kind of format,
such as CSV, and emits data events for each line. This stream can be piped
to other types of streams. A readable stream can be in flowing mode, which
means that data is piped as it becomes available at the source, and the paused
mode where data has to be fetched manually when needed (and if available).

https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://en.wikipedia.org/wiki/Pipeline_(Unix)

Chapter 2

[29]

•	 writable:	Writing	to	a	file	or	responding	to	a	client	are	examples	of	this	type	
of	stream.	Other	examples	are	data	compression	streams	(zlib)	and	cipher	
streams	(crypto).	This	stream	writes	data	to	the	destination	and	informs	of	
its	progress.	It	can	also	handle	what	it's	called	back	pressure,	when	data	is	
being	written	to	the	stream	and	it's	not	being	handled	in	the	opposite	side,	
forcing	the	stream	to	keep	data	in	memory.

•	 duplex:	This	is	both	a	readable	and	writable	stream,	as	it	handles	both	the	
source	and	the	destination.	Examples	of	this	type	are	sockets	and,	again,	
compression	and	cipher	streams,	depending	on	the	objective.

•	 transform:	This	stream	is	an	extension	of	a	duplex	stream	where	you	perform	
some	kind	of	data	transformation	between	the	source	and	the	destination.	
Compressing	data	is	a	good	example	of	this	type,	but	so	is	converting	data	
between	different	formats.

Buffers
Another	important	piece	of	the	puzzle	in	the	Node.js	platform	is	the	buffer.	Since	
JavaScript	strings	are	encoded	in	Unicode,	binary	data	might	get	scrambled	in	the	
process.	Buffers	are	an	alternative	to	manipulating	binary	data.	As	a	bonus,	you		
get	several	methods	to	read	and	write	numbers	in	different	sizes,	whether	big	or		
little	endian.

Because	of	binary	compatibility,	the	core	modules	use	buffers	in	stream	data	events.	
Streaming	a	file	to	a	client	or	receiving	a	file	from	a	client	and	writing	it	to	the	disk	is	as	
simple	as	piping	streams.	And	they	just	work	because	they	pass	buffers	to	each	other.

Optimizations
Using	patterns	improves	your	application,	as	you	use	well-proven	and	well-tested	
concepts	that	help	developers	to	better	understand	and	eventually	improve	your	
code.	But	improving	your	code	doesn't	end	here.	There	is	another	type	of	pattern	
that	varies	from	language	to	language,	and	we	call	it	optimization.

An	optimization	is	a	pattern	that	is	not	specific	to	any	problem	but	specific	to	a	code	
structure.	The	idea	is	to	change	the	code	to	be	more	efficient	or	to	use	less	memory	or	
other	types	of	resources	while	doing	the	same	thing.	The	goal	of	an	optimization	is	
not	to	get	simpler	code	or	to	make	it	more	readable.	It	can	be	bigger	but	still	readable.	
Don't	optimize	for	the	sake	of	optimizing	and	reducing	your	code	readability.

Development Patterns

[30]

As Node.js uses the V8 engine as the language processor, we have to use V8-specific
optimizations in the code. Some optimizations work across versions, others not
so much and the effort of optimizing might be worthless. This is because V8 is
constantly improving and Node.js platform ships new versions with every release, so
an optimization that was good yesterday because of bad performance of V8 on some
aspect might not be worthwhile tomorrow when V8 fixes that performance issue.
Now let's take a look at some optimizations that are worth noting.

Hidden types
JavaScript has dynamic type. This means that a variable has a type that is dynamic,
and so it can change from, say, a number to a string and vice-versa. This feature is
hard to optimize at compile time, and V8 has a feature called hidden types where it
shares optimizations between objects of the same type. For example, when you create
an object using the new keyword, if every instance of the object does not undergo
changes in its prototype, they all share the same hidden type and will use the same
optimized code:

function Person(first_name, last_name) {
 this.first_name = first_name;
 this.last_name = last_name;
}

var john = new Person("John", "Doe");
var jane = new Person("Jane", "Doe");

// john and jane share the same type

jane.age = 18; // jane no longer has the same type as john!

This might not be achievable for complex objects, but for simpler objects, you can
enforce it by just setting the properties in the constructor and then sealing the object
to avoid any more changes.

Numbers
Again, since JavaScript has dynamic type, the numbers can change the type. The
compiler will try to infer the type, and as soon as it knows it, it will tag the variable
to that type in order to be able to perform operations with other variables. Changing
the type after that is possible but expensive, so it's better to avoid changing number
types. More specifically, avoid getting in and out of the 31-bit signed integers:

var number = 32; // 31-bit signed integer
number /= 10; // double precision floating point

Chapter 2

[31]

Arrays
Arrays can have a variable length; it is changeable over time. For handling this,
the compiler has some internal types for each specific type of Array, and switching
between these types is not desirable. Arrays should have contiguous keys, starting
from zero. Avoid deleting elements in the middle and accessing elements you didn't
initialize before. Similar to numbers, you should keep your Array elements in the same
type. Also, if you know the size of an Array, you should point it out in the constructor:

var a = new Array();
a[0] = 32;
a[1] = 3.2; // internal conversion
a[2] = false; // another conversion

In this specific example, it would be better to initialize all the elements up front to
allow the compiler to know the hidden type before creating it, instead of inferring it
twice.

var a = [32, 3.2, false]; // much faster

Functions
Functions inherit from objects, and so the hidden types apply here too. Polymorphic
functions will degrade performance substantially. If you want the best performance
possible, create a separate function for every constructor you need:

function add(a, b) {
 return a + b;
}

add(2, 3); // looks like monomorphic
add("john", "doe"); // it's now polymorphic

Similarly, some uses of arguments are a performance killer. Avoid reassigning them
(for example, when undefined). Instead, use another variable. You should only use
arguments to check arguments length and look at a valid index:

function add(a, b) {
 if (arguments.length == 1) b = 0; // penalty

}

www.allitebooks.com

http://www.allitebooks.org

Development Patterns

[32]

The for-in loops
There are some performance penalties when using evaluating code in runtime is
another feature loop, and for the best performance possible, you should avoid it
and use a normal for loop. The performance penalty comes from edge cases where
the compiler just can't optimize. Always use Object.keys to get a list of keys in an
object and then iterate that list:

var keys = Object.keys(obj);
for (var i = 0; i < keys.length; i++) {
 // obj[keys[i]]
}

The infinite loops
You should never create an infinite loop (while (true) {} or for (;;) {}). This is
a rule of even greater importance for performance code. It's very hard to optimize an
infinite loop, and it is preferable to refactor your code and review your logic.

The try-catch blocks
The try-catch blocks are important in order to be able to capture exceptions, but in
an asynchronous architecture, they can be a bit less important. The compiler has
difficulty in optimizing the scope inside try-catch, so you should try to move as
much of your code out of the statement as you can.

Eval
Eval is another feature avoidable at all costs, as any function scope with an eval call
will make the function unoptimizable. Never use this feature unless you really need
it, and if you need it, put it in the smallest function possible.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 2

[33]

Summary
Developing should be a great experience. Performant applications require some
restrictions on how they are designed and developed. Knowing most of the common
patterns helps choose wise paths for your application and avoids some performance
penalties in the future. However, patterns are not all, and a solid understanding of
what's behind the Node.js platform really helps you reach a few levels up on the
performance scale.

Even after choosing good patterns and doing the best at developing using some of
the optimizations tips described in this chapter, the application can perform poorly
on some scenarios. Don't optimize unless you need it. Follow the patterns and the
tips, but don't think excessively about it until you test your application performance
and realize that you need to optimize it.

[35]

Garbage Collection
When writing applications, managing the available memory is boring and difficult.
When the application gets complex, it's easy to start leaking memory. Many
programming languages have automatic memory management, helping the developer
to forget about this management by means of a Garbage Collector (GC). The GC
is only a part of this memory management, but it's the most important one and is
responsible for reclaiming memory that is no longer in use (garbage), by periodically
looking at disposed referenced objects and freeing the memory associated with them.

The most common technique used by GC is monitoring reference counting. This
means that GC, for each object, holds the number (count) of other objects that
reference it. When an object has no references to it, it can be collected, which means
that it can be disposed and its memory freed.

In V8, the Node.js engine, this reference counting is not constantly checked. Instead,
it's periodically scanned, and this task is called a cycle. Usually, this cycle is not
atomic which means that the program will pause execution while this cycle is
running. Also, just to keep this reference counting, GC needs memory. This means a
memory overhead on your program besides the memory used by the program. Also,
because the language is dynamic and objects can change type, memory sometimes is
not used in the most efficient way. Recall the previous chapter about development
patterns for a more efficient memory usage.

Automatic memory management
GC tremendously simplifies language usage, giving developers more time to focus
on other aspects of the application. Also, it can reduce, although not completely
remove, a type of error called memory leaks, which haunt long-lived applications
and services. However, there's a performance penalty associated with its periodic
task. It can be noticed, or not, depending on how much memory is used and
disposed in short periods of time.

Garbage Collection

[36]

By moving memory management out of the developer, Node.js removes or
substantially reduces a few types of bugs:

• Dangling pointer bugs: These occur when memory is freed but still there are
one or more pointers referencing that the memory blocks. If the memory is
reassigned, these pointers can cause unpredictable behavior if used to change
blocks from other parts of the program. You would have, in this case, more
than two places in the application changing the same memory block. This is a
particularly difficult bug to find.

• Double free bugs: These occur when memory is freed once and then freed
again. In between, it might have been reallocated and used by another part
of the application, destroying access to a reused block. This is similar to the
previous memory, where two places manage the same block, but in this case,
one is trying to use it and the other will just wipe the data.

• Memory leaks: These occur when objects are dereferenced before being
freed. This happens when a program allocates memory, uses it, and then
disposes the reference to that memory before explicitly freeing it. This type
of bug can leave to memory exhaustion if this behavior occurs repeatedly,
especially on long-lived services.

• Buffer overflows: These occur when trying to write more information than
the space allocated to the task. This is quite common when, for example, a
program allocates a memory block somewhere after it needs more space than
the memory it allocated, and fails to detect and reallocate the required space.
This bug can halt the application or service.

On the other hand, moving memory management away from the developer removes
a great deal of control over memory usage and how it's managed. GC will consume
resources when looking at the memory being used and deciding what and when to
free unreferenced objects, creating unpredictable pauses during your application
execution. Also, the time at which the GC starts doing its job may be unpredictable
and out of your control, which can introduce unpredictable performance penalties
over times when your program is in need of resources.

This is the case of Node.js, but since it uses V8, which exposes a gc() method under
the --expose_gc flag, you can manually force its use. You cannot decide when it will
run, but you can force it to run more often if you think it's best. You can also tweak
some of GC's behavior. To find out more run the --v8-options node.

Chapter 3

[37]

There's no way of blocking its use, so you can just make it run more often, perhaps
reducing its footprint. The GC's cost is proportional to the number of referencing
objects, so if you use this method after substantially reducing referenced objects, you
can keep your application lean and reduce the GC penalty later.

Figure 1: GC memory graph

Memory organization
Think of memory as a mesh of elements, usually primitives (numbers and strings)
and objects (hash tables). It can be represented as a graph of interconnected points.
Memory can be used to hold object information or to reference other objects. You can
look at this interconnection as a graph where leafs are elements that hold information
and the other nodes are references to other nodes (in Figure 1, nodes 1, 3, 6, and 9 are
leafs).

When working with V8, there's some terminology you may find useful to better
understand V8 Inspector or Chrome Developer Tools. The memory used by the
object itself is called shallow size. It's used to store its immediate value, and usually,
only strings and arrays can have a significant size.

Garbage Collection

[38]

There is also the distance column, which is the smallest graph distance from a
root node to the node itself. A root note is a node from where references start
pointing other nodes. In Figure 2 it would be node 2 as there's no arrow pointing
to 2 and everything on the graph starts on node 2. In Inspectors, you'll see another
term in Profiles called Retained size. This is the size that will be freed once the
object is deleted. It is at least the size of the object plus the size of the referenced
objects, which will also be freed immediately since they will also get unreferenced.
Confusing? Let's see an example:

Figure 2: GC-marked nodes before sweep

In the preceding diagram you see that node 2 is the root node in the graph, as there's
no node referencing (pointing to) it. This node references node 5 and node 11. If the
reference to node 11 is removed, then there's no path from node 2 (and the rest of the
left part of the graph) to get to nodes 8 and 1. These nodes are part of the retained
size of node 11 as they're useless without it. When node 11 is removed, they'll be
removed too.

Memory leaks
A memory leak is a continuous loss of available memory, and it occurs when a
program repeatedly fails to release the memory that it's no longer using. Node.js
applications can suffer from this issue indirectly because of the GC. It's usually not the
GC's fault, but is caused by some object destruction that is not taking place when it
should, and this is not that difficult when you're using an event-driven architecture.

Leaks haunt every developer as soon as their application hits medium size.
As soon as your program starts having more interactions with external elements
like other programs or clients, or when your program complexity grows, you start
leaking memory. This happens when, for some reason, you're not dereferencing
a no-longer-useful object of your application. If the GC finds that the object is still
referenced by other objects, even if it's no longer useful to your application, it will
remain in the heap and will be moved to a place called old space.

Chapter 3

[39]

Usually, objects live for a very long period of time (since the beginning of the
application) or for a very short period of time (serving a specific client). The V8
GC is designed to take advantage of these two most common types of objects. GC
cycles usually clean these short-lived objects, and if it thinks that these objects are
still useful (that is, when it survives more than one or two GC cycles), it will move
them to a bigger zone, where it will start to accumulate garbage. When this zone
gets bigger, the GC cycle duration gets bigger too and you'll start noticing some
stalls (complete breaks in the application) for a second, or even a few seconds. If this
happens, it means you're already late at analyzing your application.

