
ptg7799847

Larry Ullman

Modern
JavaScript

Develop and DeSign

Designer-Developers are hot commodities today.
But how do you build your development chops fast enough to join their ranks?

With Peachpit’s Develop and Design series for visual learners.

US $54.99 Canada $57.99PeachPit Press
www.peaChpit.Com

 facebook.com/peachpitCreativeLearning

 @peachpit

Modern JavaScript
Develop and DeSign

“A breath of fresh air in the over-complicated
world of JavaScript books. This is one I’ll keep
close by!”

Jay Blanchard
Web developer and consultant and author of
Applied jQuery: Develop and Design

this book includes:

J easy step-by-step instruction, ample
illustrations, and clear examples

J Real-world techniques to build your
skills

J insight into best practices from a
veteran web expert

J emphasis on strategies for creating
reliable code that will work on all of
today’s browsers and devices, even
those without JavaScript

it’s time for a current, definitive JavascriPt book,
and in this comprehensive beginner’s guide, bestselling author
Larry Ullman teaches the language as it is implemented today.
Larry demonstrates how to build upon JavaScript’s ease of use,
while demystifying its often-cryptic syntax, especially for those
who have not programmed before. this book enforces modern
JavaScript’s best practices and embraces key web development
approaches such as progressive enhancement and unobtrusive
scripting. the author demonstrates loads of real-world code
and makes it freely available for download.

You’ll learn about JavaScript itself and the relationship between
JavaScript and htmL. next you’ll explore variables, common
operators, and control structures. then you’ll create functions,
handle events, and do more with htmL forms. You’ll master
ajax, work with frameworks, and use JavaScript with php to
create a complete example. the result is a book that helps you
not just tinker with JavaScript but to thoroughly comprehend it.

US $54.99 Canada $57.99

comPanion web site:
http://larryullman.com/

r

larry ullman is a writer, Web and software developer, trainer, instructor,
speaker, and consultant. He has written 22 books and dozens of articles. As his
readers can attest, Larry’s strength is in translating geek into English: converting
the technical and arcane into something comprehensible and useful.

D
evelo

p a
n
d

 D
eSig

n

tempoRaRY Spine width: 0.000”

u
llm

an
M

odern JavaScript
ISBN-13:
ISBN-10:

978-0-321-81252-0
0-321-81252-2

9 7 8 0 3 2 1 8 1 2 5 2 0

5 5 4 9 9

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

Larry Ullman

Modern

JavaScript
Develop and DeSign

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

Modern JavaScript: Develop and Design
Larry Ullman

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2012 by Larry Ullman

Acquisitions Editor: Rebecca Gulick
Copy Editor: Patricia Pane
Technical Reviewer: Jacob Seidelin
Compositor: Danielle Foster
Production Editor: Katerina Malone
Proofreader: Liz Welch
Indexer: Valerie Haynes-Perry
Cover Design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim,
the designations appear as requested by the owner of the trademark. All other product names and services
identified throughout this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade name, is intended to
convey endorsement or other affiliation with this book.

13-digit ISBN: 978-0-321-81252-0
10-digit ISBN: 0-321-81252-2

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.allitebooks.com

www.peachpit.com
http://www.allitebooks.org

ptg7799847

This book is dedicated to Doug and Christina,
and to their family and friends,

for the extraordinary, life-changing gift.

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

iv Modern JavaScript: develop and deSign

Rebecca, Nancy, and Nancy, for working very hard to make this project happen
and for their supreme flexibility. And, of course, for continuing to work with me
time and again.

Patricia, for her diligent editing and attention to detail.
Jacob, for providing a top-notch technical review, and for not being afraid to

say “Not what I would do….”
Danielle, for magically converting a handful of random materials into something

that looks remarkably like an actual book.
Liz, for the sharp proofreading eye. Never too late to catch a mistake!
The indexer, Valerie, who makes it easy for readers to find what they need

without wading through all of my exposition.
Mimi, for the snazzy interior and cover design work. I love the tool motif!
All the readers over the years who requested that I write this book and provided

detailed thoughts as to what they would and would not want this book to be. I hope
it’s what you were looking for!

Jonas Jacek (http://jonas.me/) for permission to use his HTML5 template.
Sara, for entertaining the kids so that I can get some work done, even if I’d

rather not.
Sam and Zoe, for being the kid epitome of awesomeness.
Jessica, for doing everything you do and everything you can.

So many, many thankS to…

www.allitebooks.com

http://jonas.me/
http://www.allitebooks.org

ptg7799847

contentS v

Introduction . x

Welcome to JavaScript .xii

Part 1 GeTTiNG STaRTeD

Chapter 1 (Re-)iNTRoDUciNG JavaScRipT . 2
What Is JavaScript? . 4

JavaScript’s History . 6

JavaScript Isn’t... 17

How JavaScript Compares to.... 18

Why JavaScript Is a Good Thing. 21

JavaScript Versions and Browser Support .22

JavaScript Programming Goals .24

Wrapping Up .25

Chapter 2 JavaScRipT iN acTioN .26
Choosing a Doctype .28

An HTML5 Primer . 31

Adding JavaScript to HTML . 37

Key Development Approaches .39

Cobbling Together Some Code .44

Steal this JavaScript. .55

Wrapping Up .56

Chapter 3 TooLS of The TRaDe .58
The Great Debate:
Text Editor or IDE? . 60

The Browser:
Your Friend, Your Enemy .69

Testing on Multiple Browsers . 75

Testing JavaScript. 77

Errors and Debugging . 80

Online Resources . 90

Wrapping Up . 91

s

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

vi Modern JavaScript: develop and deSign

Part 2 JavaScRipT fUNDaMeNTaLS

Chapter 4 SiMpLe vaRiabLe TypeS .92
Basics of Variables .94

Working with Numbers . 100

Working with Strings . 112

Performing Type Conversions. .122

Review and Pursue .125

Wrapping Up . 127

Chapter 5 USiNG coNTRoL STRUcTUReS . 128
Basics of Conditionals .130

More Conditionals. 140

More Complex Conditions . 153

Basics of Loops . 161

Review and Pursue .168

Wrapping Up .169

Chapter 6 coMpLex vaRiabLe TypeS . 170
Generating Dates and Times .172

Working with Arrays . 190

Working with Objects . 207

Arrays Versus Objects .216

Review and Pursue . 217

Wrapping Up .219

Chapter 7 cReaTiNG fUNcTioNS . 220
The Fundamentals. 222

Functions as Objects . 244

The Fancier Stuff . 254

Review and Pursue .263

Wrapping Up . 265

Chapter 8 eveNT haNDLiNG . 266
The Premise of Event Handling . 268

Creating Event Listeners. 268

Creating a Utility Library .275

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

contentS vii

Event Types. .278

Event Accessibility. .287

Events and Progressive Enhancement . 288

Advanced Event Handling. 290

Review and Pursue . 305

Wrapping Up . 307

Chapter 9 JavaScRipT aND The bRowSeR . 308
Using Dialog Windows .310

Working with the Window . 313

Manipulating the DOM .335

JavaScript and CSS. 349

Working with Cookies .358

Using Timers . 369

Review and Pursue .372

Wrapping Up .375

Chapter 10 woRkiNG wiTh foRMS .376
General Form Considerations .378

Text Inputs and Textareas .387

Select Menus . 389

Checkboxes . 396

Radio Buttons. 400

Handling File Uploads. 401

Regular Expressions . 403

Putting It All Together. .415

Review and Pursue .421

Wrapping Up . 423

Chapter 11 aJax . 424
Ajax Basics . 426

Working with Other Data. 442

The Server-Side Script . 447

Ajax Examples .451

Review and Pursue . 469

Wrapping Up .471

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

viii Modern JavaScript: develop and deSign

Part 3 NexT STepS

Chapter 12 eRRoR MaNaGeMeNT .472
Catching and Throwing Errors .474

Using Assertions. 479

Unit Testing. .481

Review and Pursue . 488

Wrapping Up . 489

Chapter 13 fRaMewoRkS . 490
Choosing a Framework . 492

Introducing jQuery . 494

Introducing YUI . 509

Libraries . 522

Review and Pursue .523

Wrapping Up . 525

Chapter 14 aDvaNceD JavaScRipT .526
Defining Namespaces. 528

Creating Custom Objects . 529

Understanding Prototypes .537

Working with Closures .541

Alternative Type Identification .547

Minifying Code . 548

Review and Pursue . 550

Wrapping Up .551

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

contentS ix

Chapter 15 php aND JavaScRipT ToGeTheR . 552
Identifying the Goal . 554

Creating the Database . 556

Establishing the Site. 558

Coding the Non-JavaScript Version . 559

Creating the Ajax Resources. 569

Adding the JavaScript. .572

Completing this Example. 592

Review and Pursue .593

Wrapping Up . 594

Index. 595

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

x Modern JavaScript: develop and deSign

JavaScript is one of the most widely used programming languages today, found on
almost every Web page (certainly all the new ones). Over the past ten years, between
economic changes and expansions in how JavaScript is used, more and more Web
developers and designers are expected to know this language. These facts make it
all the more ironic that so few people respect JavaScript as the true programming
language that it is. Furthermore, many books still present JavaScript in a legacy
manner, as a technology to be used piecemeal to implement gimmicks and distrac-
tions. This book was written to address these problems, presenting JavaScript in a
way that you can easily understand, actually master, and appropriately utilize as
a productive asset in today’s dynamic Web sites.

Who this Book is For

This book was written primarily with two types of readers in mind:

J Those who don’t know JavaScript at all (and perhaps have never done any
programming)

J Those who may have played with JavaScript some, but don’t have a solid
understanding of why one does what one does in the language.

You may be a Web developer who has written code in other languages but
merely dabbled with JavaScript. Or, you may be a Web designer, with a graphical
focus but an increasing need to learn JavaScript. Whatever the case, if you have a
sincere interest in understanding modern JavaScript and knowing how to use it,
well, then this book is for you.

What You Will learn

By reading this book, and trying the many examples, you will come to comprehend
what JavaScript is and how to reliably program with it, regardless of the task. The
book’s content is organized in three sections.

part 1: getting Started
The first part of the book starts with JavaScript’s history and its role in today’s
Web. You’ll also learn the fundamental terms and concepts, particularly when
it comes to using JavaScript with HTML in a Web page. The last chapter in Part
1 thoroughly covers the types of tools you’ll need to develop, design, debug, and
test JavaScript code.

IntroduCtIon

ptg7799847

introduction xi

part 2: JavaScript FundaMentalS
The bulk of the book is in this second part, which teaches the core components
of the language. These fundamentals include the kinds of data you’ll work with,
operators and control structures, defining your own functions, handling events,
and Ajax. Two chapters focus on the browser and HTML forms.

part 3: neXt StepS
All books have their limits, and this book purposefully stops short of trying to cover
everything, or attempting to turn you into a true JavaScript “ninja.” But in the third
part of the book, you will be introduced to what your next logical steps should be
in your development as a JavaScript programmer. One chapter is on frameworks,
another is on advanced JavaScript concepts, and a third walks through a real-world
integration of JavaScript and PHP for a practical Web application.

the CorresPonding WeB site

My Web site can be found at www.LarryUllman.com. To find the materials specific to
this book, click on Books By Topic at the top of the page, and then select JavaScript >
Modern JavaScript: Develop and Design. On the first page that comes up you will
find all of the code used in the book. There are also links to errata (errors found)
and more information that pertains directly to this book.

The whole site is actually a WordPress blog and you’ll find lots of other use-
ful information there, in various categories. The unique tag for this book is jsdd,
meaning that www.larryullman.com/tag/jsdd/ will list everything on the site that
might be useful and significant to you. While you’re at the site, I recommend that
you also sign up for my free newsletter, through which I share useful resources,
answer questions, and occasionally give away free books.

The book has a corresponding support forum at www.LarryUllman.com/forums/.
You are encouraged to ask questions there when you need help. You can also follow
up on the “Review and Pursue” sections through the forums.

let’s get started

With a quick introduction behind you (and kudos for giving it a read), let’s get
on with the show. In very first chapter, you’ll learn quite a bit about JavaScript as
a language and the changing role it has had in the history of Web development.
There’s no programming to be done there, but you’ll get a sense of both the big
picture and the current landscape, which are important in going forward.

www.LarryUllman.com
www.larryullman.com/tag/jsdd/
www.LarryUllman.com/forums/

ptg7799847

xii Modern JavaScript: develop and deSign

WelCome to JavaSCrIpt

A great thing about programming with JavaScript is that most, if not all, of the tools you’ll

need are completely free. That’s particularly reassuring, as you’ll want a lot of the follow-

ing items in order to develop using JavaScript in a productive and reliable way. Chapter 3,

Tools of the Trade, goes into the following categories in much more detail.

BrowSerS

Presumably, you already
have at least one Web
browser, but you’ll want
several. All the key mod-
ern browsers are free and
should be used: Chrome,
Firefox, Safari, Opera, and
even Internet Explorer.

teXt editor

To write JavaScript code,
you can use almost any
text editor, although
some are clearly better
than others. The quick
recommendations are
Notepad++ on Windows
and BBEdit or TextMate on
Mac OS X.

ptg7799847

welcoMe to JavaScript 1

ide

If you prefer an all-in-one
tool to a text editor, select
an Integrated Develop-
ment Environment (IDE).
The free Aptana Studio
is wonderful and runs
on most platforms; fine
commercial alternatives
exist, too.

deBugger

Debugging is a big facet
of all programming, and
better debugging tools
means less stress and
a faster development
time. Firebug is the clear
champion here, although
many browsers now have
sufficiently good debug-
ging tools built in.

weB Server

Examples in two chapters
require a PHP-enabled
Web server, plus a MySQL
database. If you don’t
have a live Web site with
these already, you can
download and install the
free XAMPP for Windows
or MAMP for Mac OS X.

ptg7799847

1

(RE-)INTRODuCINg
JavaSCrIpt

ptg7799847

JavaScript today is one misunderstood programming

language. From what JavaScript can do, to what it can’t,

to what JavaScript isn’t (JavaScript is not Java), there’s a lot of

confusion about this technology that’s at the heart of today’s Web.

As you can’t effectively use any technology without comprehend-

ing its essence, this first chapter in the book provides an overview

of modern JavaScript.

Most of the chapter discusses what JavaScript is and how it came

to be in its current state. Next, you’ll find some basic information

as to JavaScript versions and browser support. The chapter con-

cludes with the approach you ought to have when programming

JavaScript, which is also the perspective being taught by this book.

3

ptg7799847

JavaScript is, technically speaking, an object-oriented, weakly typed, scripting
language. One could toss more jargon into this definition, but those are the most
critical aspects of the language. Let’s look at them in detail.

First, JavaScript is an object-oriented programming language, as opposed to a
procedural one. This distinction has several implications. First and most impor-
tant among these is that almost all of the variables you’ll work with are, in fact,
objects. An object is a special variable type that can have its own subvariables,
called properties, and functions, called methods. Together, an object’s properties
and methods are called its members.

For example, here is a string in JavaScript, a string being any number of quoted
characters:

var name = ‘Larry Ullman’;

That string variable, name, is actually an object of type String. Because it’s a
JavaScript String object, name automatically has a property called length, which
reflects the number of characters in the string. For this particular string, length has
a value of 12, which includes the space. Similarly, name automatically has several
defined methods, like substring() and toUpperCase(). (With an object’s members,
the parentheses distinguish properties from methods.)

With object-oriented programming, you’ll use object notation extensively to refer
to an object’s members: someObject.someProperty or someObject.someMethod().
This means that, using the name example, name.length has a value of 12, and to
capitalize the string, you could code

name = name.toUpperCase(); // Now ‘LARRY ULLMAN’

Conversely, in procedural PHP code, you would write

$name = ‘Larry Ullman’;

$name = strtoupper($name); // Now ‘LARRY ULLMAN’

And

$length = strlen($name); // 12

As you can see, to apply a function to a variable in procedural code, the variable
is passed to the function as an argument. In object-oriented code, the variable’s
own function (i.e., its method) is called by the object itself.

What is JavaSCrIpt?

4 ChaPter 1 (re-)introducing JavaScript

ptg7799847

The object (or dot) notation can also be chained, allowing you to access nested
properties and methods:

someObject.someProperty.someMethod()

The fact that JavaScript is an object-oriented language is quite significant and
has many ramifications as to how the language can be used. In fact, as you’ll eventu-
ally see, even functions and arrays in JavaScript are objects! JavaScript is a different
kind of OOP language, though, in that you don’t define classes and then create
objects as instances of those classes, as you do in most object-oriented languages.
As you’ll learn in time, this is because JavaScript is protoype-based, not class-based.
This somewhat uncommon type of object-oriented language changes how you
perform OOP in JavaScript, especially in more advanced-level programming.

The second part of the JavaScript definition says that JavaScript is a weakly
typed language, meaning that variables and data can be easily converted from
one type to another. For example, in JavaScript, you can create a number and then
convert it to a string:

var cost = 2;

cost += ‘ dollars’; // cost is now a string: “2 dollars”

In a strongly typed language, the creation of a new variable, such as cost, would
also require indicating its strict type. Here is how the variable declaration and
assignment would be done in ActionScript, a language otherwise very similar to
JavaScript:

var cost:int = 2; // cost must be an integer!

Moreover, in a strongly typed language, attempts to convert a number to a
string (as in the JavaScript code) would generate an error.

Some programmers appreciate the flexibility that weakly typed languages
offer; other programmers consider weak typing to allow for sloppy coding. To be
fair, bugs can occur because of implicit type conversion. (JavaScript is also called

NOTE: it’s conventional in ooP to use camel-case for variable
and function names: someObject and someMethod(), not some_object
and some_method().

what iS JavaScript? 5

ptg7799847

dynamically typed, because conversions can happen automatically, as in the above
code.) But if you’re aware of type conversions as you program, the potential for
bugs will be mitigated and you can take full advantage of the language’s flexibility.

Third, to say that JavaScript is a scripting language means that JavaScript code
is run through a program that actually executes the code. By comparison, the
instructions dictated by a language such as C must first be compiled and then the
compiled application itself is executed. In this book, almost all of the JavaScript will
be executed within a Web browser, where the JavaScript “executable” is the Web
browser’s JavaScript engine (and different browsers use different JavaScript engines).

y

JavaScript began life in 1995, originally under the names Mocha, then LiveScript.
Version 1.0 of JavaScript, using that new name, was released in 1996, by Netscape.
If you’re old enough, you’ll have heard of Netscape, as Netscape Navigator was
one of the first Web browsers, in time losing all of its market share, primarily to
Internet Explorer. Eventually, Netscape created and spun off as Mozilla, creators
of the Firefox Web browser (www.mozilla.com) and one of the key participants in
JavaScript’s continued development.