For a large memory limit, such as the default 1 GB limit of V8, if you're not
monitoring your application, you'll probably notice leaks when your application
starts stalling for a second, and after that, it's a few more seconds before it just stops
because of that memory limit. GC cycles become very CPU intensive for large object
collections, so you should really monitor GC memory management and, if possible,
avoid greater memory usage.

Event emitters
Since Node.js uses event emitters, there's a question that should be in your head right
now. Since GC can only sweep objects that are unreferenced, this means that event
emitters will not be collected after you attach event listeners to them:

var net = require("net");
var server = net.createServer();

server.on("connection", function (socket) {
 socket.pipe(socket);
});
server.listen(7, "0.0.0.0");

The preceding code is just an example of an echo server. In this example, GC will
never collect server, which is good in this case since that's the main object of the
program. In other cases, you might have such situations where your emitters won't
get swept because of references to listeners. Most importantly, event callbacks are
functions—extended objects in JavaScript—and won't get swept either.

Take a closer look at the previous example. Imagine that for each client (socket), you
had more complex code with some private protocol. To simplify it, you use the Adapter
pattern and create an abstraction to access each client. This abstraction could be an
event emitter as a means to decouple it from other parts of the application. While your
client keeps connected, any event listeners that don't explicitly unlisten events will not
get garbage collected even if they are not supposed to exist anymore (this is true even if
you null them). And if your connection gets stuck and doesn't time out (for example, a
mobile connection), you'll collect a good pack of zombie connections for a while.

Garbage Collection

[40]

Referencing objects
The main goal of GC is to identify trashed memory. This refers to the memory
blocks that you're your application no longer uses, usually because your code no
longer references them. Once identified, this memory can be reused or freed to the
operating system:

function foo() {
 var bar = { x: 1 }, baz = bar.x;

 return bar; // baz is unreferenced but bar isn't
}

In the preceding example, although both bar and baz are local variables for the
function (because of JavaScript function scoping), baz will be deference after return
but bar won't, and it will not be freed until you completely deference it. This might
look obvious, but if your application grows and you start using external modules that
you don't know how they work internally, you might get more dangling references
than you expect:

function foo() {
 var bar = { x: 1 };

 doSomething(bar);

 return bar;
}

Now imagine you call the foo function and ignore the returned object. You might
think that it'll get unreferenced, but there's no guarantee of that because of what
doSomething might have done. It might have held a reference to bar:

function foo() {
 var bar = { x: 1 };

 doSomething(bar);

 bar = null;
}

Now imagine you don't need to return the bar variable, and so you null it after
you no longer need it, destroying the reference. That's better, right? No! If the
doSomething function holds a reference to bar, there's nothing you can do outside
doSomething to dereference it completely.

Chapter 3

[41]

Even worse than this is the fact that the function can create a circular reference by
creating a property that references itself in bar. But GC is clever enough to figure
out when the rest of your application no longer uses an object. It depends on how
complex your code is. Remember that if there is a doubt (that is, it's still referenced
somewhere and can still be used), GC will not sweep the object.

In each cycle of its job, GC pauses V8 execution in what is called stop-the-world,
knowing exactly where all objects are in the memory and what references exist. If there
are too many references, GC will process only part of the object heap, minimizing the
impact of the pause. The following image shows how V8 scans the memory objects,
marks unreferenced ones (first row, in red), sweeps them from list (second row) and
then compacts the list by removing empty spaces between objects (third row)

The previous V8 GC generation had two algorithms for cleaning the old space:
mark-sweep and mark-compact. In both the algorithms, GC went through the stack
and marked reachable (referenced) objects. After that, it could use mark-sweep to
just sweep the objects that weren't reachable by freeing their memory, or use mark-
compact to reallocate and compress the memory used. Both the algorithms worked
at the page level. The problem with these two algorithms was that they introduced
significant pauses in medium sized applications.

www.allitebooks.com

http://www.allitebooks.org

Garbage Collection

[42]

In 2012, Google introduced an improvement that significantly reduced pauses in
garbage collection cycles. It introduced incremental marking to avoid traversing
a possibly huge zone. Instead, GC just goes through part of the zone to do the
marking, making the pause smaller. Instead of a big pause, GC makes more pauses
but small ones. But the improvement does not end here. After marking, GC does
what is called a lazy sweep. Since GC knows exactly which objects are referenced
and which are not (because of the previous mark step), it can now free the memory
of the unreferenced ones (sweep). But it doesn't need to do that right away. Instead,
it just sweeps on an as-needed basis. After sweeping them all, GC starts a new mark
cycle again.

GC is fast as long as your program is kept lean and simple. Don't create a monolithic
monster and then look for a way of raising the memory limit of V8. On a 64-bit
machine, you can almost double the 1 GB limit, but that's not the solution. You
should really split your application. Even so, if you're thinking about changing the
limit, the option in the node executable you're looking for is --max-stack-size (in
bytes).

Object representation
In V8, there are three primitive types: numbers, booleans and strings. Numbers have
two forms: SMall Integers (SMI), which are 31-bit signed integers, or normal objects
in situations such as doubles (big numbers) or numbers with extended properties.
Strings also have two forms: one is inside the heap, and the other is outside the heap,
with a wrapper object on the heap as a pointer to it.

There are also other objects such as arrays, which are objects with a magic length
property, and native objects, which are not in the heap itself (they're wrapped like
some strings) and are therefore not managed or swept by GC.

Object heaps
GC stores objects in an object heap. The heap is divided into two main zones: new
space and old space for—you guessed it—new objects and old objects respectively.
New space is where objects are created and old space is where objects are moved to
if they survive one or more GC cycles. Since GC is not constantly working, between
cycles, objects can be created and they can be destroyed (and dereferenced) a few
moments later. This is the most common object behavior, so GC usually sweeps them
efficiently. Other objects live longer, and so they will survive cycles since they keep
being referenced and used. This is where memory leaks can show up.

Chapter 3

[43]

These two spaces are designed with different goals in mind. The new space is smaller
than the old one and is designed to be fast, meaningful, and analyzed by the GC very
quickly. The old space is larger and contains objects moved there after a cycle. This
old space can grow to a very large size, from a couple of megabytes to a gigabyte.
This design takes advantage of the common behavior that most objects have a short
lifetime and so live only on the new space, which is smaller and faster to manage.

Each space is composed of pages, contiguous blocks of memory that hold objects.
Each page has a couple of headers on top and a bitmap telling GC what parts of the
page the objects use.

This separation of objects and movement from one space to the other introduces
some problems. One is, obviously, reallocation. Another is the need to know whether
the references to an object in the new space are only in the old space. This is a
possible situation and should prevent the object from being cleaned, but this would
force GC to scan the old space to figure it out, breaking the speed of this architecture.
To avoid this, GC maintains a list of references from the old space to the new space.
This is another memory overhead but it's faster to scan this list. It's usually small
since it's relatively rare to have this kind of reference.

The new space is small, and it's cheap to create new objects since it's just a matter
of incrementing a pointer in the already reserved memory. When this new space
gets full, a minor cycle is triggered to collect any dead objects and reclaim the space,
avoiding the use of more space. If an object survives two minor cycles, it is moved
to the old space.

In the old space, objects are swept in a major cycle that is less frequent than the
minor one in the new space. This major cycle can get triggered when a certain
amount of memory is reached in this space or after a more prolonged period of
time. This cycle is less frequent and can stall the application for a little longer.

Heap snapshots
V8 allows you to get a heap snapshot to analyze memory distribution across objects.
It allows you to see what objects your code uses, how many of each are used, and
how the application uses them if you request heap snapshot dumps over time. There
are several ways of collecting a heap snapshot, and we'll look at some of them.

Garbage Collection

[44]

Let's create a small leaking program and analyze it with the node-inspector
module. Open a terminal and install node inspector globally (-g) so that you can
use it anywhere in your machine. In the following example, we're using sudo since
global modules usually reside in a restricted area:

$ sudo npm install -g node-inspector

The inspector needs to compile some modules, so you'll need a compiler. If it installs
correctly, you'll see a list of installed dependencies and you can now start it. Once it's
running, there's no need to restart it while you change and restart your program. Just
start it now with no parameters and leave it in a terminal tab:

$ node-inspector

You should see something similar to the following console output. You can see that
I'm using version 0.10.0, but you might get a different version. For the purpose of
the example, it's not actually critical that you use the same version. Depending on the
version you use, the output may vary. In this case, it is something similar to this:

$ node-inspector

Node Inspector v0.10.0

Visit http://127.0.0.1:8080/debug?ws=127.0.0.1:8080&port=5858 to start
debugging.

Open your web browser and head to the page indicated in the output. Now let's
create a program called leaky. The purpose of this program will be to leak memory
intentionally. Create a folder and inside install the V8 profiler:

$ mkdir leaky

$ cd leaky

$ npm install v8-profiler

Be aware that this module can also need a compiler. Now, in the same folder, create a
file called leaky.js with the following content:

require("v8-profiler");
var leakObject = null;
function MemoryLeak() {
 var originalObject = leakObject;

 leakObject = {
 longString : new Array(1000000).join("*"),
 someMethod : function () {
 console.log(originalObject);
 }
 };
};

setInterval(MemoryLeak, 1000);

Chapter 3

[45]

The program can be confusing, but the idea is to blind GC from seeing that we're
forcing it not to garbage-collect objects, and so, leak memory. If you look more
closely, you will see that leakObject gets redefined with a function that outputs it
if called, but the way it references it makes GC unaware of our awful goal. Be aware
that when running this program, you'll starve the memory quite quickly, perhaps in
the order of 100 megabytes per second. Run this with debug turned on:

$ node --debug leaky.js

Now head over to the web page you just opened, click on Refresh, go to the Profiles
tab on the page, choose Take Heap Snapshot, and click on the Take Snapshot
button, as shown here:

Wait a minute and hit that button again. You'll see snapshots appearing on the left
sidebar and you'll notice that they don't have the same size. They're growing and it's
GC leaking our nonsense program. You can easily notice this if you select the last
snapshot and choose to compare it with the first one.

Garbage Collection

[46]

You'll see that there's a delta change in both size and the new objects. A positive
delta means that more objects were created than destroyed.

You can see in the preceding screenshot what the inspector looks like when showing
a snapshot. There's a list of constructors or base objects. In this case, since we're
comparing Snapshot 3 with Snapshot 1, there are columns that show how many
objects were created and deleted as well as how much memory was allocated and
freed.

Another useful method for detecting memory leaks is recording object allocations
over time. Using this very inspector, restart the program, head to Profiles, choose
Record Heap Allocations and hit Start, as shown in this screenshot:

Chapter 3

[47]

The inspector will start recording. It will stop when you click on the red circle in the
top-left corner. You'll see a growing timeline and a bar chart for allocations for every
minor cycle. If you wait a bit, you'll see major cycles and object reallocations (from
new zones to old zones).

After stopping, you can select a period of time by clicking on a start point and
dragging it to the end point. You'll see only the allocations in that period, not all the
objects. You can save the snapshot for later analysis or comparison. In this specific
example, you can see how memory is quickly being consumed every second.

Garbage Collection

[48]

You can click and expand the objects list to look at every object. If you're looking for
a particular object, you can use the filter at the top. In this example, you can open
the (string) group and you'll see there are several instances like ********… that we
created in our program.

Using v8-profiler allows you to do more than just debug with node-inspector.
You can, for example, take snapshots of your code and analyze it—maybe compare
it with previous snapshots—or serialize and save it for later analysis.

For example, taking the previous program example into consideration, we can
periodically check how many nodes are there in our stack:

var profiler = require("v8-profiler");
var leakObject = null;

function MemoryLeak() {
 var originalObject = leakObject;
 leakObject = {
 longString : new Array(1000000).join("*"),
 someMethod : function () {
 console.log(originalObject);
 }
 };
};

setInterval(MemoryLeak, 1000);
setInterval(function () {
 console.log("mem. nodes: %d", profiler.takeSnapshot().nodesCount);
}, 1000);

Chapter 3

[49]

If you run this new version, you might get an output similar to the following. This is
a proof that objects are surviving GC cycles and leaking memory:

$ node --debug leaky.js

Debugger listening on port 5858

mem. nodes: 37293

mem. nodes: 37645

mem. nodes: 37951

mem. nodes: 37991

mem. nodes: 38004

mem. nodes: 38012

This is just an example. If you monitor your application and the memory keeps
growing over time while it is idle (not doing anything), it is a reason to analyze
further. The first-class citizens (so-called classes, for people coming from other
object-oriented languages) will appear in the constructor list of the snapshots of
your application.

There are other modules you can use to analyze and monitor your Node.js program
memory and garbage collector. The heapdump module is another simple module that
can help you just dump a heap snapshot every now and then to disk. Keep in mind
that these snapshots are synchronous, so your program will pause for a moment if
the heap is large.

To use it, just install it like the other modules previously installed:

$ npm install heapdump

Then change your program to use it. Here's an example of a program that takes
a snapshot to disk every minute. This is not a real or good use case, but perhaps
a hourly snapshot with some kind of disposable script to avoid filling your disk
might not be a bad idea:

var heapdump = require("heapdump");

setInterval(function () {
 heapdump.writeSnapshot("" + Date.now() + ".heapsnapshot");
}, 60000);

The name of the file is the Unix date in milliseconds, so you will always know when
it was taken. Run it and wait for at least one snapshot to be written to disk. In this
case, you don't need to enable debug in the node (--debug).

Garbage Collection

[50]

You kept node-inspector running on the terminal, right? If not, please do it.
Then go to its web page, as you did before, and refresh the page.