JavaScript is an implementation of ECMAScript (pronounced ECK-MA-Script), a
standardized international scripting language that most people have never heard of
(ECMA is short for European Computer Manufacturers Association). ActionScript,
mentioned a page or so ago, is also an ECMAScript derivation, and has many simi-
larities to JavaScript. JavaScript’s syntax was influenced by the Java programming
language, but the two languages are neither related nor that similar otherwise.

Although JavaScript even today is primarily used within the Web browser,
JavaScript can also be embedded into PDFs, used to create desktop widgets, and
can even be the basis of dynamic server-side functionality.

But these details are just basic facts. In order to know modern JavaScript, you
should also be aware of JavaScript’s seedy past.

NOTE: Microsoft named its implementation of Javascript Jscript because
Javascript is a trademarked name.

6 ChaPter 1 (re-)introducing JavaScript

www.mozilla.com

ptg7799847

a soMetiMes uglY historY

When I first began doing Web development, in 1999, JavaScript was moderately useful
at best and quite annoying at worst. To the greater detriment of the Web, JavaScript
was used to create alerts (shudder), pop-up windows (ugh), and playing audio files
(please don’t). Less annoying but common applications of JavaScript included image
rollovers and browser status-bar manipulations. At the time, common attempts to
add significant dynamic functionality required HTML frames, thus mandating extra
work to make the page still seem coherent. In the 1990s, the best possible use, or
perhaps the only good use, of JavaScript was for improving and validating HTML
forms. In short, JavaScript was treated as a “toy” language, and the application of it
warranted little respect.

Added to the poor use of JavaScript were two key factors regarding the state of
the Web a decade-plus ago. First, broadband Internet access was just becoming
regularly available to home users (in the largest Internet market at the time: the
United States). Without high-speed Internet access, prudent developers kept their
Web-page sizes small, and they limited use of JavaScript and media as much as
possible. Back then, the idea of transmitting 14 KB of data—the size of a common
JavaScript framework today—to the end user, just to be able to add some flash
(pun intended), or a bit of functionality, to a site was impractical.

Second, although browser support for JavaScript is not remotely consistent
today, in the late 1990s, the browser differences were huge. At the time, the two
primary browsers were Internet Explorer and Netscape Navigator, with the popu-
lar Internet Service Provider (ISP) America Online (AOL) using its own custom
browser. With such browser differences, writing reliable cross-browser JavaScript
was a significant hurdle.

Fortunately, many things have changed.

the seCond CoMing oF aJax

One of the most significant developments in the history of JavaScript is the rise
of Ajax. First described in 2005, Ajax is really just a label given to functionality
that browsers were capable of for some time previously. The term Ajax either does
or does not mean Asynchronous JavaScript and XML; the person who originally
coined the term, Jesse James Garrett, now says Ajax is not an acronym. Regardless,
the premise behind Ajax is this: While the user is doing stuff within the browser,

JavaScript’S hiStory 7

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

events are triggered (e.g., by clicking on a link, using a form, mousing over an ele-
ment, or whatever). These events can be handled by JavaScript asynchronously,
meaning that JavaScript can do its thing in the background without forcing the
user to wait for JavaScript to respond to the event. The “thing” that JavaScript will
do in Ajax is make a request of a server-side resource. When Ajax was first defined
as a term, the results of that request were returned to the JavaScript using the XML
(eXtensible Markup Language) format.

I say that Ajax is a significant development, but its benefits were lost on many
for quite some time. And, to be fair, it’s hard for a book to convey how useful Ajax
is. To best understand how the invention of Ajax affects Web functionality, let’s
look at an example.

Say you have a registration form on your Web site, where a user enters a user-
name, email address, password, and so forth (Figure 1.1). After the user completes
the form, he or she clicks the submit button to send the form data to the server.
At that point, the server-side script would validate the form data. If the data was
okay, the user would be registered. If there were errors, the form would have to be
displayed again, with the errors shown but data retained (Figure 1.2). This process
would be repeated until the point at which the form is completed properly, the
user is registered (Step Y, Figure 1.3), and the user is redirected to the next logical
HTML page (Step Z).

fiGURe 1 .1 A simple HTML
form, which could be part of a
registration process (left).

fiGURe 1 .2 Problems with the
form data should be reflected
to the end user, giving him or
her the opportunity to correct
the mistakes and resubmit the
form (right).

8 ChaPter 1 (re-)introducing JavaScript

ptg7799847

fiGURe 1 .3 How the registration process
works in a typical client-server model.

CLIENT SERVER

B. Response
(Page with Form)

C. Form Submission

Z. OK

D. Not OK (errors)

E.

Y. OK

Next HTML Page

A. Page Request

Validation

Register

JavaScript’S hiStory 9

ptg7799847

This is a perfectly fine, workable system. Moreover, this is still the approach
that would be used should the user’s Web browser not support Ajax for any reason.
But with modern JavaScript, this system and the user experience can be greatly
enhanced. As it stands, each form submission requires a complete download and
redrawing of the entire HTML page. If there’s just one problem with the form data,
all of the HTML code, images, and so forth, must be resent to the browser (aside
from whatever content was cached) and redrawn. The time required to do all this—
send the form data to the server, process it on the server, resend the complete page
back to the user, and redraw the page in the browser—isn’t dramatic, but will be
apparent to the end user.

A better solution is to perform client-side form validation using JavaScript. With
JavaScript running in the browser, you can easily confirm that a form is completed
and immediately report upon problems, without any server requests at all (Figure 1.4).
(Note that, as shown in Figure 1.4, as a server security measure, server-side valida-
tion would still be in place, but that validation would only catch a form error if the
user had JavaScript disabled.)

For a long time, basic form validation was one of the better uses of JavaScript.
But with just client-side JavaScript, there is a limit as to what kind of validation
can be performed, really only checking a form’s completeness. When it comes to
more complex validation, such as confirming that a username is available (Figure
1.2), a server-side request is still required (because the username data is stored in
a database on the server). This is one just one situation where Ajax really shines!

NOTE: Because Javascript can be disabled in the browser, server-side form
validation must always still be used.

10 ChaPter 1 (re-)introducing JavaScript

ptg7799847

fiGURe 1 .4 JavaScript can be used to
prevent server requests until after the form
data passes some simple validation routines.

CLIENT SERVER

B. Response
(Page with Form)

C. Form
Submission

W. OK

Z. OK

X. Not OK
(errors)

E. Y. OK

Next HTML Page

A. Page Request

JavaScript
Validation

Validation

Register

D. Not OK
(errors)

JavaScript’S hiStory 11

ptg7799847

Ajax allows client-side JavaScript to make server-side requests in a way that’s not
obvious to the user. Continuing with this form-validation example, when the user
clicks the submit button, the JavaScript could pause the submission of the form and
send the form data to a server-side script. That script would perform all of the vali-
dation and return data that indicates a simple status or a list of errors. If errors were
returned, the JavaScript would parse the errors and update the page, indicating any
and all errors accordingly, and add highlighting to further emphasize the problems.
If the returned status indicated that no errors occurred, the JavaScript would do
whatever to move the user along in the process (Figure 1.5). Now, in looking at the
process outlined in the figure, it may seem that applying Ajax just makes everything
way more complicated. And, well, it is more complicated. But the key benefits gained
by incorporating Ajax are:

J As much work as possible is being done within the Web browser

J As little data (e.g., HTML, CSS, media, and so forth) is being transmitted by
the server as possible

The end result for the user is a more efficient and responsive process.
In the years since the idea of Ajax was first formalized, its usage and acceptance

has greatly expanded without too many changes in the underlying technology. One
primary difference between the original idea of Ajax and today’s Ajax is that the
transmitted data won’t necessarily be in XML format. The data could also be JSON
(JavaScript Object Notation) or just plain text. Secondarily, how one performs an
Ajax request has become more consistent among the browsers.

NOTE: Chapter 11, ajax, covers ajax in all its glory.

12 ChaPter 1 (re-)introducing JavaScript

ptg7799847

fiGURe 1 .5 Using Ajax, server-side valida-
tion can also be performed, and the user
automatically taken to the next step in the
process, without any overt server requests.

CLIENT SERVER

B. Response
(Page with Form)

C. Form
Submission

U. OK

Y. OKW. Not OK
(errors)

V. Not OK (errors)

E. X. OK

Generate Next HTML Page

A. Page Request

JavaScript
Validation

Validation

Register

JavaScript
Handle
Server
Response
Errors

Z. OK

D. Not OK
(errors)

JavaScript’S hiStory 13

ptg7799847

BroWser iMProveMents

JavaScript has been historically difficult to learn for three reasons. For one, JavaScript
is a language unlike many others, in terms of where and how it’s used and in terms
of its prototyped object nature, as already discussed (e.g., it’s an OOP language that
doesn’t let you define your own classes). Second, because JavaScript is primarily
used in a Web browser, it’s a language that historically fell under the purview of Web
designers, not programmers. And third, creating reliable, cross-browser JavaScript
was extremely tedious. Just to do a simple thing using JavaScript, you’d have to write
the code one way for one group of browsers and another way for other browsers.
Changes in subsequent versions of the same browser required further considerations.
Attempting to create code that was 100 percent reliable on all browsers was a huge
hurdle, resulting in “solutions” like:

if (navigator.appName == “Netscape”) { // It’s Netscape!

 if (parseInt(navigator.appVersion) >= 4) { // At least version 4!

 } else { // It’s an earlier version. Bah!

 }

} else { // Let’s assume it’s IE?

}

Those are just conditionals that attempt to identify the browser type and version.
Code within each clause would do the actual work, using JavaScript particular to the
browser and version identified. Considering that common browsers today include
Internet Explorer, Mozilla Firefox, Apple Safari, and Google Chrome, and that many
different versions of each browser can be found on different computers (at the time
of this writing, 6 through 9 for IE, 3 through 6 for Firefox, and so forth), the mere
notion of programming for a specific browser and version is implausible. (And that
list doesn’t take into account the myriad number of mobile and gaming devices.)

TIP: When it comes to Web development in general and
Javascript in particular, the golden rule is: initially develop using

a good browser, such as Firefox, then later test on internet explorer to
make your clients happy.

14 ChaPter 1 (re-)introducing JavaScript

ptg7799847

Ironically, despite this increasingly wide range of options, in terms of func-
tionality, browsers today can be lumped into two broad categories: Microsoft’s
Internet Explorer and everything else. As any Web developer with even the slight-
est amount of experience will tell you, designing HTML and CSS, or programming
JavaScript for Internet Explorer (IE) is a bother (I’m being polite here). Fortunately,
over time Microsoft has improved how nicely IE plays with others, and, or perhaps
because, fewer and fewer people are using Internet Explorer. The other category
of browsers—“everything else”—primarily means Firefox, Chrome, and Safari
as I write this, although Opera is worth mentioning despite its low market share.
Generally speaking, these browsers all adhere to the standards much more closely
than IE, and, well, are just better (let’s be honest about that). The end result is that
developing Web applications in such a way as to guarantee a reasonable level of
uniform user experience has become significantly easier. More importantly, though,
a new approach is being used to write code that reliably works on any browser.
You’ll learn about that near the chapter’s end.

the rise oF FraMeWorks

The third major development in the history of JavaScript is the creation of frameworks.
A framework is just a library of code whose purpose is to expedite development. In
any programming language there are oodles of tasks and processes that get repeated.
Rather than just re-create the appropriate code each time, it’s better, in the long run,
to write a framework that will easily and quickly replicate that code for you. JavaScript
libraries have been around for years, but they were historically smaller in scope and
usage. Today’s frameworks are powerful, yet flexible. JavaScript frameworks can
create user interface widgets such as date-picking calendars (Figure 1.6), simplify
form validation and Ajax integration, and enhance common Web elements, such as
paginating and sorting tables of data.

fiGURe 1 .6 A date-picking calendar
widget, created by the YUI framework.

JavaScript’S hiStory 15

ptg7799847

More importantly, a framework can create code that’s browser-agnostic, mean-
ing it will work successfully regardless of the browser in use (assuming the browser
still has JavaScript enabled, that is). For example, MooTools (http://mootools.
net/) is “compatible and fully tested with” Safari 3+, Internet Explorer 6+, Firefox
2+, Opera 9+, and Chrome 4+. For many developers, the cross-browser reliability
alone is reason enough to use a framework.

Choosing a framework is a personal decision and one that can be complex (I go
into the topic in Chapter 13, Frameworks). The first JavaScript framework I used was
script.aculo.us (http://script.aculo.us), and then I moved on to YUI, the Yahoo!
User Interface (http://developer.yahoo.com/yui/). For the past couple of years,
though, I’ve adored jQuery (http://jquery.com), as have many others. In this book, I
primarily discuss and demonstrate jQuery and YUI, but other JavaScript frameworks
that are highly regarded include MooTools, script.aculo.us, and:

J ExtJS (http://www.sencha.com/)

J The Dojo Toolkit (http://dojotoolkit.org/)

J Prototype (http://www.prototypejs.org/)

All that being said, there are several reasonable arguments against the use of
frameworks. First, frameworks require extra learning while still requiring complete
comfort with the language itself (e.g., you’ll need to learn JavaScript, and then
learn jQuery or whatever). Second, trying to use a framework for very advanced
or custom purposes can be hard at best or nearly impossible at worst, depending
upon your skill level. Finally, frameworks almost always mean worse performance
when compared with writing your own code. With JavaScript in particular, tapping
into a framework means that the browser has to download much more code than
it would if just JavaScript alone were to be used.

In the 15 years since JavaScript was created, the adoption of Ajax, improvements
in browsers, and creation of frameworks have greatly expanded the usefulness and
usability of this language. However, the interesting thing is that relatively little
about the language itself has changed in that time. In describing the sometimes
ugly history of the language, one could say that history is really the story of people
at first not using a technology well, and later learning how to make the most of
JavaScript’s potential.

16 ChaPter 1 (re-)introducing JavaScript

http://script.aculo.us
http://developer.yahoo.com/yui/
http://jquery.com
http://www.sencha.com/
http://dojotoolkit.org/
http://www.prototypejs.org/
http://mootools.net/
http://mootools.net/

ptg7799847

JavaSCrIpt ISN’T...

Now that you have an understanding of what JavaScript is (hopefully), let’s take
a minute to talk about what JavaScript isn’t. This could also be called the “Myth
Busters” section of the chapter!

First, JavaScript is not Java. This is a common point of confusion and reason-
ably so (they both start with “Java,” after all). But, no, JavaScript is not Java. In fact,
JavaScript is unrelated to Java, is a different type of object-oriented language, is
a scripting language (Java is compiled), and is used for very different purposes. If
you’re going to learn JavaScript, the first thing you must do is stop calling it “Java.”

Second, JavaScript is not just for mouseovers, alerts, and pop-up windows.
JavaScript, in the Web browser, is for improving the user experience.

Third, JavaScript is not just a client-side technology anymore, although that’s still
its primary purpose and use. Over the past couple of years, server-side JavaScript
has been developed, in many forms.

Fourth, JavaScript is not hard to learn, provided you have the right resource that
is! (Ahem.) This book treats JavaScript as a true programming language—which it
is, providing you with the context and structured approach to help you truly learn,
and appreciate, JavaScript.

Fifth, JavaScript is not hard to debug. OK, compared to other languages, debug-
ging JavaScript isn’t quite as easy, but given the right tools—see Chapter 3, Tools
of the Trade—you can debug JavaScript efficiently.

Finally, JavaScript is not a security measure. Because JavaScript is easy for users
to disable or manipulate, you should never rely on JavaScript for security purposes.

JavaScript iSn’t... 17

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

I never really appreciated the lessons of English grammar until I started studying
foreign languages: Sometimes you just need something to compare and contrast
to in order to grasp an idea. In the next couple of pages, I’ll explain how JavaScript
compares to other common technologies with which you may be familiar, in the
hopes that you can then more fully understand the language you’re about to master.

htMl and cSS
HyperText Markup Language (HTML) is the technology used to create Web pages.
(As an aside, if you don’t already know that, you’ll want to learn HTML before going
any further with this book.) HTML is like JavaScript in that both are primarily des-
tined for Web browsers, but the comparisons stop there. HTML is a way to present
content to users; JavaScript is a way to make that content dynamic.

Cascading Style Sheets (CSS) are also intended for Web browsers, but focus on
the visuals. CSS could be described as somewhat dynamic in that CSS rules can
apply differently from one browser to the next, but this is not the same level of
dynamism as JavaScript can offer. CSS, like JavaScript, makes use of the Document
Object Model (DOM), which is a representation of the HTML found in a page. In
fact, the jQuery framework uses CSS-like selectors for its own DOM manipulations.

You may have heard of the MVC (Model, View, Controller) design pattern, which
is an approach to software development that separates the data (called the Model)
from the visuals (the View) from the actions (the Controller). In those terms, it
may help to think of HTML as the Model—the data with which you’re dealing,
CSS as the View—the presentation, and JavaScript as the Controller—the agent
of change and activity.

php
PHP is the most popular language used to create dynamic Web sites (and is one of
my favorite languages). PHP, like JavaScript, is a scripting language, which means
two things:

J Code responds to events

J Scripts are run through an executable

By comparison, C and C++, among other languages, can be used to write stand-
alone applications. Such applications can even take actions on their own, regard-
less of events.

hoW JavaSCrIpt CompareS to...

18 ChaPter 1 (re-)introducing JavaScript

ptg7799847

Web ServerClient

PHP

1. URL Request

4. HTML, CSS,
and JavaScript

2. Script
Request

3. HTML, CSS,
and JavaScript

The biggest difference between PHP and JavaScript is that JavaScript primarily
runs in a Web browser (aka, a client) and PHP only runs on a server. Whereas the
Web browser includes the JavaScript engine for executing JavaScript code, the Web
server application, such as Apache, includes the PHP module for executing PHP code.
Whereas JavaScript reacts to user and browser-based events, PHP reacts to server-
based events, such as the request of a particular page or the submission of a form.

There is a little overlap as to what the languages can do (e.g., they can both work
with cookies, generate images, and redirect the Web browser, but the overlaps don’t
go much further). PHP can be used to dynamically generate JavaScript, though, just
as PHP can be used to create HTML or CSS on the fly (Figure 1.7). PHP can also
be written taking either a procedural or an object-oriented approach, whereas
JavaScript is only an object-oriented language. But both languages are weakly typed.

All that being said, if you already know PHP, JavaScript should be comparatively
easy to learn. As Web programmers are now repeatedly expected to know how to
do both client-side and server-side programming, it’s appropriate to learn both. In
this book, PHP will be used for any server-side needs, such as in the Ajax examples,
but you do not need to be a PHP master to follow along with those examples.

fiGURe 1 .7 PHP can dynami-
cally generate HTML, CSS, and
JavaScript on the Web server,
which is then sent to the
browser.

how JavaScript coMpareS to... 19

ptg7799847

FlaSh
I include Flash in the list of technologies to compare and contrast to JavaScript
because Flash is often an alternative to JavaScript for adding dynamic behavior
to Web pages. Modern Web sites, which respond better to user interaction, com-
municate with servers, and more, are really Web applications, and are often called
Rich Internet Applications (RIAs). RIAs are primarily created using either JavaScript
or Flash. Flash is a proprietary technology managed by Adobe that can be created
in a couple of different ways (Flash itself is not a programming language).

Although Flash can be used for many of the same purposes as JavaScript, how
Flash works in the Web browser—it requires a Flash Player plugin—is a key dif-
ference. Whereas JavaScript can interact with the HTML page via the DOM, Flash
content is really separate from the HTML page itself (although JavaScript can be
used to communicate between Flash and the Web browser). Also, Flash has com-
plications when it comes to mobile devices, accessibility, and other nontraditional
Web experiences. All that being said, there’s an argument to be made that the
most advanced RIAs—such as games, presentation of lots of data using charts
and graphs, and so forth—can be more quickly and reliably created in Flash. But,
again, not everyone can run Flash…

actionScript
ActionScript is the programming language of Flash and Flex (Flex is a framework for
creating Flash content). ActionScript is extremely similar to JavaScript, as both are
derived from the same parent: ECMAScript. But while both languages are object-
oriented, ActionScript is strongly typed and is not prototype-based (i.e., you can
define classes in ActionScript). Still, if you know ActionScript, it will be easy to
pick up JavaScript, and vice versa.

NOTE: While i was writing this book, adobe started signaling a
change in its attitude toward Flash, meaning this ubiquitous technol-

ogy’s future is now surprisingly uncertain.

20 ChaPter 1 (re-)introducing JavaScript

ptg7799847

If you’re reading this book, you presumably have an interest in learning JavaScript,
but I’d be remiss if I didn’t also present my thoughts as to why JavaScript is a Good
Thing. The most important and obvious reason is that JavaScript is useful. A large
swath of the dynamic functionality that’s normal in today’s Web sites is accom-
plished using JavaScript. In fact, much of this functionality is so expected by users,
that not using JavaScript would be a noticeable omission. Moreover JavaScript…

J Can improve a site’s performance (e.g., thanks to Ajax)

J Can be used to fix browser deficiencies, such as support for newer CSS
features

J Can be used in mobile devices (depending upon the device)

J Is entirely reliable, when done right

J Pushes some of the processing onto the client and off of the server, easing
the server’s load

One of the great things about JavaScript is that the language itself is counter-
intuitively responsible for undermining its own reputation. Or more simply put: you
can use JavaScript without really knowing it. While it’s true that using JavaScript well
requires sound knowledge, using it some is quite easy. Moreover, because JavaScript
runs in the Web browser, anyone’s JavaScript code is readily viewable: When you
encounter a feature or an effect on a page that you like, you can just copy the HTML,
JavaScript, and CSS for your own purposes (I’m setting aside the moral and legal
issues here). By comparison, Java and C++ code are not easy to use piecemeal: You
really have to know these languages to do much in them. Secondarily, compiled
applications make seeing the underlying code anywhere from hard to impossible.

Finally, JavaScript is a Good Thing because someone else has almost certainly
already figured out how to accomplish what you’re trying to do. This is true for all
established languages, of course, but with JavaScript, perhaps because the code will
always be public anyway, smart programmers are inclined to share. Often, smart
programmers create a public library or framework out of the snazzy code, too.

g

why JavaScript iS a good thing 21

ptg7799847

As already stated, the core of JavaScript comes from ECMAScript, which is cur-
rently in version 5 as of 2009. The most current version of JavaScript, based upon
ECMAScript 5, is JavaScript 1.8.5, which came out in July of 2010. When program-
ming in JavaScript, however, these facts are less critical than what’s possible in what
browsers. Most modern browsers support ECMAScript 3 and parts of ECMAScript 5
(no version 4 of ECMAScript was ever officially released).

“Modern browsers” is a phrase you’ll see a lot in this book and elsewhere. Roughly
speaking, modern browsers support core JavaScript, DOM manipulation, the
XmlHttpRequest object (used to make Ajax requests), and basic CSS. In sum, modern
browsers are capable of making the most of today’s dynamic Web technologies.
This broad definition includes most versions of Firefox, Chrome, Opera, and Safari,
and versions of Internet Explorer after IE6 (IE6 has been the Web developer’s arch
nemesis for years).

Note that the loose definition of “modern browsers” isn’t based solely upon
JavaScript, but also upon other advances, such as the ability to perform DOM
manipulation. JavaScript is frequently used to manipulate the DOM, but the DOM
is defined and managed by the W3C (World Wide Web Consortium, www.w3.org).
Different browsers also support the DOM in different ways, which means that when
creating dynamic Web sites, one has to factor in not only variations in JavaScript
support, but also DOM support and CSS support (and HTML5 support, should
you choose).

As of August 1, 2011, Google decided to start supporting a more modest list
of modern browsers (supporting for Web applications; the Google search engine
is usable in any browser, of course). Google’s criteria is simply the most current
release of Chrome, Firefox, IE, and Safari, plus the preceding release of each. On
the one hand, this approach does exclude a decent percentage of Web users and
some browsers that would otherwise be deemed “modern.” On the other hand, the
approach acknowledges that changes come with new versions of browsers, and that
there’s a good reason to drop older versions, just as users ought to be constantly
upgrading their browsers, too.

TIP: if you want, you can keep an eye on eCMascript 5 compatibility,
using sites such as http://kangax.github.com/es5-compat-table/.

JavaSCrIpt verSIonS and
BroWSer Support

22 ChaPter 1 (re-)introducing JavaScript

www.w3.org
http://kangax.github.com/es5-compat-table/

ptg7799847

Yahoo!, in conjunction with the Yahoo! User Interface (YUI) JavaScript frame-
work (http://yuilibrary.com), developed its own Graded Browser Support system
(http://yuilibrary.com/yui/docs/tutorials/gbs/). Rather than identify what
browsers are officially supported, the list identifies the browsers one ought to test a
site on. Yahoo!’s list, as of July 2011, includes Internet Explorer versions 6 through 9,
Firefox versions 3 through 5, the latest stable version of Chrome, and Safari 5.

But what do any of these lists mean for you as a JavaScript programmer? Know-
ing what different versions of different browsers can do is good for your own edi-
fication, but will not be the basis of your JavaScript programming. A decade ago,
when there weren’t that many browsers, JavaScript code was written specifically
checking the browser type and version (as shown in earlier code): Is this Internet
Explorer or Netscape Navigator? Is it version 4 or 5 or 5.5? With literally thousands
of different browser types and versions available (when you factor in mobile devices),
it’s impossible to target specific browsers and versions. Furthermore, for any num-
ber of reasons, browsers will wrongfully identify themselves. And even if you can
overcome those two hurdles, the code will be outdated with the next release of a
new browser, a new browser version, or a new device with its own internal browser.

Instead, in today’s modern JavaScript, code is written not for the browser but
for the browser’s capabilities. It’s a subtle but significant difference, and part of the
basis for proper modern JavaScript programming. In this book, you’ll learn many
techniques for programming to what’s possible, rather than what browser is running.

Still, after developing the code, you should still test the site on a range of brows-
ers, like those in Yahoo!’s or Google’s lists. When working on a project for a client,
you and the client will need to come up with your own list of supported browsers
(this is something that ought to be stipulated in the contract, too). Keep in mind that
a properly designed site should still fully function in a nonsupported browser; it just
won’t be able to take advantage of the dynamic functionality added by JavaScript
and other modern tools (like CSS3 and HTML5).

NOTE: search engines generally don’t recognize the effects of
scripting. to make a site’s content findable by, and meaningful to,
a search engine, it must exist in a nonscripted form.

JavaScript verSionS and BrowSer Support 23

http://yuilibrary.com
http://yuilibrary.com/yui/docs/tutorials/gbs/

ptg7799847

In starting a new endeavor, whether it’s learning JavaScript for the first time or
learning better, more modern JavaScript techniques, one ought to have a sense of
the goals before starting out. The purpose of a Web site, of course, is for it to be
viewable and usable by clients—end users with their Web browsers. If visitors can-
not use a site, you have failed in your job as a Web developer. Toward this end, the
site’s functionality should be possible on all browsers, including those on mobile
devices, nonvisual browsers, browsers with JavaScript disabled, and simply old
browsers. This is easier to accomplish than you might think thanks to an approach
called progressive enhancement.

Progressive enhancement is the process of creating basic, reliable functionality,
and then enhancing that functionality on browsers that support the enhancement.
For example, the standard way to handle a form submission is to send the form
data to a server-side resource (see Figure 1.3). JavaScript, as already discussed, can
accomplish the same thing using Ajax (as in Figure 1.5). Progressive enhancement
says that you should implement the standard approach first, and then intercept
that approach when possible. How you implement progressive enhancement will
be demonstrated repeatedly throughout this book, starting in the next chapter.

This is not to say that there aren’t situations when it’s reasonable to exclude
users. For example, it’s not possible for a site demonstrating the wonders of HTML5
to be properly rendered on an antiquated browser. Or, iOS devices—the iPod, iPad,
and iPhone—do not support Flash. If a site must absolutely use Flash, it should
do so with the understanding that many people will be excluded. But for the most
part, the goal should be to support every browser as much as possible.

Not only should a Web site work regardless of the browser, but it should not
attempt to break the browser’s normal behavior. For years, JavaScript programmers
have attempted to prevent the user from clicking the back button, otherwise using the
browser’s history, accessing contextual menus, and so forth. JavaScript, for the most
part, should improve the user experience, not radically alter it. There’s no justifica-
tion for attempting to make the browser behave in ways other than what the user is
accustomed to. (At the very least, if your site relies upon disabling common browser
behavior, you’ll eventually run into trouble when a user without JavaScript visits.)

Second, to make code easier to maintain, one should also employ the technique
of unobtrusive JavaScript. This phrase refers to the separation of JavaScript code
from the HTML page, and Chapter 2, JavaScript in Action, starts discussing how
this impacts actual code.

s

24 ChaPter 1 (re-)introducing JavaScript

ptg7799847

Finally, modern JavaScript programming should be appropriate for the cur-
rent state of the Web as a whole. Think of this like being a model citizen or a good
parent: demonstrate the qualities that ought to be emulated. This applies not only
to JavaScript, but to HTML and CSS, too. Again, Chapter 2 will establish some
parameters toward this end, such as the adoption of semantic HTML.

These are the goals of modern JavaScript programming. The goal of this book,
then, is to properly implement these goals in real-world code, while simultaneously
teaching JavaScript as a language in its own right.

WraPPing up

This chapter provides a long-winded introduction to JavaScript, but context is
valuable when you begin learning the language. Some of the key thoughts to take
away from this chapter are:

J JavaScript is an object-oriented language, albeit a different kind of one.

J JavaScript is weakly typed.

J JavaScript is a subset of ECMAScript.

J Ajax is awesome.

J Frameworks are wonderful, too.

J JavaScript is not a security measure.

J JavaScript is still primarily a client-side technology.

Those are mostly facts, plus a smattering of opinion. Philosophically, as you
learn JavaScript, you should also strive to adhere to these principles:

J JavaScript should improve the user experience.

J JavaScript should be used unobtrusively.

J A reliable user experience for all user types can be achieved through pro-
gressive enhancement.

J Write code based upon what browsers can do, not what they are.

All of this, and more, will be explained in this book, starting in Chapter 2.

wrapping up 25

ptg7799847

2

JavaSCrIpt
IN aCtIon

ptg7799847

JavaScript, like object-oriented programming

in general, is something the lay programmer can use

without fully understanding it. This quality is both an asset

and a liability of the language. Although this book will teach you

complete and proper JavaScript in time, this chapter provides a

glimpse into real-world JavaScript without all that tedious formal

training. To be sure, this is an unorthodox way to begin, but by

doing so, the book acknowledges that you may already be mucking

about with JavaScript (informally). Further, this early chapter will

present a target toward which the next several chapters can aim.

All that being said, the chapter also introduces some basics, espe-

cially when it comes to Web development and design in general,

starting with the impact that the DOCTYPE will have on everything

else you do.

27

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

When I first began doing Web development, I had no appreciation of an HTML
page’s document type declaration, aka DOCTYPE. I believe I was using HTML 3.2 at
the time, and only understood that meant pages must begin with:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 3.2 Final//EN”>

The DOCTYPE is a declaration of the version of HTML in use by the page, with
each new version of HTML supporting new features (in the form of HTML ele-
ments). For example, HTML 2.0 didn’t even support tables and HTML 3.2 had
limited support for style sheets. For the past several years, the two most common
DOCTYPES have been HTML 4.01 and XHTML 1.0. XHMTL is basically HTML, with
tighter adherence to XML syntax (more on this in the next section). Both HTML
4.01 and XHTML 1.0 come in three flavors: Strict, Transitional, and Frameset. Strict
is obviously the most restrictive of the three, allowing for the smallest set of ele-
ments. The Transitional version is Strict plus deprecated elements and more. The
Frameset version is Transitional plus support for frames.

If you’re like me, you made a decision between HTML and XHTML, and then
probably went with the Transitional option, as it’s the most forgiving:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

Taking things a step further, you may have been in the habit of validating your
HTML pages, using sites like the W3C Markup Validation Service (http://validator.
w3.org/). If so, then you probably knew that such tools perform validation based
upon the page’s DOCTYPE. For example, if you used a deprecated element or a frame
in a Strict document, that would be flagged. The same goes for not adhering to XML
syntax in an XHTML document (Figure 2.1).

NOTE: the DOCTYPE needs to be the absolutely first thing in your Web page,
without even a space before it.

ChooSInG a doCtype

28 ChaPter 2 JavaScript in action

http://validator.w3.org/
http://validator.w3.org/

ptg7799847

Hopefully you already know all this, but if you don’t, or if you don’t know
anymore than this, that’s understandable. The real goal, though, isn’t to just cre-
ate (X)HTML pages that pass the validation routines, but to have the pages look
and function correctly in the Web browser. And here’s where the DOCTYPE also
comes into play: Web browsers will choose one of two operating modes based upon
a document’s DOCTYPE. If a valid DOCTYPE exists, the browser will run in “standards-
compliant” mode (often just called “Standards” mode), in which HTML, CSS, and
the DOM are all treated as they are intended to work. If a document does not have
a DOCTYPE, or if the DOCTYPE is incorrect, the browser will run in “Quirks” mode, in
which the browser will treat the HTML, CSS, and DOM in a way consistent with
older browsers. For example, when Internet Explorer 8 gets switched into Quirks
mode, it will render a page in the same way that Internet Explorer 5.5 did. (IE5.5 is
well over a decade old now, so imagine what it means to view your beautiful new
Web page using 10-year-old technology.)

What is the dom?

The DOM, first mentioned in Chapter 1, (Re-)Introducing JavaScript, is short
for Document Object Model. The DOM is a way to represent and navigate
XML data, which includes HTML and XHTML. With respect to Web brows-
ers, the DOM standard is managed by the World Wide Web Consortium
(W3C). The current standard is DOM Level 3, released in 2004. Despite the
fact that this standard has been around for years, it’s still not consistently
implemented across all browsers. To be clear, the DOM is not part of core
JavaScript, but JavaScript uses the DOM to interact with the Web browser, a
technique often called DOM manipulation.

fiGURe 2 .1 Validation services
confirm that a document
adheres to its stated standard.

chooSing a doctype 29

ptg7799847

ConfIrmInG the BroWSer mode

Some Web browsers readily show what mode they are operating in for the
loaded Web page. For example, Firefox’s Page Info panel, under the Tools
menu, shows this information as its “Render Mode.” To view the current
mode in Opera, select View > Developer Tools > Page Information. The value
is then displayed under “Display Mode.” No other browser shows this infor-
mation as readily, but in Chapter 9, JavaScript and the Browser, you’ll see
how to access the rendering mode using JavaScript.

And if that’s not bad enough, even valid DOCTYPEs will trigger Quirks mode on
some browsers, or in situations where invalid elements are encountered in an other-
wise-valid document with a valid DOCTYPE. Thus, when it comes to trying to make a
Web page that looks and behaves consistently across all browsers, the DOCTYPE plays
a significant role. In this book, as in your Web development life, a decision has to be
made as to what DOCTYPE should be used. And in this book, the choice is:

<!DOCTYPE html>

This DOCTYPE has several benefits:

J It’s easier to type and you’re less likely to make a mistake in entering it.

J There are fewer characters, meaning a, perhaps imperceptibly, smaller file
is being sent to, and loaded by, the user’s Web browser.

J It’s supported by all major browsers.

J It automatically puts the browser into Standards mode.

If you haven’t come across this DOCTYPE yet, that’s because this is the new
DOCTYPE for HTML5. Now, HTML5 isn’t an accepted standard yet—it’s still being
discussed, so how is it safe to use? Let’s look at that in detail.

NOTE: not all browsers switch modes in the same way. For example,
opera has, for years, defaulted to standards mode, and Mozilla has its

own “almost standards” mode.

30 ChaPter 2 JavaScript in action

ptg7799847

an html5 prImer

As I write this book with 2012 almost upon us, HTML5 is a curious beast. It’s been
around in some form or another for a couple of years now, but it wasn’t that long
ago that the XHTML 2.0 progress was halted, which made HTML5 the de facto next
standard for Web development. Still, HTML5 hasn’t been formally standardized
and released, which means that the final implementation of HTML5, whenever that
comes out, will undoubtedly be different than the HTML5 being discussed today.
Normally, with something as ubiquitous and varied as a Web browser, one would
be wise to steer clear of such a novelty. But there are ways you can have the best
of both worlds: use some HTML5 features, without wrecking the user experience.
Let’s first look at a generic HTML5 template, and then learn about the best new
HTML5 form elements.

an htMl5 teMPlate

This next code block shows the HTML5 template that I’ll use as the basis of all the
HTML scripts in this book. Take a look at it, and then I’ll explain its particulars
in detail.