Now, instead of choosing Take Snapshot, just click on the Load button and choose
the snapshots from your disk. This is another approach—an offline one—and it is
usually more useful since you're usually not running your code in debug mode and
looking at it live in v8-inspector. Also, node-inspector will restart the interface
when your program stops, so you need to save your snapshots before restarting
node-inspector.

If you have a memory leak you know of and you are able to reproduce it by just
stressing it, you can use this approach and perhaps add a little twist to the execution
of the program by activating GC trace lines for every action. You can then see when
GC is sweeping or marking. The following is an example of what you'll see if you
monitor the GC actions:

$ node --trace_gc leaky.js

[26503] 8 ms: Scavenge 1.9 (37.5) -> 1.8 (37.5) MB, 0.8 ms

[26503] 9 ms: Scavenge 1.9 (37.5) -> 1.9 (38.5) MB, 0.9 ms

[26503] 53 ms: Scavenge 3.6 (39.5) -> 3.2 (39.5) MB, 0.7 ms

[26503] 116 ms: Scavenge 5.1 (40.5) -> 4.1 (41.5) MB, 1.9 ms

[26503] 155 ms: Scavenge 5.9 (41.5) -> 4.4 (41.5) MB, 1.1 ms

[26503] 1227 ms: Scavenge 14.3 (50.1) -> 14.5 (50.1) MB, 0.8 ms (+
1.6 ms in 1 steps since last GC) [allocation failure].

[26503] 1235 ms: Mark-sweep 14.6 (50.1) -> 5.4 (43.5) MB, 6.7 ms (+
1.6 ms in 1 steps since start of marking, biggest step 1.6 ms) [HeapSnaps
hotGenerator::GenerateSnapshot] [GC in old space requested].

Chapter 3

[51]

Part of the previous output was truncated for clarity. The number 26503 is the
process ID of the program in this example. You can see when the action took
place and how long it took at the end of each trace line. You can also see the
actions (Scavenge and Mark-sweep) and the memory evolution for each cycle.

For a running application, It's not feasible to have —trace-gc enabled (as in the
previous command), and you should think of an approach that works for your
architecture. One of the options is using heapdump, scheduling a snapshot every
hour or so, and saving the last 10 or 20 snapshot. When using this approach, you
should at least look at the last snapshot and compare it with the previous one to see
how your application evolves over time. You might find slow memory leaks or very
fast memory leaks. For the fast ones, you should be able to record heap allocations
and rapidly stop leaks. For slow ones, it's harder to spot it, and only over very long
periods are you able to compare changes and find the ghosts.

There's also another useful module that can help you spot leaks, which is called
memwatch. This module will look for heap size changes, and when it finds that the
heap size is constantly growing, it will emit a leak event (the irony). It also has a
nice stats event with information on GC cycles.

Let's change our initial program to use this module instead of any profilers or
inspectors. Yes, it doesn't need them, and it doesn't even need you to enable
node debug. First, let's install it:

$ npm install memwatch-next

Now let's change our program to something similar to this:

var memwatch = require("memwatch-next");
var leakObject = null;

function MemoryLeak() {
 var originalObject = leakObject;

 leakObject = {
 longString : new Array(1000000).join("*"),
 someMethod : function () {
 console.log(originalObject);
 }
 };
};

setInterval(MemoryLeak, 1000);

memwatch.on("leak", function (info) {
console.log("GC leak detected: %d bytes growth", info.growth);

www.allitebooks.com

http://www.allitebooks.org

Garbage Collection

[52]

});

memwatch.on("stats", function (stats) {
 console.log("GC stats: %d cycles, %s bytes", stats.num_full_gc,
stats.current_base);
});

Now simply run the program. Let it run for a few seconds and you'll see something
similar to this example output:

$ node leaky.js

GC stats: 1 cycles, 13228416 bytes

GC stats: 2 cycles, 7509080 bytes

GC stats: 3 cycles, 7508408 bytes

GC stats: 4 cycles, 17317456 bytes

GC stats: 5 cycles, 23199080 bytes

GC stats: 6 cycles, 32201264 bytes

GC stats: 7 cycles, 45582232 bytes

GC leak detected: 40142200 bytes growth

You will notice GC cycles occurring very often. This is because of our program
behavior. GC adapts to rapid heap changes and triggers cycles more often. If you
change the memory leak call period to 5 seconds or more, you will have to wait
much longer to see cycles and leaks.

The memwatch module works by checking heap changes after GC sweeps and
compacts it, so it won't trigger a leak just because your application is using memory,
but because you're using it and not disposing it.

Another very useful feature of this module is the ability to help you compare heap
snapshots. You do this by explicitly telling the module that you want a heapdiff.
At this moment, the module snapshots heap, waits for your call to snapshot again,
and compares it. After that, it will give you an object showing the totals before and
after and the changes to each snapshot:

var memwatch = require("memwatch-next");
var heapdiff = new memwatch.HeapDiff();
var leakObject = null;

function MemoryLeak() {
 var originalObject = leakObject;

 leakObject = {
 longString : new Array(1000000).join("*"),

Chapter 3

[53]

 someMethod : function () {
 console.log(originalObject);
 }
 };
};

setInterval(MemoryLeak, 1000);

setTimeout(function () {
 console.log(heapdiff.end());
}, 10000);

Run the program. After that, you'll get an output similar to the following:

$ node leaky.js
{ before: { nodes: 19524, size_bytes: 3131984, size: '2.99 mb' },
 after: { nodes: 21311, size_bytes: 12246992, size: '11.68 mb' },
 change:
 { size_bytes: 9115008,
 size: '8.69 mb',
 freed_nodes: 2201,
 allocated_nodes: 3988,
 details:
 [[Object],
 [Object],
 [Object],
 [Object],
 …
 [Object],
 [Object],
 [Object]] } }

If you look at the change.details array, you'll notice that you have a list of
constructors that have changed between heaps. If you have a leak occurring between
the snapshots, it will be in one of those items. In our case, it's the string constructor
since we're leaking string variables.

With or without any of these modules, you should definitely monitor memory usage
and growth. Rapid memory leaks will starve your resources and leave your clients
unhappy. For high-load applications, you should create stress tests to be able to
detect leaks before the application goes into production.

Garbage Collection

[54]

Third-party management
In the spirit of dividing your application into smaller components, sometimes it
might be a better idea to move some objects and manipulations to external services,
which are sometimes optimized for specific workloads and object formats. Explore
some of these servers before starting to manipulate large object structures:

• Memcached for key/values and Redis for lists, sets, and hash tables
• MongoDB if you want to run JavaScript on the data, and ElasticSearch

for interesting features, such as data timeout or hierarchical elements
(documents inside documents)

• HBase if you need some complex map/reduce code, and Hypertable if you
need a lightweight version of that code

• OrientDB if you need a graph database, and Riak to store large binary data

Your application is usually running on memory, so if it fails and stops, the memory
used is lost and your precious data can be lost too. Using an external service to
handle the data (and sometimes manipulate it) can greatly reduce your memory
footprint. Moreover, these services usually allow you to access concurrently,
enabling you to split the data manipulation effort for several instances of your
application or tool.

Summary
You now see that the garbage collector task is not all that easy, but it certainly does a
very good job managing memory automatically. You can help it a lot, especially if you
are writing applications with performance in mind. Preventing the GC old space from
growing is necessary to avoid long GC cycles. Otherwise, it can pause your application
and sometimes force your services to restart. Every time you create a new variable,
you allocate memory and inch closer to a new GC cycle. Even after understanding how
memory is managed, you sometimes need to inspect your memory usage behavior. The
cleanest way is by collecting snapshot heaps of the memory stack and analyzing using
the V8 inspector or other similar pieces of software. The interface is self-explanatory,
and leaks will show up simply if you sort the object list by shallow size, retained
size, or reference counting. But before creating an application with a huge memory
footprint, take a look at databases, whether relational or not, as this will help you
store and manipulate the data, avoiding the need to do it yourself using the language.
Remember that JavaScript was not designed to create computationally intensive tasks.
If you still need to perform more intensive tasks, you might want to instrument the
code to analyze and improve it so that you can achieve optimal performance.

In the next chapter, we will see what profiling is, what the benefits of doing it are,
some available analysis tools, and how to understand results and upgrade your code.

[55]

CPU Profiling
Profiling is boring, but it's a good form of software analysis where you measure
resource usage. This usage is measured over time and sometimes under specific
workloads. Resources can mean anything the application is using, be it memory,
disk, network, or processor. More specifically, CPU profiling allows you to analyze
how and how much your functions use the processor. You can also analyze the
opposite—the non-usage of the processor, or the idle time.

Node.js is not primarily meant for continuous CPU-intensive tasks, and sometimes,
for profiling, it is important to identify the methods of the intensive task that are
holding to the processor and keeping other tasks from performing better. You
may find huge call stacks continuously occupying the processor or repetitive and
recursive tasks not ending as you expected. There are several techniques, such as
splitting and scheduling tasks instead of continuously running them as they block
the event loop.

You may ask why these tasks are so horrible. The answer is simple; Node.js runs
around an event loop, which means that when your code ends a specific task, the
loop restarts and pending events get dispatched. If your code does not end, the rest
of the application will be kept in standby until the task finishes. You need to be able
to split a big task into smaller ones for your application to perform well.

The main goal of an application should be to use the least resources possible, so
using the least processor time possible would be ideal. This is equivalent to be
running most of the time idle in the main thread. This is when the call stack is the
smallest possible. From a basic Node.js perspective, that should be level zero.

When profiling the processor, we usually take samples of the call stack at a certain
frequency and analyze how the stack changes (increases or decreases) over the
sampling period. If you use profilers from the operating system, you'll have more
items in the stack than you probably expect, as you'll get internal calls of Node.js
and V8.

CPU Profiling

[56]

In the chapter, the following topics will be covered:

• The I/O library
• Fibonacci
• Flame graphs
• Profiling alternatives

The I/O library
The library used by Node.js to be able to perform asynchronous I/O operations
across multiple platform environments is libuv. This is an open source library.
Actually, It is used by platforms to provide similar functionality to other languages
such as Luvit and Lua. Libuv is a cross-platform library that uses the best possible
methods for each platform to achieve the best I/O performance and still exposes a
common API.

This library is responsible for network tasks (TCP and UDP sockets), DNS requests,
filesystem operations, and much more. It's the library that accesses files, lists directory
contents, listens for socket connections, and executes child processes. The following
image shows how Node.js uses V8 and libuv at the same level:

You can see that libuv does not depend on V8 to interact with I/O. It's a C library
with its own thread pool. This thread pool is designed to be fast and avoid creating
and destroying task threads too often, as they're very expensive. The library handles
many I/O tasks from the network to the filesystem. It's responsible for Node.js
exposing fs, net, dns, and many more APIs. During an event loop, your code can
request I/O data. This is processed, and when ready (that is, all or part of your
request is ready for you), it triggers an event that will hopefully be handled in the
next event loop. The following image describes how the thread pool works. Your
code runs in the event loop (green), libuv runs in separate threads (blue) and triggers
events to your code (orange) that get triggered before each cycle:

Chapter 4

[57]

This means that if you request a file's content and start performing a lot of intensive
operations, it doesn't affect the file operation since it's done outside your scope. So,
although Node.js is single threaded, there are several operations that are done in
separate threads (from a pool). This is important to remember as we profile our code
so as to differentiate what a Node.js bottleneck, a libuv (I/O) bottleneck, and just a
system bottleneck are.

Fibonacci
Let's dive into an example. Take it with a grain of salt. It's actually a very common
and criticized example, involving the Fibonacci sequence. Let's create a simple
HTTP server file called fib.js that will answer every request with a response
based on the sum of the numbers of a Fibonacci sequence of a specific length.
There are no dependencies here, just plain Node.js. Additionally, we'll use the ab
command (Apache Benchmark) to make a few requests to our server. If you have a
Debian-based machine, you just need to install apache2-utils to be able to use this
command:

var http = require("http");
var server = http.createServer();

server.on("request", function (req, res) {
 var f = fibonacci(40);

 return res.end("" + f);
});

server.listen(3000);

CPU Profiling

[58]

function fibonacci(n) {
 return (n < 2 ? n : fibonacci(n - 1) + fibonacci(n - 2));
}

As you can see, the fibonacci function is recursive (as it should be), and is called
every time a new request comes in. It should not be a surprise to see that this won't
perform that well. Let's start it and tell V8 that we want a profile log:

$ node --prof fib.js

Now let's benchmark it with just 10 requests with two concurrency connections. The
following output has been truncated for clearer understanding:

$ ab –n 10 –c 2 http://localhost:3000/

This is ApacheBench, Version 2.3 <$Revision: 1604373 $>

(...)

Concurrency Level: 2

Time taken for tests: 18.851 seconds

Complete requests: 10

Failed requests: 0

(...)

Requests per second: 0.52 [#/sec] (mean)

Time per request: 3822.383 [ms] (mean)

(...)

You can see that it took 2 seconds for each request (half a request per second). That
doesn't look good, does it? Let's stop the server. You should see an isolate*.log
file in the same folder. You can open it with V8 Tick Processor. There's an online
version (http://v8.googlecode.com/svn/trunk/tools/tick-processor.html),
if you want; or if you have the node source as I do, you will find it in deps/v8/
tools/tick-processor.html.

http://v8.googlecode.com/svn/trunk/tools/tick-processor.html

Chapter 4

[59]

Click on Choose File and pick your log. The tool will chew like process, throw
like return output similar to the following. Once more, some of the output has
been removed:

Statistical profiling result from null, (...).

(...)

 [JavaScript]:
 ticks total nonlib name
 14267 89.1% 100.0% LazyCompile: *fibonacci fib.js:15:19
 1 0.0% 0.0% Stub: reinitialize

(...)