<!doctype html>

<html lang=”en”>

<head>

 <meta charset=”utf-8”>

 <title>HTML5 Template</title>

 <!--[if lt IE 9]>

 <script src=”http://html5shiv.googlecode.com/svn/trunk/
 p html5.js”></script>

 <![endif]-->

</head>

<body>

 <!-- template.html -->

</body>

</html>

TIP: htMl5 is not just an individual standard, but rather a name
given to the htMl standard plus a collection of other new features.

an htMl5 priMer 31

ptg7799847

To start on line 1, as already stated, the simple HTML5 DOCTYPE will put the
browser in Standards mode, which is the first desired goal. Next, you have your
html element, with head and body elements within that. Oddly, HTML5 does not
require the head element, but it creeps me out not to use it. HTML5 does still
need a title tag, whether or not you use head. You should also be in the habit of
indicating the encoding (i.e., the character set in use). As you can see, that meta
tag has been simplified, too (line 4). If you’re unfamiliar with character sets and
encoding, you should research the topic, but utf-8 is the normal value used here,
as UTF8 encoding supports every character in every language. Also, as you can
see, I’ve added the lang attribute to the opening html tag (line 2), although it’s not
required, either.

That’s the basic syntax of an HTML5 document. In the next section of the
chapter, I’ll highlight the main reason I’m using HTML5 for this book: the bevy of
new and very useful form elements. But quickly, two more things about the HTML5
template. First, if you’re going to use an external style sheet, as many examples in
this book will, the correct syntax is:

<link rel=”stylesheet” href=”css/styles.css”>

You may notice that the link element in HTML5 doesn’t use the type attribute
as it’s just assumed that this type will be text/css when the rel attribute has a value
of stylesheet.

Second, HTML5 defines many new semantic elements, such as article, footer,
header, nav, and section. The creation of these tags was determined by mining the
Web for the most common ID and class elements found. For example, in HTML4,
many designers used a div with an ID of header for representing the top section
of the page; then CSS would style and position the div accordingly. In HTML5,
you’d just create a header element, and style it. Most older browsers, which can-
not handle HTML5, won’t have a problem when they encounter these new HTML
tags and can still apply styling correctly. Unfortunately, Internet Explorer versions
prior to 9 are not capable of styling unknown elements, meaning that any user
running IE8 or earlier won’t see the properly formatted document. The solution

NOTE: the encoding must be indicated early in the document, so always
place it after the opening head tag and before the title element.

32 ChaPter 2 JavaScript in action

ptg7799847

is a clever piece of JavaScript called the “HTML5 shiv,” created by a series of very
smart people. The code works by having JavaScript generate elements of the new
types, which has the effect of making Internet Explorer recognize, and therefore
style them, appropriately. The HTML5 shiv library has been open sourced and is
now hosted on Google Code. To incorporate it, use this code:

<!--[if lt IE 9]>

<script src=”http://html5shiv.googlecode.com/svn/trunk/html5.js”>
p </script>

<![endif]-->

This block begins and ends with conditional comments, only supported in
Internet Explorer. The specific conditional checks to see if the current browser
version is less than (lt) IE9. If so, then the script tag will be added to the page
automatically. Because these are conditional comments, only meaningful to IE,
other browsers will not attempt to load this script.

You may have noticed that this script tag, like the link tag, also does not use
a type attribute, as text/javascript is assumed.

In Chapter 3, Tools of the Trade, I’ll list some HTML validators, but I’ll also note
here that you can validate HTML5 at http://html5.validator.nu/ or using the
standard W3C validator. At the time of this writing, both are considered experi-
mental, but then again, HTML5 is borderline experimental, too!

NOTE: very few of the book’s examples will use the newer elements
that warrant the inclusion of the htMl5 shiv, but i will use this tem-
plate consistently, including the shiv, regardless.

an htMl5 priMer 33

http://html5.validator.nu/

ptg7799847

htMl5 ForM eleMents

There are two reasons I’ve decided to use HTML5 in this book despite the fact that
HTML5 hasn’t been finalized. One reason is that HTML5 is clearly the future of
Web development. Another is that HTML5 offers new form elements that make for
a better user experience. In particular, I’m thinking of these new types of inputs:

J email

J number

J range

J search

J tel

J url

These elements are for the user to enter email addresses, a number using a
“spinbox” (Figure 2.2), a number using a slider, search terms, a telephone number,
or a URL. For browsers that support these elements, built-in client-side validation
will ensure that only valid data is entered. For example, a url input will only allow
the user to enter a URL (when that input type is supported, Figure 2.3). A couple
of these input types have ancillary benefits. For example, when an email input is
given focus on a mobile device such as the iPhone, a keyboard for entering email
addresses is proffered to the user. As another example, the search input type will
be styled like the Mac’s standard search box, with rounded corners (Figure 2.4,
although it does not automatically include the Search… text).

The reason it’s safe to use these new elements is that for browsers that do
not support them, the user will be presented with a standard text input instead.
Furthermore, browsers also render unknown elements inline by default, so using
these new input types shouldn’t even throw off your layout!

HTML5 forms have also defined a few new input attributes worth considering.
The first is autofocus, which marks the element that should have the browser’s
focus when the form is loaded:

<input type=”text” name=”username” autofocus>

NOTE: at the time of this writing, of all the browsers, opera does the best
job of supporting these new input types.

fiGURe 2 .2 The new HTML5
number input type.

fiGURe 2 .3 HTML5 form ele-
ments are self-validating, like
the URL typed here.

fiGURe 2 .4 The new HTML5
search input type.

34 ChaPter 2 JavaScript in action

ptg7799847

The second is placeholder, which sets the text the input should initially have
(Figure 2.4):

 <input type=”search” placeholder=”Search...”>

HTML5 also introduces the required attribute, which is tied to HTML5’s auto-
matic form validation. When the required attribute is present, the user must sup-
ply data for that element that will pass the associated validation. For example, if
an email address is required, then the user must enter a syntactically valid email
address there. When an element is not required, no data need be submitted; but
if data is provided, it must still pass muster (Figures 2.5 and 2.6):

Primary Email: <input type=”email” name=”email1” required>

Secondary Email: <input type=”email” name=”email2”>

To restrict the amount of text submitted for a text element, use the maxlength
attribute. This attribute has been around for years, but is now more binding (dif-
ferent browsers will respond to too much text in different ways), and can even be
applied to textareas:

<textarea name=”comments” rows=”8” cols=”40” maxlength=”300”>
p </textarea>

Finally, to disable automatic form validation, add the novalidate attribute to
the opening form tag:

<form action=”somepage.php” method=”get” novalidate>

As a warning in advance, some of the examples, especially in the earlier chap-
ters, use JavaScript to perform validation. If you’re testing those examples with a
browser that supports HTML5, you’ll need to add the novalidate attribute to the
form or else the browser will never let invalid data get to the JavaScript.

Now that you’ve got a sense of what it means to use HTML5, let’s get back to
the JavaScript!

fiGURe 2 .5 Validation applies
to an element whether or not
the element is required (see
Figure 2.6).

fiGURe 2 .6 When nonre-
quired elements do have
values, the values must pass
the associated validation.

an htMl5 priMer 35

ptg7799847

HTML

XHTML required strict XML syntax, which is one of the reasons I always
preferred it over HTML (forcing strict behavior cuts down on mistakes). The
stricter XHTML has several rules that don’t apply to HTML. In particular:

J Elements without closing tags, such as img, input, and br, need to be
closed with a slash in the opening tag, as in:

J Attributes need to be quoted, as in the above.

J Attributes always need values, as in:

<option value=”yes” selected=”selected”>Yes</option>

HTML5, though, like earlier versions of HTML, does not require strict XML syn-
tax. This has many implications, including the fact that none of the above rules
apply. The two XHTML code snippets above could be valid HTML5 like so:

<option value=yes selected>Yes</option>

Personally, I’m willing to drop the closing slash and the attribute values
(when appropriate), as the syntax is cleaner without affecting the meaning.
However, I still recommend quoting attributes. For one, doing so makes the
attribute values stand out. Second, there are instances when you must quote
the attribute value, such as if the value has a space in it:

Finally, because some attributes may need to be quoted, it will be more con-
sistent—and more consistent is always better—if all attributes are routinely
quoted.

TIP: htMl5 also creates a new pattern attribute, which ties the
element’s validation to a regular expression.

36 ChaPter 2 JavaScript in action

ptg7799847

HTML

This chapter demonstrates some real-world JavaScript, admittedly using ideas that
you’ll more formally learn in Part 2: JavaScript Fundamentals. Some basics need
to be introduced here, though, including how to add JavaScript code to an HTML
page, something I suspect you already know how to do.

To embed JavaScript within an HTML page, use the script element:

<script></script>

In earlier versions of HTML, the tag’s type attribute was required, and should
have a value of text/javascript. That’s no longer the case in HTML5. If you’re using
an older version of HTML, then do use type.

The JavaScript code is then placed between the opening and closing script
tags. When the browser loads the Web page, it will execute the code found there.

Alternatively, the JavaScript code can be stored in an external file that will be
included by the HTML page using the script element’s src attribute:

<script src=”path/to/file.js”></script>

The path/to part needs to be accurate, but the path can be relative to the HTML
page or absolute (see the following sidebar).

It’s still common for small pieces of JavaScript to be written directly within the
HTML page, not in a separate file. But as your JavaScript code gets more compli-
cated, or as it’s repeated on multiple pages of a Web site, it makes more sense to
use external files, where the JavaScript code is easier to maintain. When you use
an external JavaScript file, that file can just begin with the JavaScript code, without
the script tags (because those are HTML tags). Conventionally, external JavaScript
files use the .js file extension.

A side benefit of using an external JavaScript file is that it can be cached by
the user’s Web browser. This means that if multiple pages on a site use the same
external JavaScript file, the browser will only need to download that file once.

There are five more things you should know about using script. First, as with
most HTML elements, you can use multiple instances of script within a single
HTML page. In fact, you commonly will.

Second, each use of script can present inline JavaScript code or incorporate
an external JavaScript file but not both. If a single HTML page needs to do both,
you’ll have to use two instances of script.

adding JavaScript to htMl 37

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

Third, if you’re using strict XHTML, you’ll need to wrap all of the JavaScript
code within CDATA tags, which leads to some awkward and ugly syntax:

<script>//<![CDATA[

// Actual JavaScript code!

//]]></script>

s

A common point of confusion, especially among beginning Web developers, is the proper way to reference
other files and folders. There are two options: use an absolute path or a relative path. An absolute path
begins at a fixed and consistent point, such as the root of the Web site. In HTML, absolute paths always
begin with either http://domain/ or just / (replace domain
with your actual domain, such as www.example.com). Therefore, the
absolute path to the index file in the Web root directory would be
http://domain/index.html or just /index.html. An absolute path to file.js, found in the root directory’s js
folder, would be http://domain/js/file.js or just /js/file.js. The benefit of using an absolute path is that
it will always be correct, regardless of where you use it: An absolute reference works and is the same for
index.html in the main directory and for somepage.html in a subdirectory.

A relative path is always relative to the HTML page making the reference and will not begin with either
http:// or /. To begin a relative path, you can start with a file name. For example, another.html is a relative
reference to the file another.html, found in the same directory as the current file. To create a relative path
to a file found within a subdirectory, start with the subdirectory’s name, followed by the name of the file
(or by other subdirectories as needed): js/file.js. Some people prefer to begin relative paths with a single
period and a slash, the combination of which represents the current directory. Thus, ./another.html is the
same as another.html, and ./js/file.js equates to js/file.js. To move up to a parent directory, use two
periods together. For example, if page.html, in a subdirectory, needs to include file.js, in the main directo-
ry’s js folder, the correct relative path would be ../js/file.js: up a directory and then into the js directory.

Relative paths can be harder to get right, but they continue to remain accurate even when files and even
entire sites are moved (so long as the files retain the same relative relationship).

38 ChaPter 2 JavaScript in action

ptg7799847

The technical reason for this is complicated, but it has to do with how data
within script is parsed in XHTML. The <![CDATA[]]> wrapper prevents certain
entities from causing problems. However, because [CDATA[]] is a parsing indicator
and not JavaScript, both the opening <![CDATA[and the closing]]> tags must be
prefaced, on the same line, with the JavaScript comment combination (//). You
only have to do this if you’re using XHTML and have JavaScript written within the
script tags; this isn’t required (or recommended) for HTML, including HTML5,
or when the JavaScript code is in an external file. I’m just mentioning this, as you
might see it when looking at other people’s code.

Fourth, it’s common to place script elements within the HTML head, but that’s
not required. In fact, many current developers advocate placing script elements
near the end of the HTML whenever possible. Yahoo!, for example, recommends
putting script tags just before the closing body tag. The argument for doing so is
that it improves how quickly the page seems to load in the browser. This is because
when the browser encounters a script tag, it will immediately start downloading
that script (assuming the script is not already cached). The browser will not be able
to continue downloading the HTML, and therefore display it, until the script(s)
have downloaded.

Finally, try not to use too many external scripts in the same HTML page. Doing
so will also hurt performance.

key development aPProaChes

Before looking at some code, there are three development approaches that should
be discussed in detail. Which approaches you take—and you can simultaneously
take more than one—impacts the code you write and, more importantly, the end
user’s experience.

graCeFul degradation

The converse of the script element, used to add JavaScript to any HTML page,
is the noscript element. It’s used by a page to provide an alternative message or
alternate content when the browser does not support JavaScript:

<noscript>Your browser does not support JavaScript!</noscript>

Key developMent approacheS 39

ptg7799847

Anything placed within the tags will be shown to the user should JavaScript
not be enabled. This includes text and/or HTML.

Statistics vary, but generally speaking, somewhere around 1–3 percent of all
clients accessing Web sites are not capable of executing any JavaScript for one
reason or another. This includes people who:

J Have purposefully disabled JavaScript in the Web browser

J Are running NoScript (http://noscript.net), a Firefox extension that
implements a white-list approach for allowing JavaScript to run on pages
in a given site

J Are using screen readers (i.e., assistive devices for the vision impaired)

J Are using mobile or gaming device browsers

J Are connecting via console software that doesn’t support JavaScript (such
as the command-line wget or curl)

J Aren’t actually people, but are really a bot, such as a search engine

That’s a really small percentage of the overall market, but it’s up to you to decide
how to best handle these situations. There are three approaches:

1. Pretend non-JavaScript clients don’t exist.

2. Apply graceful degradation.

3. Apply progressive enhancement.

I’m not here to tell you how to do your job, but the first option isn’t a good
one, especially with the increased usage of mobile and gaming devices, let alone
whatever new technologies are coming down the pipeline. And yet, a surprising
number of developers don’t recognize that some users cannot execute JavaScript.
With such sites, the end result may be a broken page, without any explanation as
to what’s wrong. There are certainly valid reasons why a Web site would require
JavaScript, but non-JavaScript clients need to be informed of that requirement. Not
preparing for that possibility is bad for the end user and it reflects poorly on the
Web developer (and/or company whose site it is).

40 ChaPter 2 JavaScript in action

http://noscript.net

ptg7799847

<s
cr
ip
t

va
r
a=

va
r
xl

if
(x
ls

JavaScript

CSS

Base Functionality

Modern Browsers

Older Browsers

Enhanced Functionality

For years, the second option was the most common response, and is still seen
occasionally. Graceful degradation is a tactic where you design a site to be fully
functioning as you want it to be, and then provide an alternative interface, or just a
message indicating the need for JavaScript, to devices that can’t use the site as you
had designed it. Sound familiar? Yes, this is in effect what the noscript tag does.
Graceful degradation is a big improvement over merely ignoring the problem. The
main difference is that graceful degradation does let the user know that a problem
exists and what the solution should be (i.e., come back with JavaScript enabled).

Still, there is a better approach, called progressive enhancement.

Progressive enhanCeMent

Progressive enhancement is a term first coined in 2003 but whose adoption still
continues to this day. Progressive enhancement takes the opposite stance as graceful
degradation: Whereas graceful degradation begins with the desired functionality
and offers alternative content if the full functionality isn’t supported, progressive
enhancement starts with a baseline of minimum functionality and then improves
upon that—enhances the user’s experience—by adding “rich” features only if the
client supports them (Figure 2.7). Not only does progressive enhancement ensure
that all clients will be able to use your site, I personally find it easier to develop
using this approach.

Progressive enhancement involves not just JavaScript but also CSS. There are
entire books dedicated to the subject of progressive enhancement (such as Design-
ing with Progressive Enhancement, New Riders, 2010), and I cannot spend too many
pages on the subject here, but the process you need to understand is simpler than
you might think.

To start, you should use standards-compliant, well-structured, clean, semantic
HTML. Semantic HTML uses HTML tags to clearly indicate the intent or meaning
of content, not how the content should be presented. For example, you should
stop using the i tag to italicize text, and use em, for emphasis, instead. It may seem

fiGURe 2 .7 Progressive
enhancement applies
dynamic layers on top of base
functionality.

Key developMent approacheS 41

ptg7799847

like a fine distinction, but with em tags, there’s no absolute browser sense of what
emphasis means in terms of styling. Speaking of styling, with semantic HTML,
all of the presentation gets moved into CSS, where it belongs. In situations where
there are no tags that indicate the meaning of a page component, classes are used
for that purpose. In fact, commonly used semantic classes such as footer, header,
and nav were inspirations for new elements in HTML5.

Once you’ve created a nice semantic HTML page, you should validate it, to be
certain that it’s problem free and unlikely to send browsers into Quirks mode. You
should also test that the HTML and base CSS alone renders properly in the browsers
you’re targeting. Once you’ve done all that, you can enhance the experience for the
clients that are capable of handling more modern features. As an example of this,
let’s turn back to the registration form example discussed in Chapter 1.

The baseline functionality for that form, as well as for all forms, is that when
the form is submitted, the form data is sent to a server-side script. The server-side
script performs the validation and then reacts accordingly. For a registration form,
this means either there were no errors and the user is registered in the database, or
there were errors, and those are reported to the user, so that the user may correct
the mistakes and resubmit the form (see Figure 1.3). The next step in the progres-
sive enhancement process, after creating the semantic HTML page that contains
the form, would be to create the server-side script that handles the form. This
completes the baseline functionality, and involves no JavaScript (or high-end CSS).
It’s in this regard that I think this approach is easier: because you first confirm that
the simple process is working, before trying the more complicated approach (e.g.,
Ajax, which is a bit harder to debug).

The final steps are to apply CSS and JavaScript to add layers of more advanced
features and design, but only when the browser supports it. The focus in this book
is just on the JavaScript, of course. To determine whether or not a browser sup-
ports a feature, the modern JavaScript programmer makes use of object detection,
as already mentioned in Chapter 1. This approach creates reliable cross-browser
JavaScript, regardless of the browser type or version. And, object detection is bril-
liantly simple: Check to see if the browser can support feature X, and if so, then
use feature X. You’ll see a specific implementation of this in just a couple of pages.

Through this process, applicable browsers will be progressively enhanced and
no one will be left out. This is definitely a “have your cake and eat it too” solution!

42 ChaPter 2 JavaScript in action

ptg7799847

unoBtrusive JavasCriPt

Before getting into some actual code (about time, right?), there’s one more concept
to introduce: unobtrusive JavaScript. Back in the day, JavaScript was often liber-
ally interspersed within HTML. For example, a function might be called when a
link is clicked:

A Link

Or, a different function would be called when a form is submitted:

<form action=”somepage.php” method=”post”
p onsubmit=”return validateForm();”>

Both code examples would still work today, but this practice is frowned upon,
and rightfully so. For starters, embedding JavaScript within an HTML page makes
the whole page of code harder to read and much more difficult to maintain. Having
to browse through lines and lines of HTML to edit inline JavaScript is too impractical.
Secondarily, inline JavaScript violates the principle of progressive enhancement
in three ways:

J HTML with inline JavaScript is clearly more than just semantic.

J It assumes that the client is capable of handling JavaScript.

J One can’t apply the reliable technique of object detection with embedded
JavaScript.

The rule for modern JavaScript, therefore, is simple: Put all JavaScript between
script tags or in an external file.

NOTE: avoid using dummy links (links to # or Javascript function calls) in
htMl, as those will fail on browsers without Javascript capability.

Key developMent approacheS 43

ptg7799847

CoBBlInG toGether soMe Code

With some of the fundamentals covered, let’s go ahead and start dabbling with
JavaScript. I don’t expect you to know JavaScript already, of course—that’s the pur-
pose of this book—but this next example demonstrates how accessible JavaScript
is and provides a sense of context for Part 2’s material (i.e., the formal training).

develoPing Base FunCtionalitY

As a simple but practical example, let’s create a login form that is then validated
using JavaScript. In later chapters you will learn how to apply Ajax to this form, but
adding Ajax here would be a bit too complicated for this early point in the book.

To start, create the HTML form. The form will have three elements: an email
address, a password, and a submit button. Below is the most critical HTML, stored
in a file named login.html (Figure 2.8).

<form action=”login.php” method=”post” id=”loginForm”>

 <fieldset>

 <legend>Login</legend>

 <div><label for=”email”>Email Address</label>
 p <input type=”email” name=”email”
 p id=”email” required></div>

 <div><label for=”password”>Password</label>
 p <input type=”password” name=”password”
 p id=”password” required></div>

 <div><label for=”submit”></label><input type=”submit”
 p value=”Login →” id=”submit”></div>

 </fieldset>

</form>

<script src=”js/login.js”></script>

TIP: You can download all of the book’s code from the
corresponding Web site at www.LarryUllman.com.

fiGURe 2 .8 The login form,
with a modicum of CSS styling.

44 ChaPter 2 JavaScript in action

www.LarryUllman.com

ptg7799847

For simplicity’s sake, there’s nothing else on the page except for the form. The
page also uses a basic CSS file to add some styling; you can download that from
the book’s corresponding Web site (the CSS file will be in the ch02 folder of the
complete downloadable scripts).

The form as written will be submitted to login.php. That script would:

J Validate the submitted email address

J Validate that submitted password

J Confirm that the submitted values match those previously stored in a
database

J If a match was made, send a cookie or start a session to track the user

J Redirect the user to a welcoming page

In a later chapter, you’ll see all this in action, should you not know how to imple-
ment that yourself in PHP and MySQL already. This is the baseline functionality,
which will work in all browsers regardless of the browser’s JavaScript settings and
capabilities. If the client can load an HTML page, this system will be fine. The next
step is to progressively enhance it.

adding the JavasCriPt laYer

In this particular case, progressive enhancement means that JavaScript will be used
to validate the form data in the client, only allowing the form to be submitted to
the server should the data pass (as in the registration example shown in Figure 1.4).

To start, note that the only thing different about this form from one that
wouldn’t be tied to JavaScript is that each element has both a name attribute and
an id attribute. The name value will be used when the form data is submitted to
the server-side PHP script. The id value will be used by the JavaScript. Logically,
these two values are the same for each element. Each element on the page, form
or otherwise, must also have a unique id value.

The progressively enhanced page also makes use of an external JavaScript file,
named login.js. It should be included by the HTML page just before the closing
body tag:

<script src=”js/login.js”></script>

coBBling together SoMe code 45

ptg7799847

Now, here’s where things get a little bit complicated, at least for this point in
the book. To understand what JavaScript code should go in the file, you must have
basic knowledge of event handling.

handling events

As mentioned in Chapter 1, JavaScript is an event-driven language, meaning that
it only does something after an event has occurred. Examples of events include:

J The loading of a Web page

J Clicking upon an element, like a button or link

J Entering text within a form element

J Moving the cursor over an element (i.e., a mouseover)

J Moving the cursor off an element (i.e., a mouseout)

In order to have JavaScript validate an HTML form, you must determine what
event will trigger the validation code. The events most commonly used for form
validation are:

J The form’s submission

J Clicking of the submit button (which also triggers a form-submission event)

J Changing the value of a form element

J When a form element loses focus (triggered whether or not the value changed)

Chapter 8, Event Handling, goes into the discussion of events in greater detail.
For now, let’s just validate the form upon submission. To do that, an event listener
must be added to the form. An event listener says that when this event happens
on this object, this function should be called. Each object, whether it’s the entire
browser window or a specific element in the page (form element or not), has certain
events that it can trigger. The function to be called will normally be a function
you define yourself. This combination—object, event type, and function—leads
to any number of possibilities.

46 ChaPter 2 JavaScript in action

ptg7799847

To watch for the submission event on the form, let’s start by grabbing a reference
to the form itself. A simple and reliable way of doing that is to use the getElement-
ById() method of the document object. The document object refers to the entire
HTML content: from the opening html tag to the head and body elements and so on.
The document object has a getElementById() method, which takes an ID name as
an argument and returns a reference to the corresponding element. That returned
value can be assigned to a variable for later use:

var loginForm = document.getElementById(‘loginForm’);

At this point, so long as there is one element (to be clear, of any type) that
has an id value of loginForm, the loginForm variable will be a reference to that
element. Chapter 9 goes into DOM manipulation in much more detail, but the
getElementById() method is so important and yet easy to use, that it’s worth
introducing here in Chapter 2.

Now that there’s a reference to the form, an event listener can be added to it
using the code:

element.onevent = function;

For example:

loginForm.onsubmit = validateForm;

The sidebar explains this syntax in more technical detail, but this line just says
that when the loginForm element experiences a submission event, the validate-
Form() function should be called. Note that the function’s name is used on the
right side of the assignment, without quotation marks around it or parentheses
at its end. Neither of these is correct:

loginForm.onsubmit = ‘validateForm’; // NO!

loginForm.onsubmit = validateForm(); // NO!

In theory, the next step would be to define the validateForm() function, which
performs the actual form validation. Unfortunately, one more step is required first.
I’ll explain…

coBBling together SoMe code 47

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

HTML Page Browser Load

Execute JavaScript

Complete Document
Object Model

<html>
<head>
 <script>
 //Making a reference to #something
 //here won’t work!
 </script>
</head>
<body>
 <p id=”something”>This is something.</p>
</body>
</html>

When a client requests a document from a server, the client will receive the
document’s data in order. For an HTML page, this literally means that the browser
first receives the DOCTYPE, then the opening html tag, then the head tag, then the
head’s content, then the body and the body’s content, and so on, until the end of
the document. When the browser encounters references to other materials that
must be downloaded—CSS files, images and other media, JavaScript, Flash, and so
forth, the browser will need to download those, too. In terms of DOM manipulation,
this process is important, as the browser cannot present a representation of the
DOM until it has a full sense of the HTML page (Figure 2.9). In terms of JavaScript,
this means that you cannot safely use document.getElementById() until the page’s
HTML has been loaded by the browser.

The most reliable way to know that it’s safe to reference a DOM element is to
confirm that the browser has completely loaded the entire page. This, of course, is
an event, which means that an event listener can be set to watch for this occurrence:

window.onload = init;

fiGURe 2 .9 How a browser
loads an HTML document and
creates the DOM.

TIP: the reason Web sites seem to load faster when Javascript
is placed near the end of the document is that the browser must

pause the rendering of the htMl while it waits for the Javascript to load.

NOTE: i’m simplifying how the browser downloads and loads a Web
page to convey the key points. if you’re really curious, the gritty details

can be found by searching online.

48 ChaPter 2 JavaScript in action

ptg7799847

oBJeCt event ProPerties

As mentioned in Chapter 1, an object is a special variable type that has
predefined attributes (i.e., its own internal variables) and methods (aka
functions). The object notation, or dot, syntax is used to access an object’s
attributes and methods. The code loginForm.onsubmit = validateForm
is simply assigning the validateForm() function to the loginForm object’s
onsubmit property. This may seem strange, but it’s the same idea as assigning
a numeric value to a variable:

var num = 2;

In the event listener case, though, the variable is an attribute of an object
and the value being assigned is a function: slightly more complicated, but
the same principle.

The loginForm object has an onsubmit property because loginForm represents
a form element and form elements trigger submission events. This code
would not work with, say, a link, because links do not have an onsubmit prop-
erty (links do have onclick, though). When referencing an object’s event-
based properties, use all lowercase: onsubmit, not onSubmit.

As for the assignment itself, a function needs to be associated with this
event; thus the function’s name is provided on the right side of the assign-
ment. You would not place the function’s name in quotation marks, as that
would be a string value, not a function. Nor would you use functionName(),
with the parentheses, as that would be an actual function call.

This code says that the init() function should be called when the window object
triggers a load event. That init() function can then add the event listener to the
form, because at that point it’s safe to make DOM references:

function init() {

 var loginForm = document.getElementById(‘loginForm’);

 loginForm.onsubmit = validateForm;

}

coBBling together SoMe code 49

ptg7799847

Chapter 7, Creating Functions, covers everything you need to know about defin-
ing your own functions, but the fundamentals are really simple. First, use the key-
word function, followed by the function’s name and parentheses. (It’s common to
call a function like this init, short for initialize, as the function is used to initialize
some necessary JavaScript and browser behavior.) The function’s actual code—the
stuff that will happen when the function is called—goes between curly brackets.

As an added protection, let’s add object detection here so that the form’s event
listener will only be added if the browser supports the document.getElement-
ById() method:

function init() {

 if (document && document.getElementById) {

 var loginForm = document.getElementById(‘loginForm’);

 loginForm.onsubmit = validateForm;

 }

}

At this point in time, there are two event listeners. The first is listening for the
load event of the window, which is an event that will only naturally occur once per
page. When that event is triggered, the init() function is called. The second listener
is awaiting the submission of the form, which could happen any number of times,
including never. For each occurrence of that event, the validateForm() function
is called. Defining that function is the final step of this progressive enhancement.

PerForMing the validation
The validateForm() function should validate the form data and return a Boolean
value indicating the data’s validity. If the function returns true, the form’s submis-
sion will be allowed to continue onto the server-side script. If the function returns
false, the form’s submission to the server-side script will be prevented.

NOTE: in reality, browsers have supported the document object and
the getElementById() method for more than a decade now, so this par-

ticular use of object detection is not really necessary.

50 ChaPter 2 JavaScript in action

ptg7799847

The shell of the function looks like this:

function validateForm() {

}

Now it’s time to perform the basic validation, which goes within that shell.
For the email address and password, the validation should check that some value
is present (it’s possible to confirm that an email address is of a valid format, but
that requires a ton of code). For text inputs, simple validation can be achieved by
checking the length of its value (i.e., was anything entered). To start, grab a refer-
ence to each input, again using getElementById():

var email = document.getElementById(‘email’);

var password = document.getElementById(‘password’);

At this point, each variable is a reference to the corresponding form element.
To find that element’s current value, refer to the variable’s value property: email.
value and password.value. Because both are textual elements, the value property
of each will have a string value, even if it’s an empty string. All strings in JavaScript
have a length property, which stores the number of characters in that string. Thus,
email.value.length is the number of characters entered into the email input. This,
then, can be used to create a simple conditional:

if ((email.value.length > 0) && (password.value.length > 0)) {

 return true;

} else {

 return false;

}

TIP: remember that if the Web page uses htMl5 and the
browser supports htMl5, automatic client-side validation will
apply, too (as shown in earlier figures).

NOTE: Checking the length of an element’s value works for text inputs;
other form element types are validated in different ways.

coBBling together SoMe code 51

ptg7799847

And there is a simple validation routine. Unless something is entered into both
form elements, the form’s submission will be prevented from going to the server-
side script. However, besides just preventing the submission of the form, the user
ought to be made aware of the problem. There are more professional ways of doing
so, but for now, an alert box can suffice (Figures 2.10 and 2.11):

if ((email.value.length > 0) && (password.value.length > 0)) {

 return true;

} else {

 alert(‘Please complete the form!’);

 return false;

}

And there you have a simple, progressively enhanced, unobtrusive use of Java-
Script that validates an HTML form, prior to sending it to the server. The code block
below shows all of this code put together, with some comments documenting the
key pieces. There are three top-level (i.e., not nested) components to the script:

J The definition of the validateForm() function

J The definition of the init() function

J The registration of the init() function as the window.onload event handler

fiGURe 2 .10 The JavaScript
alert, as it appears in Safari.

fiGURe 2 .11 The same JavaScript
alert (as in Figure 2.10), as it
appears in Internet Explorer.

NOTE: Client-side validation is a convenience to the end user;
server-side validation is always still required.

NOTE: Because the login.php server-side script hasn’t been written
yet, you will see a server error when the form does pass the validation

and the browser tries to access that nonexistent file.

52 ChaPter 2 JavaScript in action

ptg7799847

InvokInG striCt mode

JavaScript’s own strict mode, which is different than the browser’s strict
mode already discussed, is a way to enforce more stringent JavaScript behav-
ior in the code you write. Strict mode was added in ECMAScript 5, and is
invoked by placing this string within your JavaScript:

‘use strict’;

That line can be used once at the top of each script, but is more reliably used
as the first line within each function, as you’ll see in this book.

When strict mode is invoked, JavaScript code will be executed in slightly dif-
ferent ways than in non-strict mode. generally speaking, strict mode will:

J Cause errors to be generated by potentially problematic code

J Improve security and performance

J Warn you about using code that will be removed in future standards of
the language

In short, strict mode forces you to write better code, which is a very, very
good thing.

If you want to see the details of the changes enforced by strict mode, you
can find those online, although most of them will not mean much to you at
this point in your learning.

Although, for very technical reasons, it doesn’t matter in what order these three
components are written, I’ve chosen to code them in that order so that:

J The validateForm() function is defined before it is referenced within the
init() function.

J The init() function is defined before it is assigned to the window.onload
property.

Again, this isn’t required, but it makes logical sense to structure the code in
this way. Each function also begins with:

‘use strict’;

The reason for this line is explained in the sidebar “Invoking Strict Mode.”

coBBling together SoMe code 53

ptg7799847

// login.js

// Function called when the form is submitted.

// Function validates the form data and returns a Boolean value.

function validateForm() {

 ‘use strict’;

 // Get references to the form elements:

 var email = document.getElementById(‘email’);

 var password = document.getElementById(‘password’);

 // Validate!

 if ((email.value.length > 0) && (password.value.length > 0)) {

 return true;

 } else {

 alert(‘Please complete the form!’);

 return false;

 }

} // End of validateForm() function.

// Function called when the window has been loaded.

// Function needs to add an event listener to the form.

function init() {

 ‘use strict’;

 // Confirm that document.getElementById() can be used:

 if (document && document.getElementById) {

 var loginForm = document.getElementById(‘loginForm’);

 loginForm.onsubmit = validateForm;

 }

} // End of init() function.

// Assign an event listener to the window’s load event:

window.onload = init;

54 ChaPter 2 JavaScript in action

ptg7799847

Steal this JavaSCrIpt

As I say in this chapter’s introduction, the fact that you can use JavaScript without
really knowing it is both a blessing and a curse. If you’ve attempted JavaScript on a
project while only barely knowing what you’re doing, don’t be embarrassed: Lots of
programmers have done it, even me. Hopefully, you were able to accomplish what
you set out to do. But more than likely, the JavaScript you used wasn’t optimal or
reliable, which is why you’ve turned to this book to master the language.

Toward that end, one recommendation I would make to aid in your learning
is that you regularly get in the habit of looking at other JavaScript you find online.
I don’t just mean in tutorials and documentation, but also in the sites you visit,
because JavaScript in the browser is, without limitation, viewable. Just like most
content loaded in the Web browser, such as images, there’s no way to prevent users
from seeing the raw JavaScript source code being used on a page.

So get in the habit of viewing other people’s JavaScript, not to steal it (but
“View This JavaScript” isn’t nearly as flashy a section heading), but for your own
edification. You’ll certainly come across code that’s way beyond your comprehen-
sion, code that’s outdated, and code that’s conflicting in approach with what this
book advocates. But by examining what others are doing, you’ll get a great sense
of the scope, abilities, and history of this vital programming language. When you
do come across something that’s confusing or contradictory, make a note of it and
see if you don’t find the answer, or a better solution, over the course of this book.

TIP: For any Javascript help, turn to the book’s supporting
forum at www.larryullman.com/forums/.

NOTE: You shouldn’t actually steal Javascript code from other sites
not just for moral reasons, but because the code could have security
flaws or dependencies that would undermine your site.

Steal thiS JavaScript 55

www.larryullman.com/forums/

ptg7799847

WraPPing up

Whereas Chapter 1 provides a big picture introduction to the JavaScript language
as a whole, Chapter 2 is a gentle introduction to JavaScript code and implementa-
tion. In it, you read about:

J DOCTYPE and the browser modes

J HTML5, its new form elements, and the new form attributes

J Embedding JavaScript within HTML, using the script element

Along the way you also saw the HTML5 template to be used as the basis for all
HTML pages in this book.

The bulk of the chapter used real-world code to walk through a specific example:
validating a login form upon submission. You learned the absolute basics about
event handling, creating your own functions, and referencing page elements via
document.getElementById(). You can refer back to this example if you get confused
by some of these foundational elements as you continue to learn new things in
subsequent chapters.

Going forward, I also recommend that you:

J Be careful about file paths in your HTML code (i.e., absolute vs. relative)

J Remember to add the novalidate attribute to opening form tags so that the
JavaScript code can do its thing in browsers that would otherwise perform
HTML5 validation

J Keep the approaches of unobtrusive JavaScript, progressive enhancement,
and object detection in mind

J Consider looking at the JavaScript code in use on the Web sites you visit

If you don’t already know the easy ways you can view a site’s JavaScript in your
Web browser, then continue to the next chapter where I explain how, while also
introducing many other key JavaScript development tools.