 [Bottom up (heavy) profile]:
(...)
 ticks parent name
 14267 89.1% LazyCompile: *fibonacci fib.js:15:19
 14267 100.0% LazyCompile: *fibonacci fib.js:15:19
 14267 100.0% LazyCompile: *fibonacci fib.js:15:19
 14267 100.0% LazyCompile: *fibonacci fib.js:15:19
 14267 100.0% LazyCompile: *fibonacci fib.js:15:19

CPU Profiling

[60]

Our fibonacci function is really using our processor all the time. You can notice the
recursive pattern in the Bottom up (heavy) profile section. You can see different
levels (indentations) because of the recursiveness of the function.

Please note that when running your own test, you should restrict
running the server to only the time of the benchmark (as in this
example). If you leave the server running more than that, the use
of your function will get mixed with the idle time.

In our example, it's not easy or even better to split the code because the operation is
really simple (adding two numbers). In other use cases, you may be able to optimize
some operations by modifying your code using, for example, some of the techniques
shown in Chapter 2, Development Patterns.

Another way of improving performance in this case is by using a technique called
memoizing. What this does is wrap a function and cache its return value based on the
arguments. This means that a function, for a specific set of parameters, will only be
called once, and then the return value will be cached and used repeatedly. Of course,
this does not apply to every situation. Let's try it on our server:

var http = require("http");
var server = http.createServer();

fibonacci = memoize(fibonacci);

server.on("request", function (req, res) {
 var f = fibonacci(40);

 return res.end("" + f);
});

server.listen(3000);

function fibonacci(n) {
 return (n < 2 ? n : fibonacci(n - 1) + fibonacci(n - 2));
}

function memoize(f) {
 var cache = {};

 return function memoized(n) {
 return cache[n] || (cache[n] = f[n]);
 };
}

Chapter 4

[61]

There are modules that help you achieve this result. In our case, we're adding a
memoizing function and actually overwriting the function with itself—memoized.
This is important because the function calls itself recursively, and so it really needs to
be overwritten.

This will cache every call to it, so only the first fibonacci(40) call will not use the
cache. Moreover, since the function calls itself with n-1 and n-2, half of the calls will
be cached, so the first call will be even faster. Running an ab test will get you very
different results:

$ ab -n 10 -c 2 http://localhost:3000/

This is ApacheBench, Version 2.3 <$Revision: 1604373 $>

(...)

Concurrency Level: 2

Time taken for tests: 0.038 seconds

Complete requests: 10

Failed requests: 0

(...)

Requests per second: 263.86 [#/sec] (mean)

Time per request: 7.580 [ms] (mean)

(...)

This is much better at more than 250 requests per second. This is obviously a bad
benchmark because if you increase the number of requests to a couple of thousands,
the number will be even better (a couple of thousands). If you use V8 Tick Processor,
you will notice that the function call is no longer there:

(...)

[JavaScript]:

ticks total nonlib name

 1 0.1% 12.5% Stub: ToBooleanStub(Null,SpecObject)

 1 0.1% 12.5% LoadMegamorphic: args_count: 0

 1 0.1% 12.5% LazyCompile: ~httpSocketSetup _http_common...

 1 0.1% 12.5% LazyCompile: ~exec native regexp.js:98:20

 1 0.1% 12.5% LazyCompile: ~UseSparseVariant native array...

 1 0.1% 12.5% LazyCompile: ADD native runtime.js:99:13

(...)

CPU Profiling

[62]

This is obviously a bad and very simple example. Every application is different
and analyzing it will involve knowing more about it. Using development platforms
helps centralize your knowledge of the subject and helps you improve more easily
overtime.

Flame graphs
Flame graphs are a visualization technique used to profile an application and rapidly
and more precisely spot the most frequently used functions. These graphs replace or
complement the previous log text output, as they give a more pleasant and simple
way of profiling.

A flame graph is composed of several stacked blocks, each representing a function
call. It usually shows usage times horizontally (not necessarily in an order). When
a function is called by another function, the first function is displayed on top of
the former one. Using this rule, you can figure out that the blocks at the top will
definitely be smaller (horizontally) than the ones at the bottom. This creates a graph
that visually resembles a flame. Moreover, the blocks normally use warm colors
(such as red and orange), so the graph really looks like flames.

Chapter 4

[63]

These can be used with different objectives, such as seeing memory usage and leaks.
For example, you can create a flame graph to see how the CPU is being used (A busy
CPU is one that is working hard, nonstop. An idle CPU is one that is doing nothing).
Another good use is to see when your application is idle and I/O is very slow
compared to CPU and memory, it's normal when applications block (stop) waiting
for a file from disk or from the network. This is called off-CPU. This is better seen in
cold colors (blue and green). A mix of the two CPU flame graphs can also give you a
good understanding of how your application behaves.

Creating flame graphs is not easy on Node.js yet, and it depends on your
system. Since V8 has perf_events support (https://codereview.chromium.
org/70013002), I currently find it much easier to do it on a Linux box using the perf
command and perf_events, but you have alternatives, such as DTrace (http://
www.brendangregg.com/flamegraphs.html). Let's try it right now. Get yourself
an Ubuntu machine (or a virtual machine) and install some dependencies. Note that
some of them depend on your current kernel version:

$ sudo apt-get update

$ sudo apt-get install linux-tools-common linux-tools-`uname –r`

Now let's run our node server telling V8 that we want the perf_events output. This
time, let's run it in the background so that we can see its PID more easily, and run
perf afterwards:

$ node –-perf-basic-prof fib.js &

[1] 30462

There's the PID we need—30462. Then let's run perf to collect events for about
a minute. The command will not return until it finishes (listening for events for a
minute), so you need to open another console to run the benchmark command:

$ perf record -F 99 -p 30462 -g -- sleep 60

on another console..

$ ab –n 1000 http://localhost:3000/

https://codereview.chromium.org/70013002
https://codereview.chromium.org/70013002
http://www.brendangregg.com/flamegraphs.html
http://www.brendangregg.com/flamegraphs.html

CPU Profiling

[64]

We're telling perf to record events with a frequency of 99 Hz for the 30462 process,
enabling call graphs (-g), and do this for 60 seconds. After that time, this command
should end. The first version of code is so slow that will take longer than 60 seconds
to finish so the user can stop it after a minute. The second version is much faster and
there's no need to do it.

You can look at the directory and notice that there's a perf.data file. Now we need
to tell perf to read this file and display the trace output. We'll use it and convert
it into a flame graph. For this, we'll use a stack trace visualizer created by Brendan
Gregg. This output will be converted into an SVG file. You can then open it in your
favorite browser. First let's get this stack output:

$ perf script > stack01.trace

Now let's download the stack trace visualizer and use it to convert this file. You'll
need git to get this command:

$ git clone --depth 1 http://github.com/brendangregg/FlameGraph

$./FlameGraph/stackcollapse-perf.pl < stack01.trace | ./FlameGraph/
flamegraph.pl > stack01.svg

Chapter 4

[65]

You should now have a stack01.svg file that you can interact with. You can click on
a horizontal block to zoom into that level or click on the lowest block to reset zoom.
For the first version of your server, you should get something similar to this graph:

CPU Profiling

[66]

You can clearly see the recursive pattern that is pushing the flames higher. There's an
initial big flame and there are others next to it. If you click on the base of the second
flame, you'll see something similar to the following:

Now you can clearly see your processor being exhausted by this inefficient and
recursive function. When inspecting the flame graph, take a look at the bottom line.
It will display the information we saw in the initial outputs of the log processor, such
as usage percentage.

If we are using the second server version, we'll need to increase the benchmark load
if we want to see anything useful. Try creating the flame graph for the second server
version using the following steps:

$ node –-perf-basic-prof fib.js &

[1] 30611

$ perf record -F 99 -p 30611 -g -- sleep 60

on another console..

Chapter 4

[67]

$ ab –n 10000 http://localhost:3000/

$ perf script > stack02.trace

$./FlameGraph/stackcollapse-perf.pl < stack02.trace | ./FlameGraph/
flamegraph.pl > stack02.svg

Now open this new SVG in your browser and see how the flames are thinner. This
means that although the stack size may be large, the duration of that stack size is
short. Something similar to this is more normal:

CPU Profiling

[68]

At the bottom of the graph, you'll always see node or main as Node.js spends most of
the time on the main thread. On top of the node or main, you'll see other lines. Every
stacked line means a call by the line below. As you reach the top of the flame, you'll
start seeing actual JavaScript code. You'll find many calls to the internal functions of
Node.js related to events and the libuv tasks.

As a rule of thumb, a flame graph with a huge and wide flame means
excessive CPU usage. A flame graph with high but thinner flames
means low CPU usage.

Profiling alternatives
There are other alternatives for profiling your application's processor usage
depending on the operating system. You can try DTrace if you use a supported
system. I won't recommend using it just yet on a Linux box. Moreover, if you're not
using an Illumos-based system, you might just forget it, at least for Node.js. Linux
has more call stack debugging tools that you can use to log stacks and then produce
a flame graph.

Node.js has profiling modules and even call stack trace modules, but I recommend
that you avoid debugging them at the language level and go for the operating system
level. It's much faster, is less intrusive to your code, and usually gives you a bigger
picture of the behavior, or bad behavior, that you're trying to profile. Remember that
the system is not just your application and there can be other factors outside your
stack scope that influence your performance.

You can use flame graphs for other types of data. For example, you can trace device
I/O calls or syscalls. You can filter a trace to specific function calls to see when
and for how long a function is used. You can trace memory allocations, and instead
of gathering allocation calls, you can gather the allocation size in bytes. There are
many uses for this type of graph, as it can be really handy for visually analyzing
your application behavior.

Summary
In environments seen nowadays, it's very important to be able to profile an
application to identify bottlenecks, especially at the processor and memory levels.
Systems are complex and divided into several layers, so analyzing processor usage
using call stacks can be really hard without some tools and visualization techniques,
such as flame graphs. Overall, you should focus on your code quality before going
for profiling.

Chapter 4

[69]

As you saw in our example, a simple and effective solution for our server was to
cache the results. Caching is a very important technique and is usually crucial in
balancing resource usage. Normally, you have available memory and it's better to
cache a result for a small period of time than to process it every time, specially when
the result is imutable.

Next, we'll look at how you should use and store your data and how, when, and for
how long you should cache it. We'll take a look at the pros and cons of some cache
methodologies so that you can be more prepared to choose your own path to making
your application the most performant application possible.

[71]

Data and Cache
Data is one of your most important assets in your application. Actually, it should be
the fundamental asset. You might run your application anywhere, but without your
data, it is pointless. By data, I mean the information that your application manipulates,
generated or not by your end users. If your application can't work without a database,
that database has an important piece of data that you must preserve.

Application data is very important. In web applications, users access it using the
Internet and their data is stored on the server side, this importance increases.
As your user base grows and the total size of your data increases, it becomes even
more important to plan how your data is stored and how it's used.

And don't forget to have a backup plan. You wouldn't want to lose your data and
have no way to roll back, even if the rollback means going one week back in time.
Your users might accept losing some data (1 week), but will definitely not accept
losing everything.

Let's take a look at data storage by looking at some important topics:

• Excessive I/O
• Database management systems
• Caching data and asynchronous caching
• Clustering data
• Accessing data

Data and Cache

[72]

Data storage
There are many ways of storing data. It depends on what type of data you have and
how big it can become. If you just need to store a simple key/value pair, you can use
a file with the format of your choice (for example, an INI or a JSON file). If that key/
value pair grows to thousands or millions, you probably won't want to keep it there.
You need to think about your data and choose the best possible storage for it, at least
from your viewpoint.

If you have other applications, you might try to choose the same data storage to all or
some of those applications. This is actually not a bad decision. Choosing the second
best tool and trying to use just one or two tools for a couple of applications greatly
improves your chances of gaining knowledge about that subset, instead of using the
best tool for every application and ending up with many tools and little knowledge
about each one.

Excessive I/O
When using a custom solution, we need to carefully plan how we store and access
our data, especially when and how many times we do it. Your host has a disk
throughput limit and you wouldn't want to reach it. Also, you'll certainly not want
to read your data from the disk every time you need it. It can work during your local
tests, but if your application is targeted to thousands of users, it will break and you
might start receiving EBUSY or EMFILE errors.

One of the strategies is to avoid excessive I/O to just read it at start, manipulate it
in the memory, and flush the data to disk from time to time. Data can be stored in
a variety of formats, JSON being the most famous and used as of now. This has the
disadvantage of forcing your application to implement a single channel to read and
write to the file or else you'll get corrupted data sooner or later.

Instead of creating your custom data storage, use databases or other data model
servers. Leave data storage to professionals and focus on your applications. Some
advantages of this are as follows:

• Data storage does not need to be maintained
• Database servers are optimized for high-performance scenarios
• Database servers normally support having more than one machine holding

the data, allowing your application to scale in size as you need it

It all depends on the system you choose. It's better to take your time and pick a
good one before you start. I would focus on scalability and consistency. Speed is
something you can't measure, and it varies from application to application and
from use case to use case.

Chapter 5

[73]

Database management systems
If you choose a database management system (DBMS), it's very important that
you be comfortable with it. Don't put a server that you're uncomfortable with in
production, as you'll definitely regret it. When using a DBMS in production, you
need to be comfortable with:

• Management: It's very important that you be able to replicate your application
scenario to a new host without thinking too much about it. You should know
how to initialize your storage and manage access. Look for visual interfaces
(such as desktop and web) and avoid managing only through a console;
you'll make more mistakes in a console as it's harder for complex tasks. Visual
interfaces usually have automation tools and can help you avoid syntax errors.

• Security: Be careful about default permissions, especially localhost
permissions, as they're usually set as permissive and give full control over
the data. You don't want to lose data, right?

• Backups: It's critical that you have a scheduled and automated plan and that
you know how to roll back to a backup. You should run trials on another
host. You wouldn't want to roll back just to find that your backups are
corrupted. Install a cron job (either locally or remotely), export it from time to
time, and try it out. I personally prefer to have one or two backups that work
rather than have 10 that don't.

• Structure: Knowing how you can organize and correlate your data for better
storage and faster access is mandatory. You definitely don't want to make
changes later.

The data structure you choose is directly related to your DBMS and your application's
performance. Make a sketch of your data and see how your data entities relate with
each other. It's quite common to have several tables in your database. After all, that's
one of the reasons you use a database in the first place.

What you usually don't think about is that you probably have a single table, maybe
a history table or similar, that over time will represent more than 90 percent of your
database space usage. It is critical that you optimize that table and decide whether
there are columns you don't need or you can move to another table. You can thank
me later!

Even after optimizing that table, you won't be able to stop its growth. Do you really
need to have a lifetime history or can you export data monthly or yearly to another
format and wipe it from the database? Having a database that can grow and even
expand to multiple servers is good, but that isn't a synonym for performance.

Data and Cache

[74]

With respect to this matter, analyze what you might value the most. Is it integrity?
Do you need extra security? Do you plan on splitting the database across different
servers, as MongoDB is able to? Do you prefer a mature server that has been proven
to be stable or will you opt for a new technology? As I said before, try the second
best choice. You'll probably be able to use it more often and avoid getting a lot of
different technologies that will be harder to maintain.

Your data should be structured by now. For example, if you're creating a calendar
application, you probably have entities such as users, calendars, and events. After
creating the basic structure, you'll probably realize that you need more structures to
relate calendars with users (maybe access permissions) and users with events (maybe
participants). After a couple of development iterations, you'll probably have more.

Your structures will grow and your tables will start getting more columns. You'll
realize that in this case, your bottleneck table is the one that holds events. Hopefully,
it will not be too late to optimize it and remove some columns that are rarely used
and can be moved to another table. When there's no space left to reduce, you have to
think about other options.

Caching data
Caching becomes relevant when a piece of information is requested too often and its
value will not change, for example, historic values. It's a good method of improving
performance if these values require some complexity and manipulation in the
database. Even if they're not historic values and can change, sometimes caching is
not that bad, at least for a couple of minutes.

In complex systems, you may find cache as the second level of abstraction between
the application and the database. In such cases, bidirectional updates happen; that is,
data is fetched to the cache and when changed by some user action, the cache data is
updated and then the database is also updated. This is faster than clearing the cache
and forcing a new request to the database to fetch the data that we already know.
You may find this in basic applications, for example, in session data.

Some databases can perform this caching, but others don't, and you cannot rely on
them to do it. Also, in other cases, they can't cache because you need to manipulate
the data. In some cases you need to address caching to another application or
another key/value service that you can use to save values and use them for a while.
Redis can be used as a caching service. It supports some nice features, such as
complex structures, transactions, and time-to-live keys.

Chapter 5

[75]

Your cache logic should be something similar to this:

This logic can be used in a variety of ways. You can use a cache in memory, getting
the fastest cache possible for small sets. If you know that your cached data may
exceed your available memory, you can use files. This happens if, for example, you
generate image or document thumbnails. You can cache them, and probably, the best
location to store them is the disk.

You can use services that handle data storage and allow you to focus on your
application logic. Some of the most popular and simple services to work with are
memcached and Redis. There are pros and cons for each of them. In both cases, they
need zero setup to start using them.

Asynchronous caching
Writing Node.js applications forces you to think asynchronously. This means that
you'll face some challenges, a few of which you probably don't even know yet. One
particularly painful challenge is asynchronous caching. It doesn't matter whether
you're using an external service or a simple internal function; the asynchronous
part is on your side and is the one responsible for giving you unpleasantness.

Data and Cache

[76]

The problem won't show up easily; you might figure it out just when the load
gets high and you see a lot of cache function hits. This is not simple to describe,
so let's look at a fake example of a cache that we probably do somewhere in
every application:

var users = {};

function getUser(id, next) {
 if (users.hasOwnProperty(id)) {
 return next(null, users[id]);
 }

 userdb.findOne({ id: id }, function (err, user) {
 if (err) return next(err);

 users[id] = user;
 return next(null, user);
 });
}

It's very incomplete but you get the idea. Every time you want a user, you call
getUser. This function will get it from somewhere (users.findOne might be
from an ORM) and return it. Then it will store it in a hash table, and if you request
it again, it will return that user directly. There's no time to live or proper error
handling, but that won't solve the next problem.

We're assuming that fetching the user is very quick, right? Imagine it takes some
time, a few seconds maybe. Next, imagine that this function is used very often.
What happens if fetching the user takes, for instance, 10 seconds because of some
hiccup in the network and, in that time, you call this function 100 times?

There's no cached value and each one of the 100 calls will try to access the database
because they ignore that the first call will actually cache the value and the rest of the
99 calls could use it. If the problem is in the user fetching, it will accumulate calls and
drop your application to the ground. This happens because fetching the user is not
instant, and so the following calls to the same user should be queued until the user
is fetched.

It could be something like the following code. Again, this is a simplified version:

var users = {};

function getUser(id, next) {
 if (users.hasOwnProperty(id)) {
 if (users[id].hasOwnProperty("data")) {

Chapter 5

[77]

 // already have a value
 return next(null, users[id].data);
 }
 // not yet, queue the callback
 return users[id].queue.push(next);
 }

 // first time
 users[id] = {
 queue: [next]
 };

 userdb.findOne({ id: id }, function (err, user) {
 if (err) return next(err);

 users[id].data = user;

 users[id].queue.map(function (cb) {
 cb(null, user);
 });

 delete users[id].queue;
 });
}

Take your time to understand it. As you can see, it's not the paradigm that has
pitfalls; it's the way. Usually, developers are trained but not prepared for the
asynchronous platform that Node.js (and others for the matter) enforces on you.

For many years, it was good practice (and it still is) to get an abstraction to the database
called Object-relational mapping (ORM). Abstractions create a new layer that allows
you to change the database type (more or less) and still keep your application working.
This is actually not that simple for a more mature application, as it can be quite difficult
to avoid certain specificities of a server in order to improve performance. Besides
this small advantage, it can reduce access speed and so make your application a little
slower. It has other advantages, however, especially in the professional market, as you
can apply your business model and entities directly to your code.

For historic data or a big dataset in general, ORMs are not exactly the best option.
Many ORMs give you extra power over every item but that comes with a cost (speed
and memory). For a big dataset, you get extra power (and big speed and memory
cost). You'll figure out that it's not just the layer that's turning your application slow;
it's also the database, which is usually not ready for huge datasets in a table (huge
means gigabytes).

Data and Cache

[78]

You may look for other services that can give you intermediate levels of caching
and, if used correctly, a sense of performance by helping you reach specific data
that you use the most. Services such as ØMQ and RabbitMQ (both message queue
services) may be of your interest in achieving this. They can act as proxies for your
data storage servers, creating the idea that you have a big and unified storage server.
These services are targeted to be performant and this is one of the use cases they're
designed for.

Adding services to act like proxies adds another layer to your application environment.
In small scenarios with a small dataset, they might be overkill. But in bigger datasets,
even on a single storage server, they can help maintain a constant throughput while
your dataset grows.

Clustering data
Spreading services across different hosts will be necessary. Somewhere, while your
application dataset is growing, you'll see your host screaming for resources and your
average load gradually eating up every one of your processors. From that moment
onward, you need to add a host to keep the speed stable and allow your dataset to
grow a little more.

Moving from using one host to using two hosts can be complex, forcing you to
dominate a database server or another type of data clustering. Many database
services support clustering or some kind of replication. The following image is an
example of a database replicated in the servers, allowing the application to access
any of the database instances

Chapter 5

[79]

In multimaster replication mode, the dataset is usually stored (and duplicated)
in two or more hosts, allowing the data to be updated from any of those hosts.
This replicates data across all hosts, called members. Since there's no partitioning,
every member is responsible for handling client requests.

These are some of the advantages:

• No single point of failure. Every member is a master, so everyone can fail.
• Hosts can be geographically distributed, allowing your application also to

be distributed near your clients.

Some of the disadvantages are as follows:

• It's not usually consistent if in asynchronous mode, as the network may
disappoint you before your data is replicated to another host

• It introduces latency if in some kind of synchronous mode, since your server
won't reply to you until data is replicated, and once again your network may
fail on you

There's no silver bullet, and for a really performant application, you definitely need
to take a deep look into your data. You might need to split it between different types
of servers, taking advantage of their unique features. As stated before, a message
queue server might be the best choice for part of your data.

Replication does not allow you to scale properly. Your data is complete on every
server. For huge datasets, this is a waste of space, given that the probability of all
but one server going down is really small. And you have backups, right?

There are better alternatives, such as clustering, where your data
is partitioned and every block is replicated on at least two hosts.
It's normally up to you to decide. This is similar to RAID5 on disks
but without the write hole phenomenon (http://www.raid-
recovery-guide.com/raid5-write-hole.aspx).

http://www.raid-recovery-guide.com/raid5-write-hole.aspx
http://www.raid-recovery-guide.com/raid5-write-hole.aspx

Data and Cache

[80]

Accessing data
Your application needs to be prepared for these scenarios. One of the possibilities is
shown in the previous diagram. Your application knows about replication members
and tries to use them randomly or by a specific rule. It's up to your application or
database module to identify failures and handle them correctly. The following image
describes how you can also replicate the application instances and introduce a proxy
to intermediate access to the application.

Another possible scenario is to have an instance of your application tied to each of
your replication hosts, possibly even localhost. In this way, your application works
locally. This, however, brings forth two issues to solve:

• Having a reverse proxy enables this to assign an application instance to each
user depending on the user geographic location or application instance load.

• Your application needs to be able to work in this scenario (stateless), unless
your proxy ensures that every client will always access the same instance

If your application only needs data stored in a database, these are the possible
scenarios. If it depends on a filesystem, some scenarios won't fit unless you have
some kind of synchronization between hosts. GlusterFS comes to my mind. If you
don't need a filesystem and you're comfortable with some kind of object/blob
storage, Ceph or even MongoDB can be a good choice. If you want a highly scalable
data storage server, you might just start looking at Cassandra and forget about the
alternatives. Prepare your application from the ground up to work with it and you
won't regret it.

Chapter 5

[81]

Summary
Data is a critical part of your application and planning how to structure it is
important. Even more important is how you plan your application growth and
data escalation. Don't forget about caching for the most used parts of your data,
and most importantly, don't forget backups. Replication and clustering are not
kinds of backup. You need a correct backup plan that avoids downtime in the
future. Don't forget to value your data.

In the next chapter, we'll continue with topics on application performance by
seeing how and why tests are important and how you should benchmark and
carefully read the results (with a grain of salt). Your application is almost ready
for high performance. But before you go for production, make sure you test
it thoroughly.

[83]

Test, Benchmark,
and Analyze

Testing your application is as important as its development. Testing is the process of
analyzing your application modules and the application as a whole to see whether
it behaves as you expect it. It allows your business to define use cases and check
whether they're all accomplished.

There are many testing techniques. One of the most famous is Test-driven
Development (TDD). This technique consists of using the smallest development
cycles possible. Between every cycle, tests are performed and new tests and uses
cases are added before they're developed. This way, your application versions can
be continuously tested and any faulty version can be quickly spotted. If you use a
version control system, such as Git, it becomes very easy to find the culprit of the
failing test and fix it.

An important aspect of performing tests from the ground up is that you can keep
adding use cases and test cases as you spot them. For example, if someone reports
a bug and you create a specific use case for it, you can ensure that that bug doesn't
appear again or that it will not be visible in the tests. In community-driven projects,
it's very common to see this use case (a member spotting a bug and adding a test
case for it). If you can replicate it, you can create a test case.

Depending on your test platform, you can benchmark your application. Usually,
test platforms have a default timeout per test as long as 1 or 2 seconds. You can
reduce this value for features that you want to ensure perform well. You can also
do the opposite by giving more time for longer use cases.

Test, Benchmark, and Analyze

[84]

Platforms with this timeout feature allow you to have consistent tests. Remember to
test in a common platform, such as a general working environment. Don't define test
benchmarks for a superfast server and then expect them to pass in a computer that is
20 years old.

Test fundamentals
Tests can be defined in a variety of ways. The most common approach is unit testing.
This is a method by which parts of your application are individually checked to
confirm that they comply with the specifications. This approach encourages your
application parts to act as independent and replaceable black boxes.

You need real data to properly test your application. You also need unrealistic
data. Both are crucial to confirm that it behaves as expected with both correct data
and scrambled data. This ensures that a misguided or malicious user won't break
your application.

You might be wondering what I mean by unrealistic data. Does your application
handle text in date fields or numbers in checkboxes? What about missing data?
You might think it does, but if you have more developers working on it, you may
want to ensure that, somewhere in the future, it doesn't stop behaving correctly.
The most common type of bug occurs in one place after making a change in a
completely different place.

The goal of unit testing should be to completely isolate each of your application's
modules and to be able to test them independently. If a module needs other parts of
the application to work properly, you can fake that data or mock that dependency,
using Sinon (http://sinonjs.org/) for example.

Some of the benefits of testing are as follows:

• Bugs are found early in the development cycle. Since you can test your code
every time you change it, bugs should be spotted earlier. The cost of fixing
bugs earlier, sometimes even before going into production, greatly reduces
overall costs.

• It forces developers to think about I/O data and errors, since application
architects must think and properly describe every use case. Features and
use cases are developed with one or more test cases in mind.

• It enables changing or refactoring modules while still ensuring that the
expected behavior is kept intact because of the test cases.