56 ChaPter 2 JavaScript in action

ptg7799847

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

ptg7799847

3

toolS oF the
trade

ptg7799847

59

The goal for the first part of this book is to provide

a context for the rest of the book, especially Part 2:

JavaScript Fundamentals. As you saw in the first two chap-

ters, this context includes an overview of what JavaScript is, a bit

of its history, some programming approaches, and a quick intro-

duction to how you’ll use JavaScript within HTML. This chapter

discusses the last piece of the introductory puzzle: the software

you’ll use to write, execute, and debug JavaScript. Along the way

you’ll also find plenty of online resources with which you should

familiarize yourself.

ptg7799847

The first piece of software you’ll need is something to actually program JavaScript
in. When making this decision, you’ll need to choose between a text editor or an
Integrated Development Environment (IDE). I’ll say up front that my historical pref-
erence when it comes to programming is to use a plain text editor, but that doesn’t
mean a text editor is best for you. But to start, let’s look at some key features of text
editors and IDEs: what they mean and why they’re useful.

CoMMon Features

Obviously, the first quality an application must have is that it’s available for the operat-
ing system you’re using. But I’ll add that if you regularly work on multiple computers
that have different operating systems—say, a Mac at home but Windows at work, you
should select an application that runs on multiple operating systems. By doing so,
you can have a familiar programming environment regardless of where you’re sitting.

On a similar note, you should choose an application that directly supports the
language or technology with which you’re working, JavaScript in this case. Most
programming applications support multiple languages, but you want it to specifi-
cally support JavaScript (or whatever else you’re looking for at the time). This may
seem obvious, but there are many benefits of true language support, beginning
with syntax highlighting. When an application supports a programming language,
the application is aware of keywords and structures found in the language, and
will format the code accordingly (Figure 3.1). Not only does syntax highlighting

fiGURe 3 .1 A JavaScript file,
with its correct syntax nicely
formatted.

the great deBate:
teXt edItor or Ide?

60 ChaPter 3 toolS oF the trade

ptg7799847

make code easier to read, but it tends to minimize errors, as syntax highlighting
is implicitly a syntax validator: invalid keywords and syntax will not be formatted
properly (Figure 3.2).

Higher-end support for a language includes code intelligence, a broad category
of features that will literally do some of the work for you. For example, if the soft-
ware performs simple balancing of quotation marks, parentheses, brackets, and
braces, when you create, say, an opening parenthesis, the application will create
the closing one immediately. Not only does this automatic insertion save you a
keystroke, but it makes it less likely that you will fail to properly balance such
characters, a common cause of syntax errors. As another example, software used
for Web development will normally create the closing HTML tag when you enter
an opening tag.

Another type of code intelligence is code completion, where the application offers
up specific suggestions of variables or functions that you can select (Figure 3.3).

With a suggestion selected, pressing Enter/Return or Tab inserts that item
into your code. Code completion is based upon both the language or technology
in use and the actual code you’ve written, meaning the variables you’ve created
will be present in the list of options. Even higher-end code intelligence includes
refactoring: you change, for example, the name of a variable, function, or file, and
the application will automatically update all references to that item.

fiGURe 3 .2 The miscapitaliza-
tion of Document on line 9 (it
should be document) means
it’s not colored as a recognized
keyword.

fiGURe 3 .3 Code completion
provides suggestions, such as
a function to call or variable to
reference.

the great deBate: teXt editor or ide? 61

ptg7799847
Another way that a text editor or IDE can “support” a language or technology

is by being able to execute code within the application itself. Although this can be
nice, many applications choose to run JavaScript and HTML by invoking external
browsers, as how the page looks and works in the browser is the goal.

You’ll appreciate it if the software you choose has a good way of managing files and
projects. With some applications, creating a new document is done the same way as
you would when using, say, Microsoft Word (you walk through some variation on File >
New, navigate to where the file should be saved on the computer, and then provide a
name for the file). With other programs, you can create new files entirely within the
application itself, immediately adding it to the current project (Figure 3.4). This may
seem like a minor distinction, but it’s the little things that add up to big differences.
Some applications can recognize different projects, letting you readily access any file
in that project. Some software also support workspaces, which is a destination for a
group of projects (you might have one workspace for client projects and another for
personal ones). Next, if the output is destined for the Web, having built-in FTP capability
is great, saving you that trip to the separate FTP application. And if you’re using version
control software, such as Git (http://git-scm.com/) or Subversion (http://subversion
.apache.org/), see if your particular version control package is supported, too.

fiGURe 3 .4 Aptana Studio
allows you to create new
files directly within existing
projects.

NOTE: Code intelligence is probably the biggest difference between ides,
which normally do have it, and text editors, which normally don’t.

62 ChaPter 3 toolS oF the trade

http://git-scm.com/
http://subversion.apache.org/
http://subversion.apache.org/

ptg7799847
Next up is debugging. No matter how smart, thorough, or careful you are, pro-

gram in any language and you’ll spend a good amount of time debugging. If an
application has a built-in debugger (which would be language-specific), you can
execute code in either standard or debugging mode. In debugging mode, you can
set breakpoints to stop the code’s execution at certain spots. By doing so, you can
perhaps see the logic that is, or is not, being followed, and examine the values of
variables and crucial points. You’ll see examples of this in action during the discus-
sion of Firebug, toward the end of the chapter. More sophisticated debuggers allow
you to change the values of variables on the fly to see what happens, or to otherwise
execute new bits of code in the hope that doing so will illuminate the problem.

Some applications have built-in support for unit testing, which is a programming
approach in which you write tests to verify that specific bits of code are working
as they should. Then you run your code against those tests. As you modify the
code, continue to run the tests to confirm that nothing has broken as a result of
the latest changes. Taken further, Test Driven Development (TDD) begins with the
unit tests and then writes code that passes those tests.

Another handy debugging feature is a network monitor: a tool that displays
the network requests being made, including the data being sent and the response
received (Figure 3.5). When working with something like Ajax, having a network
monitor is a great asset.

fiGURe 3 .5 A network moni-
tor—this one in Safari—shows
network activity, including
Ajax requests.

the great deBate: teXt editor or ide? 63

ptg7799847

Finally, I’ll add that with Web development in particular, selecting an applica-
tion that can render HTML and CSS (i.e., What You See Is What You Get, WYSIWYG,
functionality) is beneficial, as is a DOM viewer and manipulator. With any applica-
tion, regardless of the language you’re using it for, a good help system, manual, and
other documentation is a must. I also like my software to have top-notch search
and replace features, including support for regular expressions (but you have to
know regular expressions in order for that to be useful).

CoMParing the tWo

With a sense of what features matter the most, let’s look at the primary differences
between text editors and IDEs. After that, I’ll highlight a handful of specific applica-
tions in both categories. First, though, I should say that the decision between a text
editor or an IDE, let alone a specific application within each group, is a surprisingly
personal thing, with virtual online wars being waged over the virtues of application
X versus application Y. My intent isn’t to advocate for one application type, let alone
a specific program, but to present a guidebook to help you in making your decision.

Text editors, also called plain text editors, are simpler than IDEs, and are often
much cheaper. A cheap commercial text editor may only run you around $20 or
$40, with an expensive text editor nearing $100. Conversely, a cheap commercial
IDE probably starts around $70, with expensive ones costing several hundred.

Text editors require fewer hardware resources to run—disk space, memory, and
processor activity, meaning they are better choices if you have an older computer.
In fact, the most basic text editors such as vi and emacs have no graphical interface
at all and can be used to edit text when connected to a remote server (e.g., using
SSH, Figure 3.6).

fiGURe 3 .6 The nongraphical vi
editor, being used to edit a text
file on a remote server.

NOTE: Chapter 12, error Management, introduces unit testing.

64 ChaPter 3 toolS oF the trade

ptg7799847

The focus in a text editor is the text itself. The benefit of this approach, and
the reason why I generally prefer text editors, is that it means you can master a
single application and then use it for many different technologies and languages.

Just because text editors tend to be simpler than IDEs does not mean they are
simple. The best text editors have a slew of features built in, are easily extended
(to add features or support for other languages), and can execute code without
leaving the application. While text editors are easy to begin using, you should plan
on spending some time reading the application’s documentation in order to learn
how to make the most of the software.

When it comes to features, though, a text editor should provide syntax highlight-
ing, but often won’t do much in terms of code intelligence. File management can
vary: For example, TextMate supports version control but not FTP, and TextMate
allows you to open a folder of files at once, but has no formal sense of projects.
Built-in debugging is more rare with text editors, but some do have the ability to
execute the code you write from the application, either internally or via a connec-
tion to an external executable.

And then there are the IDEs. IDEs are going to have all of the bells and whistles,
which is great once you’ve mastered the program, but this is a hurdle to overcome
when you’re first starting. If you need code intelligence, project management, top-
of-the-line debugging, and more, you’ll want to find a good IDE. If you do so, plan
on doing more research to select the right IDE for you, and after that, spend some
time reading the application’s documentation, or watching online screencasts, to
learn how best to use it. Frankly, even properly installing and configuring an IDE
can be a challenge (for some IDEs).

With IDEs, you’ll also probably need a bigger budget and a more robust computer,
as an IDE requires more disk space, memory, and a faster processor than a text edi-
tor requires. But if you want code completion, you’ll probably need an IDE. Built-in
debugging? An IDE. Built-in executable? An IDE. WYSIWYG editor? You guessed
it: an IDE. And, to be fair, the same IDE can often support multiple technologies.

the great deBate: teXt editor or ide? 65

ptg7799847

When it comes to choosing between a text editor and an IDE, you obviously
need to decide what’s right for you, based upon:

J The hardware you’re using

J The other languages and technologies you regularly work with

J What features you need

J How much time you’re willing to spend to get going

J Your budget

In many ways, this decision is also about short-term vs. long-term goals and
benefits. You can select, download, install, start, and begin using a text editor in
a fraction of the time it will take you to do all that with an IDE. But once you’re
comfortable with the IDE, you’ll probably be able to write and debug the same
code in less time than it would take you with a text editor.

Instead of choosing between the two, you may want to consider selecting one of
each. Clearly, there are merits to both application types; by mastering a text editor
and an IDE, you can then decide which to use for any particular task or project.

a handFul oF text editors

If you think that a text editor may suit you, the following applications are worth
your consideration:

J Komodo Edit (www.activestate.com/komodo-edit): runs on Windows,
Mac OS X, and Linux; free.

J UltraEdit (www.ultraedit.com): Windows, Mac OS X, and Linux; $60.

J Notepad++ (http://notepad-plus-plus.org/): Windows; free.

J EditPlus (www.editplus.com): Windows, $35.

J TextMate (http://macromates.com): Mac OS X; approximately $57.

J TextWrangler (www.barebones.com): Mac OS X; free.

TIP: Most commercial applications have a free trial available.

66 ChaPter 3 toolS oF the trade

www.activestate.com/komodo-edit
www.ultraedit.com
http://notepad-plus-plus.org/
www.editplus.com
http://macromates.com
www.barebones.com

ptg7799847

J BBEdit (www.barebones.com): Mac OS X; $100.

J Emacs (www.gnu.org/software/emacs/emacs.html): most operating sys-
tems; free.

J Vim (www.vim.org): most operating systems; free.

I will say that I don’t regularly use Windows and certainly not for development
purposes, so I can’t provide an educated recommendation as to a good Windows
text editor. That being said, those listed here are the ones I see most frequently
recommended, and this book’s technical editor loves Notepad++. For Mac OS X,
I’ve used the ones listed here and can wholeheartedly recommend them all.

a CouPle oF ides

If you think an IDE is more appropriate for you, there are again several to choose
from. In all likelihood, though, you’re not going to find an IDE dedicated to just
JavaScript, but rather an IDE oriented toward another language, that also supports
JavaScript. To start, here are two commercial and one open source IDE:

J Adobe Dreamweaver (www.adobe.com/go/dreamweaver/): Windows and
Mac OS X; $400.

Dreamweaver (often represented as DW) is a Web development applica-
tion, not a programming IDE. This means it does WYSIWYG rendering of
HTML and CSS, and recognizes JavaScript. DW has even been extended to
support PHP, allowing you to write both client-side and server-side code
in one application.

J Komodo IDE (www.activestate.com/komodo-ide): Windows, Mac OS X,
and Linux; $295.

ActiveState makes both the free Komodo Edit and the commercial Komodo
IDE. The IDE has code intelligence, FTP support, an integrated debugger,
version control, and more. Komodo IDE can also be used for PHP, Ruby,
Python, Perl, and other languages. Komodo IDE recognizes many common
JavaScript frameworks, and has a network monitoring tool.

NOTE: all prices are in u.s. dollars and accurate at the
time of this writing.

the great deBate: teXt editor or ide? 67

www.barebones.com
www.gnu.org/software/emacs/emacs.html
www.vim.org
www.adobe.com/go/dreamweaver/
www.activestate.com/komodo-ide

ptg7799847

J Aptana Studio (www.aptana.com): Windows, Mac OS X,and Linux; free.

Aptana Studio is an excellent, free IDE, based upon Eclipse (more on Eclipse
in a moment, but this means you can install Aptana Studio as a standalone
application or as a plug-in for the Eclipse you’re already using). Aptana Stu-
dio features code intelligence, FTP support, an integrated debugger, version
control, and more. Aptana Studio can also be used for PHP, Ruby, and Python.

For what it’s worth, many Web developers are already using Dreamweaver, which
makes it a reasonable choice, although it’s not much of a programmer’s application.
I’ve heard great things about Komodo IDE, but haven’t used it personally. Aptana
Studio is my IDE of choice for JavaScript development (it’s good and the fact that
it’s free fits in nicely with my frugality).

Finally, I’ll mention three pillars of the IDE community. The first two are both
long-standing, open source projects, but they can be less approachable for beginners.
The third company has a handful of commercial applications for you to choose from.

Eclipse (www.eclipse.org) is such a powerful IDE that many other IDEs are
just technology-specific implementations of it, including Aptana Studio and Adobe
Flash Builder. Eclipse runs on Windows, Mac OS X, and Linux, and is free.

NetBeans (www.netbeans.com) is a common alternative to Eclipse, runs on
Windows, Mac OS X, and Linux, and is also free. NetBeans is primarily a Java IDE
(not JavaScript), but supports other languages, too.

The company JetBrains (www.jetbrains.com) makes a series of excellent IDEs,
starting with IntelliJ IDEA (their Java IDE). Their Web development IDE, WebStorm,
starts at $70 for a personal license. Their PhpStorm application adds PHP support to
WebStorm, and starts at $100. The JetBrains applications run on Windows, Mac OS X,
and Linux, and have a range of features depending upon the exact model you choose.

68 ChaPter 3 toolS oF the trade

www.aptana.com
www.eclipse.org
www.jetbrains.com
www.netbeans.com

ptg7799847

the BroWSer:
Your frIend, Your enemy

To use the Web, you need a Web browser. To develop Web sites, you need as many
Web browsers as you can get your hands on. If everyone accessing a Web site was
only using the same version of the same browser with the same screen resolution
and roughly the same connection speed, being a Web developer would be so much
easier. As you know, none of those criteria applies in reality, particularly with the
ability for people to now load a Web site on their mobile phone, electronic reader
(e.g., Kindle, Nook), other portable devices, and gaming machines (e.g., Xbox, Play-
Station, Wii). It has become a challenge to test a site on even a small subset of the
potential clients. But unless you’re developing a site exclusively to be accessed
via mobile devices, your first testing tool is still the desktop Web browser. In this
section, I’ll briefly introduce the most common browsers (as I write this today;
something new and significant may come out tomorrow).

Keep in mind that I’m really focusing here on the browser as a development
tool, not which browser you should regularly use. In fact, there’s an argument
to be made for distinguishing between your default personal browser and your
development browser. For example, I normally surf using Safari, then Chrome,
but develop in Firefox and Opera (Internet Explorer is for final testing). I find this
arrangement works well for me because Safari does not have all the development
tools I want, but after loading Firefox up with all the add-ons I need, the browser
becomes painfully slow for regular use.

As a point of reference, the most current stats (October 2011, at the time of this
writing) for browser usage, grouped by browser (i.e., all versions together), are:

J Internet Explorer, 34.2%

J Firefox, 26.2%

J Chrome, 22.2%

J Safari, 6.4%

J Opera, 2.4%

J Mobile and other browsers, 8.6%

Let’s take a quick look at the main five browsers, in alphabetical order. For each,
I’ll present some perspective for that browser, and what extensions you’ll want to
consider installing in order to make it a better development tool. When it comes
to the browser as debugging and development software, having a wide range of
possible extensions makes all the difference.

the BrowSer: your Friend, your eneMy 69

ptg7799847

google ChroMe

Google’s Chrome (www.google.com/chrome) is one of the newest browsers around,
and with the weight of Google behind it, has quickly risen to a third-place market
share (by the time you read this, it might be in second place). One great aspect of
Chrome is that the application automatically updates itself, so barring specific
interference, Chrome users are always running the most current version of the
browser. Extensions you ought to consider include:

J Web Developer, a slew of useful tools for HTML, CSS, JavaScript, and more
(Figure 3.7)

J Pendule, another collection of excellent Web development tools

J Firebug Lite, a stripped-down version of the excellent Firebug utility

J JavaScript Tester, a simple way to test JavaScript on the page

J Speed Tracer, for checking the page’s performance (created by Google)

J Validity, an interface for validating HTML

fiGURe 3 .7 The Web Developer
extension.

NOTE: Firebug lite does not include many of the features that make
Firebug so great, such as Javascript debugging, Javascript profiling, and

a network monitor.

70 ChaPter 3 toolS oF the trade

www.google.com/chrome

ptg7799847

Mozilla FireFox

Firefox (www.mozilla.org) is a descendant of one of the original browsers, Netscape
Navigator. Firefox has long been considered the best browser for Web developers;
in fact, Web developers probably represent a good portion of Firefox’s market
share. The reason Firefox makes such an excellent developer tool is that it was
one of the first browsers to be extensible, and therefore has a wonderful library
of available extensions:

J Firebug, the original, best Web developer extension, to be covered in detail
shortly

J Web Developer, a slew of useful tools for HTML, CSS, JavaScript, and more

J YSlow!, for checking the page’s performance (created by Yahoo!)