• It facilitates module integration tests, since each of the modules are tested
and have an expected behavior.

http://sinonjs.org/

Chapter 6

[85]

All of these benefits are achieved only if the tests are properly defined and your test
covers the entire application (all functions and objects). With proper test coverage,
you can also add specific use cases for new features or edge cases.

Separating tests for each module is quite difficult. For example, if one of your
modules needs a database to work, your test case will require giving it database
access. This is not good, since your unit test will actually be an integration test,
and if it fails you won't be able to say whether the problem is with the module
or with the database.

The test environment
It is also important to have a consistent test environment. More importantly, the
environment should be the same or almost the same, as the production environment.
This means the same application (of course), but also the same operating system
version, the same database server version, and so on.

For example, for Node.js tests, ensure that your test environment has the same Node.
js version. You can test with different versions, but the most important is the version
used in production. The same applies to the operative system version, the database
service version, dependencies' versions, and so on.

The Docker tool
Having the same environment might not be easy, but there's a solution for that—Linux
containers. If you haven't tried Docker yet, you're missing the train. This solution is
free and is a tool involving containers that makes them usable.

Its main difference compared to tools such as Vagrant is that it doesn't need a virtual
machine to create an environment. Docker is similar to OpenVZ (https://openvz.
org/Main_Page), but with a twist; you can create an environment (a container)
and share it for others to use. If you like NPM, you will find this similar. You have
versioning and dependencies, and the most used environments are already online
for you to download and use.

You can create a test environment in a container and then distribute the container to
other developers. This also applies to production. Your developers can get a snapshot
of a production database and a complete production environment in their laptop. In
this way, changes can be made and tested as if they were applied to production. This
is better than trying in production and having to roll back. In this way, you'll roll back
less often. This is the principle of continuous integration.

https://openvz.org/Main_Page
https://openvz.org/Main_Page

Test, Benchmark, and Analyze

[86]

Let's create a very simple environment for our Node.js application. Have Docker
installed, open a terminal, and run this code:

$ docker pull node:0.12.4
Pulling repository node
4797dc6f7a9c: Download complete
...
6abd33745acb: Download complete
Status: Downloaded newer image for node:0.12.4

Remember that we want a specific version, and that's why we're forcing 0.12.4 in this
case. I'm considering the operative system as unimportant, since our application won't
have external dependencies or node modules. This command will just download the
image template, and it's not creating any environment yet; we'll do that in a moment.
You'll notice that it takes a few hundred megabytes. Don't worry; that is possibly the
only space you need, as your environments will almost always depend on this image.
If you want to check out the downloaded image, run this:

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
node 0 4797dc6f7a9c 3 days ago 711.8 MB
node 0.12 4797dc6f7a9c 3 days ago 711.8 MB
node latest 4797dc6f7a9c 3 days ago 711.8 MB
node 0.12.4 4797dc6f7a9c 3 days ago 711.8 MB

Well, there's a lot of space there, isn't there? If you look closely, you'll notice that
there's only one image (the IMAGE ID is the same). What has happened is that
0.12.4 is actually the latest version by the time of writing this book, and the latest
tag has also been assigned to our image. Furthermore, that version is the last version
of 0.12, and it's the last version of 0.

This means that we can use any of these tags to refer to our image, but we don't want
that, as new versions might come up and our images would start being built with
those new versions.

We can see which containers are running, or were created before, and are not running
anymore. We can see simply what is running, but I find it much more useful to see
dead containers, as they potentially use unnecessary space. There are no containers
now. We can simply test the image to see whether it works:

$ docker run -it node:0.12.4 bash
root@daa77af1b150:/# node -v
v0.12.4
root@daa77af1b150:/# npm -v
2.11.1
root@daa77af1b150:/# exit

Chapter 6

[87]

We just ran a basic environment using our image, running bash in a tty (-t), in
interactive mode (-i) as opposed to running in the background (-d). You can see that
we have node and npm in the environment. If we look at which containers exist, we
will see something similar to this:

$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED ...
1a56bbeb3d36 node:0 "bash" 47 seconds ago ...

Our container has unique identifier, 1a56bbeb3d36, is using the 0 node image, and is
running the bash command. Well, it is actually no longer running. You can remove it
by running this line:

$ docker rm 1a56bbeb3d36

Noticed the Exited (0) .. lines in the ps command? Yes, exit code from the
command is accessible. If you exited bash with exit 123, you will see it outside
the container. This is great for launching a test command instead of bash and then
just checking whether all the tests have passed based on the exit code. You can also
record the output and, in the event of a failure, save it for analysis.

The test tool
Now that we have a form of replicating the environment to test, we need a proper
test tool—something you can use to define your use cases and test cases. There
are many great tools and Node.js has specific tools for testing. Some of them are
really great.

If you have nothing in mind, I would recommend trying mocha (http://mochajs.
org/). It's available for installation on NPM, and you should install it globally:

sudo npm install -g mocha

In this way, you can use mocha in all your applications on your computer without
having to install it over and over again, because it's actually a development/test
dependency, not a real application dependency. Installing it globally will also install
the mocha command in your path.

Let's create a very simple module called module.js with a function that simply adds
two numbers:

// add a with b
exports.add = function (a, b) {
 return a + b;
};

http://mochajs.org/
http://mochajs.org/

Test, Benchmark, and Analyze

[88]

Now, let's create a test case. For this, we'll create another file called test.js:

var assert = require("assert");
var m = require("./module");

describe("module.add()", function () {
 it("should add two numbers", function () {
 assert.equal(m.add(2, 3), 5);
 });
});

As you can see, this file loads our module (m) and asserts that m.add should add two
numbers. To check it, we add a test case by checking whether the module returns 5
when we pass 2 and 3 to it. Now, open a terminal in the folder where you have these
two files and just run mocha without any arguments, like this:

Nice, isn't it? There are other forms of output called reporters, such as the progress,
list, or dot matrix. If you just want a simple output, try list or progress. If you want the
details of every test, use the spec reporter. It's shown in the preceding screenshot.

Let's add another test to our function. Change the test file to look like this:

var assert = require("assert");
var m = require("./module");

describe("module.add()", function () {
 it("should add two numbers", function () {
 assert.equal(m.add(2, 3), 5);
 });

 it("should return null when one is not a number", function () {
 assert.equal(m.add(2, "a"), null);
 });
});

Chapter 6

[89]

If you run mocha again, your test case will cause the test suite to fail, as shown in
this screenshot:

Let's change our module to behave correctly, as we stated in our new test. You can
change it however you want; I'll just show an example:

// add a with b
exports.add = function (a, b) {
 if (isNaN(a) || isNaN(b)) {
 return null;
 }
 return a + b;
};

Upon running again, our test should pass, as shown in the following screenshot:

Test, Benchmark, and Analyze

[90]

We can now test this in our environment instead of testing it directly. This ensures
that our application works in a clean environment and is not passing because of
something your local environment has. To do this, we can use our previous node
image. Let's create a simple test environment. To do this, we need to create a file
called Dockerfile in our test folder:

FROM node:0.12.4

RUN npm install -g mocha

VOLUME /opt/app/

This describes our environment. What the file is describing is as follows:

• Use node image version 0.12.4
• Install the mocha dependency
• Create a linkable volume on /opt/app

Now, let's build our environment and call it env/test. We're actually creating
a new image based on another image. Our linkable volume is a folder that we can
specify when running our environment. In this way, you can use this very image
for all your applications. To build our environment, we run this:

$ Sending build context to Docker daemon 11.26 kB
Sending build context to Docker daemon
Step 0 : FROM node:0.12.4
 ---> 4797dc6f7a9c
Step 1 : RUN npm install -g mocha
 ---> Running in 286c8bb64a2b
...
Removing intermediate container 26fd9bb79ed5
Successfully built e36af32c961c

Chapter 6

[91]

We now have an image that we can use. Let's try the image by running our tests
with mocha.

Check out the online documentation of Docker for details on the command line.
We're running our image where the /opt/app (-v) volume is our current folder
(with our Node.js files). Our test environment is run in interactive mode (-it),
and the result image is discarded at the end (--rm).

If you have a central code repository, it is good practice to test before committing
to avoid common mistakes. It also avoids breaking changes. It's common to make
a change to fix or improve something and break something else. With an always-
clean test environment, developers can ensure that the tests run correctly. This
environment can be similar to the one in the following image:

Test, Benchmark, and Analyze

[92]

Continuous integration
Continuous integration (CI) is a practice wherein all the developers of an application
continuously integrate their changes into a central repository. This is a practice used
in extreme programming (XP). It introduces new features faster and helps avoid code
conflicts by reducing code merge time.

If the application has a good test suite, developers can test changes locally in a
replicated production and test environments and just commit if they pass. These
tests should not replace the tests done on the server. If the test suite executes fast,
it could even be a guarantee for the commit to be merged, but this is usually not
recommended, as some commits actually cannot pass. Usually, all the commits are
accepted and only then are they tested. The test results should be public at least
inside the developer's circle as a way of forcing them to take care of their commits,
how they structure their code, and how they describe commits.

There are four best practices for CI:

• Have a code repository and use a revision control system
• Every commit should be checked to guarantee that it passes all the tests
• Separate the test environment from production environment
• Automate deployment

One way of achieving this workflow is by using git. Since it allows you to define
hooks for commits and merges, you can add a hook to the central repository to test
every new commit. If the commit passes, it could be eligible to pass to production.

One strategy can be to merge the latest commit that passed all the tests with
production. This could be every time a commit passes or at specific times. For simple
applications, this approach is acceptable. But if you have a big user base, it can really
be risky. Ensure that your test base is really good, and at least look and read the
commit change log. There are risks that you should know of, as follows:

• Your test base might not cover all of your code. This means that there are parts
of your code that are not tested, which raises uncertainty about its behavior.
In this case, you should try to cover as much of your code as possible.

• Your test base might not cover all of your use cases. If all of your use cases
are not described in the tests, they will not be tested in your code. They could
get handled correctly, but it's still uncertain. So, you should describe all of
your use cases.

Chapter 6

[93]

• There are test cases which aren't easy to describe or even reproduce. You
should make an effort to avoid these kinds of tests and ensure that you
can completely rely on tests. Otherwise, you'll need someone to test the
application changes before they go to production.

Also, it is important to be able to test the application against your production
database, perhaps the latest backup or a database with replication that you can
use without compromising the production environment.

Data size always influences your application's performance. If you're just testing
your modules to check simple use cases, you're not testing the load, but you should.
Sometimes, your production data can have relationships that you didn't except at
first. You may think your code doesn't allow those relationships to appear, but you
may be wrong.

Consider, for example, a hierarchical structure in which you define a parent for
a certain element. Assume that this descendant can also be a parent of another
element. What if a third-degree descendant is a parent of an ascendant? This creates
a loop that you probably don't want but you have to handle. Even if your application
doesn't allow this loop to appear at first, consider getting the code required to protect
yourself against it.

Code coverage
Having all of your code covered by tests is important to ensure that you're really
testing everything, or at least everything that is coded. This is not an easy task.
Conditions and loops in your code create a log of different cases and running paths,
and some of your code might be triggered only in very specific situations. That
situation needs to be tested somehow.

Code coverage is a metric used to indicate how much of your code is covered by
your test suite. A higher metric indicates that your application is more "test covered"
and can usually be an indication of low bug probability. This metric is usually given
in percentage values, and 50 percent coverage means that half of your code covered
by the test suite.

There are tools that can help you find this value, otherwise it would be impossible to
calculate it. In a Node.js environment, what the tools usually do is creating a replica
of your code, in which they change every significant line to get a way of counting
the number of times the execution passed through that line. Significant lines are lines
with real code, not comments or empty lines.

Test, Benchmark, and Analyze

[94]

There are also online services for doing this. Depending on your application license
or budget, you might prefer to prepare your test environment locally. This is usually
not as simple as it might look. You have to create a way of instrumenting your code
(this is best done on a copy) and running your tests while gathering the coverage
metrics, and then generate a report.

There are several tools for Node.js that you can try. There's no magic tool, and you
should see what fits you and your application best. One possible tool is istanbul.
Let's try it out on our small test example. You'll see that it's a little tricky, and for
a real application, you must automate this process. Let's start by installing the
dependencies:

sudo npm install –g istanbul mocha-istanbul

The mocha-istanbul dependency can be installed locally. The istanbul Node.js
module should be global because it has a command for us to use. Now we can
instrument our code. Let's create an instrumented copy:

istanbul instrument module.js > instrumented.js

We now have to change our test suite to use our instrumented version:

var assert = require("assert");
var m = require("./instrumented");

describe("module.add()", function () {
 it("should add two numbers", function () {
 assert.equal(m.add(2, 3), 5);
 });

 it("should return null when one is not a number", function () {
 assert.equal(m.add(2, "a"), null);
 });
});

Chapter 6

[95]

Finally, we just need to run our test suite using the istanbul reporter. To do this,
run mocha with the reporter parameter:

mocha –reporter mocha-istanbul test.js

Instead of showing a description of the tests, you'll see a report showing how many
lines and functions are instrumented in your code and covered by the test suite.
Here's an example of the output:

After this, you should have a folder called html-report with an index.html page
inside. Open it in your browser to analyze your test coverage. You should see a page
similar to the following screenshot:

Test, Benchmark, and Analyze

[96]

You'll see the test folder, and inside, you'll find our original module. Click on it
and you'll see a coverage report. For each significant line (notice that the lines with
closing brackets are ignored), you'll have a number associated. It corresponds to
the number of times the execution passed that line while we we're testing. In our
case, it's the 1 and 2 columns with a green background. It's easy to understand why,
seeing that we have only two tests.

Benchmark tests
Benchmarking is the process of running a set of tools or tests to measure specific
performance metrics in order to compare them, either with other tools or with past
tests. The most common benchmark tests for applications are related to two similar
metrics: time (of an operation) and operations (over a period of time).

To maintain your application's performance, you need to continuously benchmark
it. One obvious approach is to use the test suite, where you add specific tests just for
benchmarking purposes. After checking out the common use cases, you can have
specific tests where you can ensure that certain operations continue to run for a
specific target time.

Take benchmarking seriously, but don't lose sleep over it! Most of the time, when
you start your application development, you just don't have the statistics to compare
with and you don't know what benchmark tests to define.

Start by benchmarking simple listings, such as history lists, and ensure that they
don't perform over the 100-millisecond mark. When creating a more complex
interface, ensure that its rendering also performs well. People tend to stress out
if they have to wait for more than half a second for a simple task, and more than
one or two seconds for a more complex one.

Chapter 6

[97]

These benchmarks are usually done using a copy of the production data, or a subset of
it if it's too large, in order to ensure that you're benchmarking against a good amount
of data and not a small set of data on a test environment like your personal laptop.
You can also perform the test against the production data, but I won't recommend it.

For example, using our previous test framework, mocha ensures that each test runs
for less than two seconds. You can change this default timeout for specific tests.
Let's try it out with a new test file called timeout.js:

describe("timeout", function () {
 this.timeout(100); // milliseconds

 it("will fail", function (done) {
 // we should call done() but we don't to cause timeout
 });
});

We're creating an asynchronous test. This is because we referenced done in our test
function to be called when the test ends. In this case, we're not calling it specifically
to force it to fail. Let's try it, as follows:

It is good practice to use timeouts in specific tests where performance is important.
The normal timeout may be fine for most common tests, but make sure that you
analyze some specific tests and ensure that they perform within a certain period
of time.

That timeout can be a performance limit or just a mark to inform you when your
application is becoming too complex or when your test data is becoming too big to
be able to keep up that performance. That's when, based on the previous chapter,
you need to take a look at your environment and analyze your next steps.

Test, Benchmark, and Analyze

[98]

Test suites such as mocha can also give you other interesting information that
complements your tests and helps you get a better picture of the behavior of
your application, such as:

• Report test durations, even for the tests that are not benchmark tests,
this will allow you to first make your tests and look at the metrics,
and then define a good timeout mark.

• Present test reports. They can be used for quality assurance reports
and can be saved for later analysis or comparison.

Specifically for Node.js applications, mocha can provide you with:

• Memory leak detection, by looking at global variables before and after
the tests

• Uncaught exception detection, indicating the test that caused it
• Seamless asynchronous support
• Node.js debugger support
• Browser support

Analyzing tests
Having a test suite is very important. The most important benefit is having your
application fully tested, or at least as much tested as possible. Creating the initial
test environment may be a challenge, but it pays off as you keep developing
your application.

Performing proper tests ensures that you:

• Don't reintroduce old bugs with new features. This can happen even
without touching the source code and just by making a database change.

• Can define use cases by defining test cases first (look at
https://en.wikipedia.org/wiki/Test-driven_development).

• Can make changes and easily check whether the application keeps
behaving as expected.

• Can check your test coverage and see how it has changed over time.
• Can create specific tests for newly found bugs and ensure that they don't

reappear.
• Ensure that benchmark tests run under a specific metric.

https://en.wikipedia.org/wiki/Test-driven_development

Chapter 6

[99]

Getting a proper test suite is similar to having a quality assurance person test your
application every time you make a change. Moreover, your quality assurance person
won't be as precise or as fast as your test suite.

If your application has more developers than just you, make sure that you enforce tests
passing successfull and a test coverage of a high mark like 90 percent. If you automate
your coverage tests, you can use the coverage metric as a condition to merge new
features with production.

Make sure that your tests are public in the development group circle, allowing
everyone to see the work of others. This motivates people to work better, as their
reputation is public, at least inside the group.

When there are more people looking at tests, developers can share experiences and
ask for help upon bumping into failing tests. This reduces the time taken to fix a
problem and motivates developers to keep the test suite always going. It should
be a constant goal—to keep the test history clean of failures.

Summary
A good, performant application is all about how well it performs. A complete test
suite ensures that you also perform well in developing and can introduce changes
fast—changes that can improve performance. The test suite should have specific
tests for benchmark analysis, with demanding time restrictions. The developers
should know about them and work hard to keep the tests passing without having
to lift those restrictions.

Use the test suite as a metric for production. Ensure that you merge new changes
if your test suite covers your application source in at least 90 percent coverage and
passes all the benchmark tests. Use a separate server for those tests, and don't mix
tests with production. Keep your production server lean and fast, and change it only
if you're sure it will keep that way.

In the next chapter, we'll look at bottlenecks—limits that degrade performance—and
the situations in which you can't do anything about them. You must try hard to be
ready for them and, if possible, try to attenuate their consequences. The network,
the server, and the client are some of the factors that introduce bottlenecks. Some
you can control and minimize, but others… you just have to be ready for them.

[101]

Bottlenecks
As we've seen in the previous chapters, a lot of elements influence performance.
Even the process of development will influence how you monitor performance
degradation. The patterns you use might not make a difference on a small scale,
but after deployment, you'll regret every bad decision you made.

The host is also an important performance factor. How well your processor performs
for your specific tasks is important. How much memory you have available influences
how much of your data will reside in a fast location or will move to a slower location,
such as a local disk.

Caching your data is also of great importance. The technique of accelerating data
access using some kind of middle storage to give a perception of greater speed creates
an important illusion of a fast application. Although this might seem wrong since it
looks like an illusion, it's actually very important if you want to stretch performance
to the limit.

All of this is important, but there are limits that you cannot pass, or at least some
that you should know in order to go around and choose a better design pattern.
Some of these limits are outside your scope and you cannot tweak or control them.
Others could be minimized if you have the budget and/or time and want to take
that path. I recommend that you take it, as knowing the surroundings of your
application will give you a bigger picture of the understanding of how it all
works and how it could be improved.

Bottlenecks

[102]

Host limits
The place where you host your application—the server—has limits. There are two
types of limits on the host: hardware and software. Hardware limits can be easy
to spot. Your application might be consuming all of the memory and needing to
consume disk to continue working. Adding more memory by upgrading your host,
whether physical or virtual, seems to be the right choice.

For Node.js applications you also have a software memory limit imposed by V8, so
don't forget about this when upgrading your memory banks. As a 32-bit environment
has a limit of more or less 3.5 GB, I'm assuming that you're upgrading memory in a
64-bit environment. In this case, your application would be running by default at a
1 GB V8 limit. You then need to run your application with a higher limit by starting
it in a way similar to the following command:

$ node --max_old_space_size 4000 application

This would run application.js with a 4 GB memory limit. This is actually not
recommended. You have probably chosen a design pattern that is not suitable for
the task, and you should try to split your application into smaller services.

When you don't control your production environment other restrictions might
apply, such as the inability to install a software dependency or upgrade a library
to fix a security or performance issue. If you don't control the environment from
top to bottom, you're not stretching its limits.

Operating systems and database servers usually come with predefined values for
moderated usage. This is usually fine for the average user, but definitely not enough
for the power user.

A simple example is the maximum number of open file descriptors for each process.
A socket is a file descriptor, and if you use the default 1024 limit it means that at
most you'll probably have 1,000 open clients connected. I'm being generous; I'm
talking about a Linux machine. If you look at OS X, you will have a worse scenario.

Similar to this limit, and looking at Linux in particular, you can check out the other
limits that definitely influence your application. Look at the manual and see what
options you might want to tweak. The following is an example of the limits and
defaults you may find in a Linux system:

$ ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited

Chapter 7

[103]

pending signals (-i) 31692
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 31692
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

There are other methods and options that you can change and optimize for your
application. I'm talking about kernel parameters. You can look at them and change
them using the sysctl command.

You can tweak areas such as the filesystem, network timings and routing, the virtual
memory behavior, and the kernel itself, like processor scheduling and reaction to
hanging tasks.

Here's a small list showing just a fraction of the options:

$ sysctl -a | tail
vm.overcommit_ratio = 50
vm.page-cluster = 3
vm.panic_on_oom = 0
vm.percpu_pagelist_fraction = 0
vm.scan_unevictable_pages = 0
vm.stat_interval = 1
vm.swappiness = 60
vm.user_reserve_kbytes = 131072
vm.vfs_cache_pressure = 100
vm.zone_reclaim_mode = 0

As mentioned before, it's not just the operating system that can be badly optimized
for your use case. Services usually come with a simple default configuration that is
not targeted at performance.

MySQL database servers can have some weird configuration parameters, such
as innodb_flush_log_at_trx_commit, which defaults to 1. This means that
every transaction triggers a flush to disk (to save the transaction). If you have 100
transactions per second, it means your disk will heat and degrade performance by
issuing 100 flushes per second.

Bottlenecks

[104]

Instead, you would want to ensure that this configuration is 2, which means that
disk flush is done at most once per second. This configuration does not ensure ACID
(https://en.wikipedia.org/wiki/ACID) compliance, but I think you'll thank me
later. Performance comes at a cost, and in this case, an uninterruptible power supply
is required.

Another configuration you must watch out for is the memory used by the operative
system and all the services involved in your application. For instance, taking the
MySQL server, you must ensure that it doesn't consume all of the memory and leaves
some for your other services. This avoids swaps and ensures that it runs smoothly.

Network limits
The network is nowadays the de facto transport method for accessing applications. As
the Internet of Things becomes more of a reality, even common desktop applications,
such as office productivity tools, are moving to the cloud. You probably didn't ever
develop a traditional desktop application.

Cloud applications give you many advantages over traditional ones, such as
the following:

• Easier deployments. Since the application is located in one or more central
points, it's simpler to fix a bug or add a feature to all of your user base.

• License enforcements. As the application is not installed in the user's
computer and you control the host, you can block its usage or control
the quality of service.

• Proper environment. Because you control the host, you ensure that it has a
proper processor and enough memory and disk space to operate as it should.

All of these are very good pros, but what about the cons? Well, for every advantage,
there's usually a disadvantage. It's not good or bad; it just depends on what you
prefer. Taking the previous list, we can enumerate the counterparts:

• Deployments must be made with care, as a server contains sensitive data
and it is the only way to use your application. Do you accept Gmail being
offline for 15 minutes? To guarantee a proper deployment, you need proper
infrastructure with data duplicated to ensure that you can remove servers
from the network pool, update them, and redeploy them again.

• Enforcing a license means that you keep a service online and no downtime is
accepted. Similarly, you may need to ensure a billing system while the user is
using the application. This is the opposite of a common desktop application,
where you pay once and then forget about it.

https://en.wikipedia.org/wiki/ACID

Chapter 7

[105]

• Adapting application to multiple environments. Supporting all major
browser vendors is not easy. With this comes the user's assumption that
your application must have a mobile-friendly alternative, which usually
doesn't exist in a desktop version.

There are a lot of market offers (free and paid) to "convert" your web application into
a desktop application if you prefer the advantages of not moving your application to
the cloud.

Applications now prefer to reside in the cloud. Their advantages usually surpass
those of desktop applications, and there's something important mentioned in the
advantages—licensing. The cloud gives you the "as a service" opportunity, which
you usually don't have in a traditional application.

With the cloud come a lot of hard work and troubles. You need to register your own
domain, pay for a dedicated or shared host, and deploy your application. If you're
developing a big application and want to live up to your promises, you need more
than that: hardware, a network link with a good quality of service, a support team,
a backup plan, and so on.

No matter what you choose, there are limits you should be aware of. You probably
know them but this is never reflected. You have limits such as these:

• Responsiveness. When the user interacts using the application interface, it
might feel slow, as the interface is being downloaded from the cloud as the
user is using the interface. This responsiveness can be improved if you cache
the interface in the user's computer. Caching means that sometimes the user
might be looking at an old interface, but that might not be as critical as getting
a fast user experience. There are standards for doing this. Take a look at the
Offline Web Applications section of the HTML standard as an example.

• Data access, when a user interacts with a more data-intensive interface.
Sometimes, part of the slowness of the interface is related to your server
collecting data from the database and sending it through the network. You
can also use a cache, but you may have to be more careful because interface
caching is one thing and data caching is another. People can tolerate one or
two hours with an old interface, but not with old data.

Security is critical. Offer HTTPS access to your users so that
they can feel comfortable about their privacy.

Bottlenecks

[106]

Apart from these limits, there are security issues that reduce performance. For
example, in terms of privacy you have to choose HTTPS, which means a good
certificate and good server configuration to avoid poor ciphers. This in turn
means that some users might be unable to access the application, and data
exchange between the server and the client will be a bit slower.

This is a requirement if you want to ensure that the data being transferred from the
server to the end user is not compromised. However, this is actually not enough
because the user must also have an up-to-date browser and a good configuration.
There have been a lot of SSL weaknesses found recently, and they can be avoided
by updating the browser.

Networking was not designed to be secure; it was designed with the assumption
that everyone has good intentions, which is definitely wrong. When your users
access your application using a public hotspot (from a coffee shop, a mall, or an
airport), they're vulnerable to privacy issues. Attackers can sniff the network traffic
and try to find a password or attach themselves to an open session and be able to
impersonate a user.

Getting a secure connection is important, but it might reduce performance and also the
number of users that each of your servers can handle. This can be the cost of security.
Think that HTTPS is always slower? Try http://www.httpvshttps.com/.

Also, don't forget about your database. Ensure that you don't have any default
password and you only allow access from your application (don't give access to
everyone on the Internet).