J Greasemonkey, an interface for executing additional JavaScript code if it
were part of the page (e.g., to change the page’s behavior)

J Total Validator, for validating the HTML of a page, validating its accessibility,
and testing for broken links and spelling errors

J View Source Chart, a quick, visual way to view a page’s HTML source
(Figure 3.8)

J Console2, a better JavaScript console

J JS View, a quick-access menu to view the JavaScript source code of the page,
including that in external files (Figure 3.9)

fiGURe 3 .8 How View Source
Chart visually represents the
HTML source code.

fiGURe 3 .9 JS View provides
direct access to a page’s
JavaScript code and style
sheets.

the BrowSer: your Friend, your eneMy 71

www.mozilla.org

ptg7799847

MiCrosoFt internet exPlorer

And then, there’s Microsoft Internet Explorer (www.microsoft.com/ie). What can
I say about IE? It’s certainly the most used browser. Still. The fact is that, as a Web
developer, you should not be using IE. Not to be one of “those people,” but even
if the day comes when IE is the best browser around—and that day won’t come—
you still shouldn’t use IE as payback for how difficult IE has made life for the Web
developer. On the other hand, maybe having to create sites that work on both good
browsers and IE has kept Web developers in business. But still…

With that diatribe out of the way, I’ll repeat quite frankly that you shouldn’t be
using Internet Explorer as a development browser: it just doesn’t have the muscle
of the others. For example, while there are a couple of extensions that you can
add to IE—I’d specifically recommend the IE Developer Toolbar (also created by
Microsoft) and the Web Accessibility Toolbar—the possibilities just don’t measure
up to what’s available for Firefox and Chrome. Don’t get me wrong, the Developer
Toolbar added in more recent versions of IE is good, and comparable to Safari’s
Web Inspector, but that’s about the extent of debugging tools for IE.

The best advice I can give you regarding browsers is this: Get your site work-
ing perfectly using another browser, and then start testing it in IE. Because lots of
regular people are using IE. Still.

oPera

Opera (www.opera.com), released by Opera software, is one of the oldest browsers
around, but has been routinely overlooked. In part, this was because it used to be
a commercial application, and few people saw the need to pay for a tool when free
alternatives were available. But from a user’s perspective, Opera has often been
at the forefront of supporting emerging technologies, meaning that Opera users
(both of them!) often get a better Web experience.

TIP: the ie developer tools in ie9 and later allow you to run
pages while emulating earlier versions of ie, too.

72 ChaPter 3 toolS oF the trade

www.microsoft.com/ie
www.opera.com

ptg7799847

Opera supports a few good extensions, but recommend you just start with
Dragonfly (Figure 3.10), their own Web development tool, built into the browser.
Just of few of Dragonfly’s features include:

J A DOM inspector

J High-end JavaScript navigation and debugging

J A network monitor

J An error console

You should download Opera and check it out for yourself!

aPPle saFari

For years, Safari (www.apple.com/safari) was a browser only used by Mac people,
and not necessarily the browser of choice for all Mac users, either. Although Safari
is available on Windows, I can’t imagine that many Windows people are inclined
to use it, either out of preference or habit. But Safari has become an extremely
important browser over the past couple of years. How? By being the default browser
on the iPhone, iPod Touch, and iPad, making it the browser being used on the most
popular mobile devices today.

For years, Safari wasn’t very good as a developer’s browser (one of the few
things that Safari and IE have in common), but things have improved some. More
current versions of Safari include a collection of a developer tools, similar to IE’s
Developer Toolbar and Opera’s Dragonfly. To access Safari’s developer tools, you

fiGURe 3 .10 Opera’s Dragonfly
development tool, built into
the browser itself.

TIP: opera is frequently used on many mobile devices.

the BrowSer: your Friend, your eneMy 73

www.apple.com/safari

ptg7799847

must check the “Show Develop menu in menu bar” option on the Advanced Prefer-
ences pane (Figure 3.11).

On older versions of Safari, you can only enable this menu by executing the
following command within the Terminal application:

defaults write com.apple.Safari IncludeDebugMenu 1

The Develop menu includes several options, such as the ability to profile the
page’s JavaScript code, but the most important option is Show Web Inspector. Like
Opera’s Dragonfly, Safari’s Web Inspector provides:

J A DOM inspector

J The ability to view the particulars of every page resource (Figure 3.12)

fiGURe 3 .11 Check the box at
the bottom of the panel to
enable the Develop menu.

fiGURe 3 .12 Safari’s Web
Inspector provides a nice inter-
face for viewing all the page’s
resources, including cookies
and local storage.

TIP: the develop menu also provides the option to
disable Javascript, so you can experience your page as

some of your users might.

74 ChaPter 3 toolS oF the trade

ptg7799847

J A network monitor

J A JavaScript debugger

J A console interface

J Tools to profile the page’s performance and JavaScript

s

The focus in the past couple of pages was how to use browsers as development tools.
At some point in the development process, though, you’ll need to start testing your
masterpiece on various browsers in order to see how good the page looks and how
well it behaves. This is a challenge. If you have one computer, you can only have a
single version of each browser installed, which will prevent you from testing a site
on, say, both Firefox 6 and Firefox 8 or Safari 5 and Safari 4. But this is a solvable
problem, especially if you’re able to throw some money at it.

You ought to do two things before attempting to test your site in a bevy of
browsers: Have the site fully functioning and looking as it should on the browsers
you do have on your computer. Identify, with your client when applicable, exactly
which browsers and versions you need to test against.

As you get more comfortable with JavaScript and the other areas of Web devel-
opment, you’ll learn what JavaScript, HTML, and CSS works reliably across all
browsers and what code does not. And remember that if you’re adhering to the
concept of object detection, browser-specific complications will be less common.

Once you’ve established basic, reliable functionality and appearance, and identi-
fied target browsers, you can begin testing your work against those targets. To just
test the look of an HTML page, there are tools such as the free Browsershots (http://
browsershots.org/) and the commercial Adobe BrowserLab (http://browserlab.
adobe.com/), among others. These services provide snapshots of how your page ren-
dered in a long list of browsers. This is great, but when you’re working with JavaScript,
you need to know how it runs, not just looks.

TIP: When also using dreamweaver, adobe Browserlab sup-
ports testing of various Javascript states in multiple browsers.

teSting on Multiple BrowSerS 75

http://browsershots.org/
http://browsershots.org/
http://browserlab.adobe.com/
http://browserlab.adobe.com/

ptg7799847

One option is to purchase multiple computers, running different operating
systems and different versions of the various Web browsers. Unless you’re part of
a large organization with the finances and physical space to accommodate multiple
computers, this is impractical.

A second option is to use virtualization software on your computer, thereby
creating multiple virtual machines, running different operating systems and
browser versions. This is not an unreasonable solution, but requires a powerful
primary computer (the one running the virtualization software), with lots of
RAM and hard drive space.

There are other options that require no installation on your computer and
no maintenance of multiple operating systems. First, there’s Spoon (www.spoon.
net), which is application-emulation software that represents most of the key
browsers. At the time of this writing, Spoon is free. Unfortunately, Spoon doesn’t
run on a Mac (again, at the time of this writing), and Microsoft forced Spoon to
stop providing emulated versions of Internet Explorer. That being said, there are
software packages available for just testing a page on a range of IE versions (e.g.,
IETest, www.my-debugbar.com), and the latest versions of IE can do that tool, thanks
to the IE Developer Toolbar. These, though, only run on Windows, still leaving
Mac users out in the cold.

In order to be able to perform live testing of your site in multiple browsers,
without installing and maintaining multiple operating systems, you can turn to
one of several online services, such as:

J CrossBrowserTesting (www.crossbrowsertesting.com)

J BrowserCam (www.browsercam.com)

J Sauce Labs (www.saucelabs.com)

J Browsera (www.browsera.com)

J browserling (www.browserling.com)

J Mogotest (www.mogotest.com)

J Cloud Testing (www.cloudtesting.com)

76 ChaPter 3 toolS oF the trade

www.spoon.net
www.spoon.net
www.my-debugbar.com
www.crossbrowsertesting.com
www.browsercam.com
www.saucelabs.com
www.browsera.com
www.browserling.com
www.mogotest.com
www.cloudtesting.com

ptg7799847

These are all commercial services, with a range of prices based upon usage.
Some of these sites provide virtualization capability, letting you directly interact
with your Web page using the browser of choice. Others don’t actually provide you
with a virtual browser to use, but, like the snapshot services, automatically run
your page and, instead of just returning screen shots, also report any JavaScript
errors encountered. A couple of these services also offer up mobile virtualization,
in order to see how a site looks and functions in various smart phones and such.

Manufacturers of most devices or device operating systems also provide emula-
tors for you to use to test your software or Web site, often at no cost (although you
may need to be enrolled in some sort of developer program).

testing JavaSCrIpt

With a sense of the browser landscape, it’s time to talk about how you can directly
test JavaScript code. You can certainly create an HTML page and embed JavaScript
within it using the script element (as explained in the previous chapter), but
sometimes it’s nice to be able to simply execute a bit of JavaScript without mak-
ing a big production of it. In fact, this is exactly the approach that several of the
following chapters will take to demonstrate new ideas.

Without creating an HTML page, there are other ways you can execute Java-
Script code:

J Using your IDE or text editor’s capabilities

J Using a browser’s tools or extensions

J Using third-party sites

How you go about the first method—executing JavaScript within an IDE or text
editor—depends entirely upon the application you’re using. To figure out how to
do that, just check out the software’s corresponding documentation (assuming
it’s not obvious). Here I’ll explain how to use a third-party site, and the end of the
chapter will cover executing JavaScript using Firebug in Firebox.

teSting JavaScript 77

ptg7799847

A wonderful tool, by the brilliant Remy Sharp, is JS Bin (www.jsbin.com). JS Bin
provides up to three panes: one for the JavaScript, one for the HTML, and one for
the rendered result (Figure 3.13). You ought to look at the help and tutorials pages,
because this is a wonderful, useful tool, but here’s a quick start guide:

1. Load www.jsbin.com in any modern browser.

2. Use the View check boxes to dictate which panes you want visible.

3. Use the vertical dividers to resize the panes as needed.

4. Manipulate the HTML, if needed, for the code to be tested.

You’ll note that the default HTML is an HTML5 document, similar to the
template outlined in Chapter 2, JavaScript in Action.

5. If you’re using a framework, select it from the HTML pane’s Include menu
(Figure 3.14).

You can include many different frameworks in the test, including multiple
frameworks (such as both jQuery and jQuery UI). How great is that?

fiGURe 3 .13 JS Bin is an amaz-
ing Web-based service for
practicing JavaScript.

NOTE: Js Bin is frequently updated with new features, so some of the par-
ticulars i explain here may change in time.

78 ChaPter 3 toolS oF the trade

www.jsbin.com
www.jsbin.com

ptg7799847

6. Enter your JavaScript in the JavaScript panel.

Depending upon the specific code, the results may be reflected in real time
as you type!

If there are problems, you’ll see those listed in a red block at the bottom of
the JavaScript panel.

7. Press the Escape key to invoke code completion!

Type “d” and press Escape, and JS Bin will automatically complete the code
as document. Again, how great is that?

8. Press Control + Shift + ? to bring up a list of keyboard shortcuts (Figure 3.15).

There aren’t that many shortcuts, but they’re useful. Press Escape to close
the keyboard shortcuts window.

9. Select an option from the Save menu to save the work you’ve done.

For example, you can download the complete HTML and JavaScript to your
computer, you can save it as a custom JS Bin template, or just click Save to
create a URL specific to the work you’ve just done.

An alternative to JS Bin is jsFiddle (www.jsfiddle.net). The intent is the same,
but jsFiddle has a more complex interface, letting you also work with CSS, among
other features.

fiGURe 3 .14 JS Bin supports
inclusion of all the common
frameworks.

fiGURe 3 .15 JS Bin’s keyboard
shortcuts.

teSting JavaScript 79

www.jsfiddle.net

ptg7799847

g

Tragically, debugging is a skill only really learned through practice, but the good
news is that you’ll get lots of practice! To be completely honest, JavaScript can be
a challenge to debug, more so than other languages in my experience, largely due
to those pesky browsers. But there are definitely tricks to be learned, the most
important of which are presented in this chapter, along with some of the basics
of error types and causes.

In Chapter 12, you’ll learn how to handle the errors that do arise in a grace-
ful manner.

error tYPes

Three general types of errors may occur:

J Syntactical

J Run-time

J Logical

Syntactical errors are caused by improper syntax and prevent JavaScript from
running at all. For example, failing to balance all quotation marks, parentheses, and
curly brackets will have this effect. Syntactical errors can be minimized by using a
text editor or IDE that provides syntax highlighting and character balancing. The
good news about syntactical errors is that they’re generally easy to find and fix.
Just be certain to watch your browser’s error console (Figure 3.16) so you’re made
aware of syntactical errors when they occur. The bad news about syntactical errors
is that the error message won’t necessarily accurately represent the problem. For
example, Figure 3.16 says there’s a “missing ; before statement,” but the actual
problem is that the keyword var was entered as just ar.

fiGURe 3 .16 A syntactical error
shown in Firebug’s Console
panel.

NOTE: if your Javascript code doesn’t seem to execute at all, it could be
because of a syntactical error.

80 ChaPter 3 toolS oF the trade

ptg7799847

Run-time errors are those that occur while the JavaScript code is being executed.
Examples include referencing objects or functions that don’t exist. Again, the
browser’s error console will report such problems. Many browser-specific issues
(e.g., varied support for specific features) qualify as run-time errors.

Logical errors aren’t true errors in the sense that the browser or IDE will report
a problem, but occur when the result of some code isn’t what you expect it to be.
In a word, logical errors are bugs, commonly caused by the code doing exactly
what you told it to, meaning that the source of the mistake can be found between
the keyboard and your chair! Fortunately, applying some best practices—covered
in this book—will help to prevent logical errors. When they do occur, and they
inevitably will, applying the debugging techniques outlined in a couple of pages
should help you squash the bug.

CoMMon error Causes

The causes of many common errors won’t mean much to you yet, as you haven’t
been formally taught most of the language (acknowledging that you’ve probably
played with JavaScript some). Still, there are a few things you should know to
watch out for:

J Variable names

Variable names in JavaScript are case-sensitive, meaning that myVar and
myvar are two different things. Find a consistent naming scheme (to be
discussed in the next chapter) and stick to it!

J Function names

Function names are also case-sensitive, whether you’re the one who has
defined the function or not (i.e., the function is predefined for you).

J Object names

Object names are, yes, also case-sensitive. When using, say, the Math object
in Chapter 4, Simple Variable Types, you must write Math, not math or MATH.

NOTE: Javascript is a case-sensitive language!

errorS and deBugging 81

ptg7799847

J An imbalance of quotation marks, parentheses, angle brackets, or
curly braces

As I just stated, an imbalance of quotation marks, parentheses, angle brack-
ets, or curly braces all lead to syntactical errors. Having a good text editor
or IDE can go a long way toward ensuring there’s a closing character for
each opening one.

J Mistakenly using = instead of ==

In the next chapter, you’ll formally learn that a single equals sign (=) is the
assignment operator, and in Chapter 5, Using Control Structures, you’ll see
that a double equals sign (==) is the equality operator. The first assigns a
value to a variable; the second tests if two values are equal. Using a single
equals sign when you should use two leads to logical errors.

J Referencing objects that don’t yet exist

Explained in Chapter 2, this can happen if JavaScript attempts to access
DOM elements before the DOM has been fully loaded (among other reasons).

J Treating an object of one type as if it were another type

This will mean more in time, but you’ll sometimes get errors—both run-
time and logical—if you treat, for example, a non-string as a string or a
non-number as a number.

J Using a reserved word

There are a couple dozen reserved words in JavaScript: var, function, and
so forth. You cannot use one of those reserved words as the name of your
variable or function. That being said, I’ve never been inclined to include the
list of reserved words in a book: many resources online will do that for you
and the list is too long to memorize regardless. But if you use descriptive
names for the variables and functions you create, you’re unlikely to conflict
with a reserved word, which are more generic by design.

82 ChaPter 3 toolS oF the trade

ptg7799847

deBugging teChniques

With an understanding of the fundamental error types and common causes, let’s
look at some debugging techniques.

J Get a good text editor or IDE.

Not to belabor the point, but choosing and mastering a good text editor
or IDE will make your JavaScript life much, much easier. That’s its raison
d’etre, after all!

J Get a good development browser.

This topic was also discussed earlier in the chapter: choose a good browser
with the right extensions (when applicable) and learn how to make the
most of it.

J Keep the browser’s console open at all times.

For better or for worse, browsers don’t make a big fuss when things go wrong,
meaning there can be problems you’re unaware of. By keeping the browser’s
error console visible, you’ll see the problems that occur.

J Use a JavaScript validator.

Just as there are HTML validation services, there are JavaScript validation
services. One such site is JSLint (www.jslint.com), created by Douglas Crock-
ford, a JavaScript master. JSLint is a “code quality tool” that identifies both
problematic and potentially problematic code.

A more pleasant alternative is JSHint (www.jshint.com), derived from JSLint.
The argument against using JSLint is that it’s rather conservative and strict,
advocating for doing things pretty much how Crockford thinks you should.
JSHint serves the same purpose, but can be customized to be flexible as to
what is or is not considered to be a code quality issue.

errorS and deBugging 83

www.jslint.com
www.jshint.com

ptg7799847

J Use rubber duck debugging!

Rubber duck debugging is a great technique with a lovely name. It works
like this: Get a rubber duck, set it on your desk, and explain to the duck
what your code is doing. Will people think you are crazy? Perhaps. But this
is highly effective. Often, the experience of attempting to explain—out
loud—what code should be doing is enough to make you realize why it is
or is not working properly.

J Write JavaScript in external files.

Not only will it be easier to work with the JavaScript code when using exter-
nal files (because you won’t have to hunt through HTML), the JavaScript
debugger will be more likely to provide a correct line number.

J Save the file and refresh the browser!

If you fail to save your JavaScript file after making changes, or if you fail to
reload the browser you’re running the JavaScript in, then the browser will
not reflect the latest changes, and you’ll spend an eternity attempting to
fix the problem.

J Try a different browser.

Some JavaScript errors you’ll encounter will be browser-specific. Until you
really get comfortable with how the different browsers behave on a JavaScript
level, get in the habit of running JavaScript code in multiple browsers. Isolating
the specific browsers that are experiencing the problem can help you more
quickly determine the underlying cause.

Conversely, if you see the same problem regardless of the browser, then you
know the problem must be in the code itself.

J Take a break!

I’ve solved many harrowing problems not by doing anything on the com-
puter but by stepping away from it. Take a walk. Eat an apple. When all else
fails, do something other than continuing to actively debug the problem.
Often, the few minutes it takes to clear your head will allow you to come
back to the problem with fresh eyes and a new approach.