Security does not end here. As your application is a known network location, you
can be the victim of an attack. Perhaps you think that putting the server behind a
firewall and just redirecting traffic to the ports that the users need (such as HTTP
and HTTPS) is enough, but don't forget Denial of Service (DoS) attacks. An attacker
with an attack network can bring your application down by just forcing it to be so
busy with them that real users won't be able to access and use it. This gives them a
perception of poor performance and is something you can't avoid.

For example, GitHub faced an attack from China in March 2015. It lasted a few days.
They couldn't avoid it and could only mitigate it by trying to deflect the traffic. Some
people were greatly affected. As your application becomes bigger, more attackers
may be interested in your information or just in denying access to it.

http://www.httpvshttps.com/

Chapter 7

[107]

Client limits
Clients also have limits. They may be using an operating system that you don't know
or can't be sure about. This also applies to the browser, the applications installed, and
even the location.

Never trust the user agent sent by browsers. Also, don't ever
infer any information from it. It can be forged to be anything.
A laptop can mimic a Nokia phone from the last century very
easily—no hacking is necessary!

This is something every developer must observe as a rule: never trust the client.
I'm not saying this in a bad way, but you have to be sure of the information you
have. For example, your interface has validations in forms and you're sure that
they validate correctly before submitting, right? Wrong! Never trust the client.

Also, never trust the link between the client and you. Validate information again
on the server side. If possible, by using Node.js, use the same code to validate
on both sides and avoid duplicated code. For example, you can use some code
to validate a form in a web view and that code can also be used in the server.
Don't forget! Node.js is JavaScript. If it's a complex piece of code or module,
you may want to look at browserify (http://browserify.org/).

Form validations should be done on both sides to give a perception of performance
and to actually avoid common errors. You shouldn't validate everything on the
client, but at least check whether a currency field actually has a number and not
text, and confirm that all the required fields have proper values. This reduces the
round trips of submitting to the server and the server replying back with an error.

Apart from the limits of the application, there are limits outside that you can't
control. The user will always blame you, and perhaps it's not your application's
fault most of the time. Are you prepared for an intermittent connection for a client
from a cellular network? I'm not referring to 3G, because this can be stable enough.
I'm referring to GPRS connections.

Do you have a full-blown application for a cellphone that does not have a more than
300-pixel wide screen and behaves like my TI-83 from high school? Are you expecting
that everyone will use the latest cellphone with a huge screen and more processor
power than your netbook? It's here that the sense of performance is noticed.

http://browserify.org/

Bottlenecks

[108]

A huge application can bring down a weaker cellphone just by rendering the
interface. A cheap processor will have a hard time rendering all the elements and
running all of the JavaScript in your application. It will be a challenge for it to render
on a small screen. Therefore, it's better to have a completely different interface for
this type of screen and simply use an adaptive interface for smaller differences.

The user accepts a different interface because they are actually interfacing with the
application in a different way. They are probably using a finger on a cellphone and
a mouse or a couple of fingers on a tablet or a laptop. Also, the distance between the
eyes and the screen is different, hence the resolution difference.

Because of this and to target the best performance possible, you should bring forth
a simpler interface. Remove clutter-like information that the user will probably not
need, for example, in a cellphone. Keep only the important actions. If possible, cache
the interface for a better sense of performance. It's better to see a spinning wheel than
a blank screen with no progress information.

Nowadays, the Web gives you choices. You can use different types of devices with
different systems and web browsers. This is good for the user but horrible for the
developer. It's a fragmentation that forces applications to be developed with only
a couple of targets in mind and not all of the market.

You need to focus on the main target of the application and develop the best interface
for it. You can then move your focus to other environments, such as the smaller screens
on cellphones and watches. Don't make an application that can run on all screens but
isn't the best on any of them.

A few years ago, applications were copied to all screens, which was actually dumb.
People use different devices with different goals in mind. For example, people won't
want to create a task list on a cellphone, but will probably want to check it and mark
it as complete. This means that you can have in place a much smaller application
to do exactly what the user wants, avoiding excessive information and the risk of
slowing down interaction and degrading experience.

Browser limits
Browser vendors are merging efforts to make the lives of developers easier. A few
years ago, it was hell to develop a web application for several browsers. You would
usually focus on one or two of them. If you focused on more, your code would get a
lot more complicated and performance would be compromised. Usually, applications
would become slower with time and with newer browser versions.

Chapter 7

[109]

Nowadays, it's safer to develop an application in only one browser. Most of the
application, if not all—depending on what abstraction you used for the DOM
(jQuery is the best example)—will run just fine on other browsers. You can then
make a couple of improvements, and you will have an application running
smoothly on every browser.

Keeping these abstraction layers up to date is important to avoid deprecated
and slower code. Browsers tend to release versions more often and bring newer
developer interfaces that those abstractions take advantage of.

The preceding screenshot is a jsperf testing some versions of jQuery. The versions
are not actually the latest ones, but it doesn't matter. Take it with a grain of salt. As
you can see, the newer versions perform better—not always, but this is usually true.
You can see how, in this example, the performance of the oldest version is 77 percent
worse than the newest one.

Bottlenecks

[110]

Performance variables
Performance should be seen as a mixture of choices and variables that you should
adjust depending on your needs. Here are some variables you should consider:

• Choose the best or second best platform. Remember that the best one could
potentially not be the best for you.

• Define your data structure and choose your database server wisely. Think
big and plan how you'll react to fast data growth.

• Plan your application's modules and don't forget about making tests to every
module. Create a developing environment that can be replicated in order for
it to be easier for new developers to start programming faster.

• Choose a target environment and start developing. Don't start developing
for every device and browser.

Summary
Your application's performance is not constrained by your code and database choices.
There are limitations that you must be aware of in order to choose the best path for
your application. These are just external elements of your application that influence
its performance, but there are others as well.

The most important rule—you shouldn't forget it—is to plan your steps. Don't develop
without thinking properly about this. A bad choice will make your life harder later on
when you have to fix it. It's better to lose an hour thinking than a week fixing. That's
actually part of your own development performance.

[111]

Index
A
ab tool

URL 5
Active Record pattern 18
Adapter pattern 23
anti-patterns 14
application behavior

monitoring 3, 4
architectural patterns

about 16
Active Record pattern 18, 19
Event-driven pattern 20
Front Controller pattern 17
Model-View-controller (MVC)

pattern 17, 18
Service Locator pattern 19, 20

arrays 31
automatic memory management

about 35, 36
event emitters 39
heap snapshots 43-53
memory leaks 38, 39
memory organization 37, 38
object heap 42, 43
object representation 42
referencing objects 40-42
third-party management 54

B
behavioral patterns

about 25
Mediator pattern 26
Observer pattern 26
Template method pattern 26

ben tool
URL 5

benchmarking 2, 5
benchmark tests

about 96-98
load testing 5
soak testing 6
spike testing 6

browserify
URL 107

buffers 29
bugs, Node.js

buffer overflows 36
dangling pointer bugs 36
double free bugs 36
memory leaks 36

Builder pattern 22

C
client limits 107, 108
Composite pattern 24
composition, in applications

about 6
asynchronous tasks, embracing 8
code, separating 7
function rules, using 9, 10
library functions, using 9
modules, testing 10
NPM, using 7

continuous integration (CI)
about 92
best practices 92
code coverage 93-96

creational patterns
about 21

[112]

Builder pattern 22
Factory method pattern 21
Lazy initialization pattern 21
Object pool pattern 23
Singleton pattern 22

D
database management system (DBMS)

about 73, 74
asynchronous caching 75-77
backups 73
data, accessing 80
data, caching 74
data, clustering 78, 79
management 73
security 73
structure 73

data storage
about 72
excessive I/O 72

Decorator pattern 24
Denial of Service (DoS) 106
docker tool 85-87
duplex stream 29

E
ECMAScript 1
eval call 32
event-driven architecture

about 27, 28
buffers 29
streams 28, 29

Event-driven pattern 20
event emitters 39
events 15
extreme programming (XP) 92

F
Facade pattern 25
Factory method pattern 21
Fibonacci 57-61
fibonacci function 60
flame graph

about 63-66
URL 63

for-in loops 32
Front Controller pattern 17
functions

about 31
using 9, 10

G
Garbage Collector (GC) 35
git 92

H
heap snapshots 43-46
hidden types 30
high performance

about 1
obtaining 4

host limits
about 102, 103
browser limits 108, 109
client limits 107, 108
hardware 102
network limits 104-106
performance variables 110

httpload tool
URL 5

HTTPS
URL 106

I
infinite loops 32
Inversion of Control 26
I/O library

about 56, 57
Fibonacci 57-61
flame graph 62-68
profiling, alternatives 68

J
JSCS

URL 9
JSON 72

[113]

L
Lazy initialization pattern 21
lazy sweep 42
library functions

using 9
libuv 56
load testing 5

M
Mediator pattern 26
members 79
memorizing technique 60
memory leak 38, 39
Model-View-Adapter (MVA) 18
Model-View-controller (MVC)

pattern 17, 18
Model-View-ViewModel (MVVM) 18

N
network limits 104-106
Node.js

about 1, 2
patterns 15
URL 10

Node.js Package Manager (NPM)
about 6
using 7

nonblocking API
about 1
buffers 1
streams 1

numbers 30

O
object heap 42, 43
Object pool pattern 23
object-relational mapping (ORM) 18
Observer pattern 26
old space 38
OpenVZ

URL 85
optimizations

about 29

arrays 31
eval call 32
for-in loops 32
functions 31
hidden types 30
infinite loops 32
numbers 30
try-catch blocks 32

P
patterns

about 13, 14
architectural patterns 16
behavioral patterns 25
creational patterns 21
structural patterns 23
types 16

performance
analysis 2, 3
variables 110

planning 4
profiling

about 2, 55
alternatives 68

Proxy pattern 25

R
RabbitMQ 78
RAID5

URL 79
readable stream 28
reporters 88
Retained size 38

S
Service Locator pattern 19, 20
service-oriented architecture (SOA) 27
Sessions 27
shallow size 37
Singleton pattern 22
Sinon

URL 84
soak testing 6
spike testing 6

[114]

streams
about 2, 15, 28
duplex 29
readable 28
transform 29
writable 29

structural patterns
about 23
Adapter pattern 23
Composite pattern 24
Decorator pattern 24
Facade pattern 25
Proxy pattern 25

T
Template method pattern 26
test

analyzing 98, 99
benchmark tests 96-98
benefits 84
continuous integration (CI) 92
docker tool 85-87
environment 85
fundamentals 84
test tool 87-91

Test-driven Development (TDD) 83
test tool 87-91
transform stream 29
trashed memory

identifying 40-42
try-catch blocks 32
Twitter 6

U
Unix pipes

URL 28

V
V8 3
V8 Tick Processor

URL 58

W
writeable stream 29

Thank you for buying
Node.js High Performance

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering Node.js
ISBN: 978-1-78216-632-0 Paperback: 346 pages

Expert techniques for building fast servers and
scalable, real-time network applications with
minimal effort

1. Master the latest techniques for building
real-time, big data applications, integrating
Facebook, Twitter, and other network services.

2. Tame asynchronous programming, the event
loop, and parallel data processing.

3. Use the Express and Path frameworks to speed
up development and deliver scalable, higher
quality software more quickly.

Instant Node.js Starter
ISBN: 978-1-78216-556-9 Paperback: 48 pages

Program your scalable network applications and
web services with Node.js

1. Learn something new in an Instant!
A short, fast, focused guide delivering
immediate results.

2. Learn how to use module patterns and Node
Packet Manager (NPM) in your applications.

3. Discover callback patterns in NodeJS.

Please check www.PacktPub.com for information on our titles

Node Cookbook
ISBN: 978-1-84951-718-8 Paperback: 342 pages

Over 50 recipes to master the art of asynchronous
server-side JavaScript using Node

1. Packed with practical recipes taking you
from the basics to extending Node with
your own modules.

2. Create your own web server to see Node's
features in action.

3. Work with JSON, XML, web sockets, and make
the most of asynchronous programming.

Build a Network Application
with Node [Video]
ISBN: 978-1-78216-827-0 Duration: 02:20 hours

Build, tune, and test a tangible Node.js application
from start to finish

1. Offers the reader a primer in node conventions,
along with best practices for publishing
modules, optimizing performance, and
organizing code.

2. Step-by-step examples that demonstrate how to
progressively enhance your app.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction and Composition
	Performance analysis
	Monitoring

	Getting high performance
	Testing and benchmarking
	Composition in applications
	Using NPM
	Separating your code
	Embracing asynchronous tasks
	Using library functions
	Using function rules
	Testing your modules

	Summary

	Chapter 2: Development Patterns
	What are patterns?
	Node.js patterns
	Types of patterns
	Architectural patterns
	Creational patterns
	Structural patterns
	Behavioral patterns

	Event-driven architecture
	Streams
	Buffers

	Optimizations
	Hidden types
	Numbers
	Arrays
	Functions
	The for-in loops
	The infinite loops
	The try-catch blocks
	Eval

	Summary

	Chapter 3: Garbage Collection
	Automatic memory management
	Memory organization
	Memory leaks
	Event emitters
	Referencing objects
	Object representation
	Object heaps
	Heap snapshots
	Third-party management

	Summary

	Chapter 4: CPU Profiling
	The I/O library
	Fibonacci
	Flame graphs
	Profiling alternatives

	Summary

	Chapter 5: Data and Cache
	Data storage
	Excessive I/O

	Database management systems
	Caching data
	Asynchronous caching
	Clustering data
	Accessing data

	Summary

	Chapter 6: Test, Benchmark,
and Analyze
	Test fundamentals
	The test environment
	The Docker tool
	The test tool
	Continuous integration
	Code coverage

	Benchmark tests
	Analyzing tests

	Summary

	Chapter 7: Bottlenecks
	Host limits
	Network limits
	Client limits
	Browser limits
	Performance variables

	Summary

	Index