84 ChaPter 3 toolS oF the trade

ptg7799847

In terms of coding, there are a couple of techniques you can use that shouldn’t
be too advanced to introduce here. A simple, beginner’s way of debugging is to use
alert() to notify you of a script’s progress, the value of variables, and so forth.
When you don’t know what’s going on in your code, adding an onslaught of alerts
can really help (Figure 3.17):

alert(‘Now in the XXX function!’);

alert(‘myVar is ‘ + myVar);

On the other hand, alerts are unseemly and you can tire of having to always
close them. A better alternative is to write those same messages to the JavaScript
console. To do that, call the log() method of the console object, providing it with
the message to be written (Figure 3.18):

console.log(‘Now in the XXX function!’);

console.log(‘myVar is ‘ + myVar);

Because the console log is nonintrusive, you can use it generously, such as to
indicate each step in the logical process. For example, each step in the code could
be marked by outputting a number:

// Start!

console.log(1);

// Some code.

console.log(2);

fiGURe 3 .17 Alert boxes are a
simple and overt way to pro-
vide debugging information.

fiGURe 3 .18 Writing messages
to the console is another way
of providing debugging data.

errorS and deBugging 85

ptg7799847

Alternatively, you can just invoke console.trace(). This function, used without
providing any additional information, sends a message to the console indicating the
current function being executed (called a stack trace). For example, the following
code would print the string init within the console when this function is called:

function init() {

 console.trace();

}

Finally, when using JavaScript in a networked manner, such as performing Ajax
requests, using a browser or IDE with a network monitoring tool will be a great
asset, letting you confirm:

J What requests are being made

J The data included in the requests

J The data included in the response.

You’ll also want to validate the received data when you’re having problems. For
example, if the returned data is meant to be XML or JSON (you’ll learn about both
in Chapter 11, Ajax), validating that the data is syntactically correct XML or JSON
is a good step to take. More on this in Chapter 11.

using FireBug

Firebug has long been the savior of the Web developer. It’s free, has a ton of features,
and continues to be well supported. I want to provide a brief introduction to using
Firebug here, focusing solely on its JavaScript-related tools, but I recommend that
you seek some online videos that visually represent this same information, as well
as go into more details about Firebug.

Note that Firebug was originally developed for the Firefox Web browser. The
Firebug Lite extension is now available for other browsers, but the full Firebug
on Firefox is still the best. Although the Web developer tools now shipping with
Safari (i.e., the Web Inspector), Opera (Dragonfly), and Internet Explorer (Developer
Toolbar) are worthwhile, Firebug is the gold standard in this area and I’d be remiss
not to give Firebug the preferential treatment it has earned.

86 ChaPter 3 toolS oF the trade

ptg7799847

To open Firebug, you must have a browser window open, although not necessar-
ily with a Web page loaded in it. In the upper-right corner of the Firebug interface
are three circles (Figure 3.19). Clicking the first (an inverted chevron) minimizes
Firebug but keeps it active. Clicking the second (a standard chevron) opens Fire-
bug in a separate window. Clicking the third (an X), closes Firebug, thereby also
making it inactive.

Within a blank Web page, you can use Firebug’s Console tab to execute any
random bits of JavaScript. You can enter single lines of JavaScript code at the prompt
at the bottom of the window, and the output will be displayed in the console. To
test larger blocks of JavaScript, click the Command Editor icon in the lower-right
corner (another chevron). Then you can insert larger blocks of code and execute
it by clicking Run (Figure 3.20).

To apply Firebug to a Web page, load the page in your browser, and then bring
up Firebug. If there are any errors in the page, or any console.log() output, you’ll
see that information in Firebug’s Console panel. You can also enter JavaScript into
the console to test aspects of the page, such as support for particular objects or
the values of page variables.

Within the console, the inspect() function provides all of the information
about a given variable:

inspect(someVar);

And you can enter clear(), to clear the console’s contents.

fiGURe 3 .19 Click these circles
to control Firebug’s presence.

fiGURe 3 .20 Use the Firebug
Console panel to execute
single or multiple lines of
JavaScript.

TIP: the single-line console prompt supports code completion.

errorS and deBugging 87

ptg7799847

For debugging purposes, the Script panel is a real time-saver. First, you can
select what JavaScript code to view in the Script panel, whether it’s an external
file or inline. This is useful, but using Watch and Breakpoint capabilities is where
the advanced debugging techniques come into play.

A breakpoint is a command to have the code stop executing at a certain point.
One of the hardest things about debugging JavaScript is that so much happens, and
so quickly, that it’s difficult to know what’s causing a problem, what’s happening to
various variables, what the logic flow is, and so forth. Breakpoints give you a way
to pause the script’s execution so that you can take a look around.

For example, if you load the login form from Chapter 2, you’ll see that login.
js can be shown in Firebug’s Script panel. If there’s a problem with, say, the form
validation, you can set a breakpoint inside of the validateForm() function to take
a peek at that point in the process. To set a breakpoint in Firebug, just click on the
line number beside the script, and a red circle will appear (Figure 3.21). Note that
the breakpoint takes effect before that line is executed. In other words, if you set a
breakpoint on line 25, line 24 will be the last executed line of code before the pause.

When Firebug encounters a breakpoint, you can turn your attention to the
Watch tab in the right-side pane. By default, the Watch tab lists the variables that
exist and their values at the moment of the break. This is a huge debugging asset.
For complicated variable types (e.g., objects), clicking the arrow beside the variable
name reveals the properties and methods of that object (Figure 3.22).

At the top of the Script panel, there are five buttons where you can decide what
to do next, after encountering a breakpoint (from left to right):

J Rerun

J Continue

J Step Into

J Step Over

J Step Out

fiGURe 3 .21 A breakpoint has
been set on the JavaScript code.

fiGURe 3 .22 Use the Watch tab
to see the variables that exist at
the break, and their values.

88 ChaPter 3 toolS oF the trade

ptg7799847

The meanings of these can be a bit confusing for those new to Firebug, so I’ll
just put them in simplest terms. Rerun restarts the execution of the code. Continue
will continue the script’s execution until its end or another breakpoint is encoun-
tered. Step Into, Step Over, and Step out all dictate whether the debugger will go
into, over (i.e., not into), or out of the definition of the next function call. When
you feel ready to learn more, see the Firebug Wiki (http://getfirebug.com/wiki/
index.php/Script_Panel) or search online.

Getting back to the breakpoints, another way of setting breakpoints is to click
the icon in Firebug’s upper-left corner, which looks like a pause button with a small
play button on it. This enables Firebug’s “Break On Next” setting, which means
that Firebug will break on the next executed line. (There’s a similar icon on the
Console panel for breaking on the next line that causes an error.)

Finally, you can set conditional breakpoints, which are watch expressions. For
example, click New watch expression in the Watch pane, then enter window.onload
in the text field (Figure 3.23). This establishes a breakpoint when the window.
onload event is triggered (you’ll need to reload the page to see this watch expres-
sion be triggered). You can also create a watch expression by right-clicking (or
Control+Clicking) on a breakpoint icon (the red circle to the left of a line number).
In the resulting pop-up, enter the condition that must be met for this breakpoint
to take effect (Figure 3.24). Watch expressions are most commonly used to set
breakpoints based upon the value of a variable.

I don’t want to overwhelm you with debugging JavaScript using Firebug when
you don’t formally know the language in the first place, so that’s enough about
Firebug for now. My recommendation is to get in the habit of using it, and slowly
build up familiarity with its multitude of features. There are oodles of tutorials and
screencasts online for how to use it, and you’ll see some more recommendations
toward that end a time or two in this book.

fiGURe 3 .23 This new watch
expression does not reference
a specific breakpoint.

fiGURe 3 .24 This watch
expression is for an existing
breakpoint.

errorS and deBugging 89

http://getfirebug.com/wiki/index.php/Script_Panel
http://getfirebug.com/wiki/index.php/Script_Panel

ptg7799847

s

Unlike PHP (www.php.net), Ruby (www.ruby-lang.org), and other languages, there’s
no one, go-to Web site for JavaScript. You’ll find plenty of references interspersed
throughout the book, but I want to mention a number of good, general sites here
as well.

To start, most of the companies that make Web browsers also have pretty good
documentation on JavaScript and Web development in general:

J Opera (http://dev.opera.com)

J Mozilla (https://developer.mozilla.org/en/JavaScript)

J Chrome (http://code.google.com/doctype/)

Microsoft and Apple have their own documentation on Web development, but
tend to be more specific to their browsers. Many of the sites specific to a JavaScript
framework have other good information on general JavaScript. These will be dis-
cussed in Chapter 13, Frameworks.

Beyond those sites, there are many people whose work you ought to follow, or
at least be aware of, as they are among the founding fathers of JavaScript and/or
visionaries when it comes to modern JavaScript:

J Brendon Eich (http://brendaneich.com)

J Douglas Crockford (http://crockford.com)

J John Resig (http://ejohn.org)

J Dean Edwards (http://dean.edwards.name)

J Paul Irish (http://paulirish.com)

J Alex Sexton (http:// alexsexton.com)

J Remy Sharp (http://remysharp.com)

J Christian Heilmann (http://christianheilmann.com)

J Thomas Fuchs (http://mir.aculo.us)

These are all more brilliant minds than mine, so I should warn you that much
of what you might read by, or see from, people such as these could be over your
head when you’re first starting. But much of how JavaScript came to be, and how
it’s being used today, is greatly influenced by these and others.

90 ChaPter 3 toolS oF the trade

www.php.net
www.ruby-lang.org
http://dev.opera.com
https://developer.mozilla.org/en/JavaScript
http://code.google.com/doctype/
http://ejohn.org
http://dean.edwards.name
http://paulirish.com
http://alexsexton.com
http://remysharp.com
http://christianheilmann.com
http://mir.aculo.us
http://brendaneich.com
http://crockford.com

ptg7799847

You should also bookmark the JavaScript sites mentioned earlier in this chap-
ter for executing and debugging JavaScript code: JS Bin, jsFiddle, JSLint, and
JSHint. And in the previous chapter, I referenced the W3C’s validator service
(http://validator.w3.org/).

You can find the pages associated with this book at my Web site, www.LarryUllman.
com. If you have any questions or problems, you can use the book’s corresponding
forum, at www.LarryUllman.com/forums/.

WraPPing up

This final chapter in the first part of the book completes the introduction to Java-
Script by covering the software you’ll use to create, test, and debug JavaScript code.
For starters, this means the text editor or IDE you use: many specific features and
recommended titles were detailed. Next, you’ll need lots and lots of browsers to
test your code, as it’ll certainly be executed by an even larger array of browsers and
devices in the real world. I strongly recommend that you pick a couple of browsers
that you’re most comfortable with, and install some good extensions or plug-ins,
as doing so will make the development process less taxing.

In this chapter you also learned several different ways you can practice using
JavaScript code without creating formal scripts and HTML pages. These options
range from the Web-based JS Bin to just using the browser’s console interface. And,
of course, there’s Firebug. And although it’s hard to learn debugging techniques
when you don’t know how to actually program, you did see the types of errors
that will occur, the common causes, and what steps you might take to help find
and fix the errors that arise. The most important debugging step, especially when
you’re most frustrated, is to stop, step away from the computer, and take a break.
Maybe you should take a quick break now, because in the next chapter, you’ll start
formally programming in JavaScript!

wrapping up 91

www.LarryUllman.com
www.LarryUllman.com
www.LarryUllman.com/forums/
http://validator.w3.org/

ptg7799847

s

ptg7799847

93

All programming comes down to taking some action

with some data. In this chapter, the focus is on the data

side of the equation, represented by variables. Even if you’ve

never done any programming, you’re probably familiar with the

concept of a variable: a temporary storage container. This chapter

starts with the basics of variables in JavaScript, and then covers

number, string, and Boolean variables. Along the way you’ll find

plenty of real-world code, representing some of the actions you

will take with these simple variable types.

ptg7799847

I think it’s easiest to grasp variables by starting with so-called “simple” variables,
also called “primitive” variable types. By simple, I mean variables that only store a
single piece of information at a time. For example, a numeric variable stores just a
single number; a string, just a sequence of zero or more quoted characters. Simple
variables will be the focus in this chapter, with more advanced alternatives—such
as arrays and objects—coming in Chapter 6, Complex Variable Types.

To be completely accurate, it’s the values in JavaScript that are typed, not the
variables. Further, many values in JavaScript can be represented as either a literal
or an object. But I don’t want to overwhelm you with technical details already,
especially if they won’t impact your actual programming. Instead, let’s focus on
this line of code:

var myVar = ‘easy peasy’;

That’s a standard and fundamental line of JavaScript programming, declaring
a variable named myVar, and assigning to it the string easy peasy. The next few
pages will look at the four components of this one line in detail:

J var, used to declare a variable

J the variable’s name

J =, the assignment operator

J the variable’s value

deClaring variaBles

To declare a variable is to formally announce its existence. In many languages,
such as C and ActionScript, you must declare a variable prior to referencing it.
JavaScript does not require you to declare variables, you can just immediately
begin referencing them, as in:

quantity = 14;

TIP: remember that you can practice much of the Javascript in
this chapter using your browser’s console window.

s

s

ptg7799847

(The semicolon is used to terminate a statement. It’s not required, but you
should always use it.)

Now, to clarify, you don’t have to declare variables in JavaScript, but you actu-
ally should. To do that, use the var keyword:

var fullName;

or

var fullName = ‘Larry Ullman’;

The distinction between using var and not using var has to do with the vari-
able’s scope, a topic that will mean more once you begin defining your own func-
tions (see Chapter 7, Creating Functions). Undeclared variables—those referenced
for the first time without using var—will have global scope by default, and global
variables are frowned upon (see the sidebar for more).

Also understand that whether or not you assign a value to the variable when it’s
declared has no impact on its scope. Both lines above used to declare the fullName
variable result in a variable with the same scope.

As discussed in Chapter 1, (Re-)Introducing JavaScript, JavaScript is a weakly
typed language, meaning that variables are not strictly confined to one type or
another. Neither of the above uses of fullName decree that the variable is a string.
With either of those lines of code, this next line will not cause a syntax error:

fullName = 2;

That line would most likely cause a logical or run-time error, as other code
would expect that fullName is a string, but the larger point is that a JavaScript
variable isn’t typed but has a type based upon its value. If fullName stores a quoted
sequence of zero or more characters, then fullName is said to be a string; if fullName
stores 2, then it’s said to be a number.

Note that each variable is only declared once, but you can use var to declare
multiple variables at the same time:

var firstName, lastName;

You can even declare multiple variables at the same time while simultaneously
assigning values:

var firstName = ‘Larry’, lastName = ‘Ullman’;

BaSicS oF variaBleS 95

ptg7799847

s

All variables have a scope, which is the realm in which they exist. As you’ll see
in Chapter 7, variables declared within a function have function-level scope:
They only exist within that function. Other languages, but not JavaScript (cur-
rently), have block-level scope, where a variable can be declared and only exist
between a pair of curly braces. Variables declared outside of any function, or
referenced without any use of var, have global scope. There are a few reasons
to avoid using global variables.

First, as a general rule of programming, applications should only do the bare
minimum of what’s required. If a variable does not absolutely need to be
global, it shouldn’t be. Second, global variables can have an adverse effect
on performance, because the application will have to constantly maintain
that variable’s existence, even when the variable is not being used. By com-
parison, function variables will only exist during that function’s execution
(i.e., when the function is called). Third, global variables can cause run-time
and logical errors should they conflict with other global variables. This can
happen if your code has a variable with the same name as a poorly designed
library you might also be including in the same page.

All this being said, understand that for the next few chapters, you will
occasionally be using global variables in your code. This is because variables
declared outside of any function, even when using the var keyword, will
also have global scope, and you won’t have user-defined functions yet. Still,
while it’s best not to use global variables, using them is not a terrible, hor-
rible thing, and it’s much better to knowingly create a global variable than to
accidentally do so.

You’ll rarely see this done in the book, as I will want to better focus on each vari-
able declaration, but lines like that one are common in real-world JavaScript code.

As a final note on the var keyword, you should always declare your variables as
soon as possible in your code, within the scope in which they are needed. Variables
declared outside of any functions should be declared at the top of the code; variables
declared within a function definition should be declared as the first thing within
that function’s code. The technical reason for this is because of something called

“hoisting,” but declaring variables as soon as possible is also standard practice in
languages without hoisting issues.

s

ptg7799847

variaBle naMes

In order to create a variable, you must give it a name, also called an identifier. The
rules for names in JavaScript are:

J The name must start with a letter, the underscore, or a dollar sign.

J The rest of the name can contain any combination of letters, underscores,
and numbers (along with some other, less common characters).

J You cannot use spaces, punctuation, or any other characters.

J You cannot use a reserved JavaScript word.

J Names are case-sensitive.

This last rule is an important one, and can be a frequent cause of problems.
The best way to minimize problems is to use a consistent naming scheme. With
an object-oriented language like JavaScript, it’s conventional to use “camel-case”
syntax, where words within a name are broken up by a capital letter:

J fullName

J streetAddress

J monthlyPayment

In procedural programming languages, the underscore is often used to break
up words. In procedural PHP, for example, I would write $full_name and $street_
address. In JavaScript, camel-case is conventional, but the most important criterion
is that you choose a style and stick with it.

As a final note, you should not use an existing variable’s name for your variable.
For example, when JavaScript runs in the browser, the browser will provide some
variables, such as document and window. Both of these are quite important, and you
wouldn’t want to override them by creating your own variables with those names.
You don’t need to memorize a list of browser-provided variables, however; just
try to be unique and descriptive with your variable names (e.g., theDocument and
theWindow would work fine).

BaSicS oF variaBleS 97

ptg7799847

assigning values

As you probably already know or guessed from what you’ve seen in this book or
online, a single equals sign is the assignment operator, used to assign a value on
the right to the variable on the left. Here is the declaration of, and assignment to,
a numeric variable:

var rate;

rate = 5.25;

This can be condensed into a single line:

var rate = 5.25;

That one line not only declares a variable, but initializes it: provides an initial
value. You do not have to initialize variables when you declare them, but sometimes
it will make sense to.

siMPle value tYPes

JavaScript recognizes several “simple” types of values that can be assigned to vari-
ables, starting with numbers, strings, and Booleans. A number is exactly what you’d
expect: any quantity of digits with or without a single decimal point. Numeric
values are never quoted and may contain digits, a single decimal point, a plus or
minus, and possibly the letter “e” (for exponential notation). Numeric values do
not contain commas, as would be used to indicate thousands.

A string is any sequence of zero or more quoted characters. You can use single
or double quotation marks, but you must use the same type to end the string as
you used to begin it:

J 'This is a string.'

J "This is also a string."

If you need to include a single or double quotation mark within the string, you
can either use the other mark type to delineate the string or escape the potentially
problematic character by prefacing it with a backslash:

J "I've got an idea."

J 'Chapter 4, "Simple Variable Types"'

s

ptg7799847

J 'I\'ve got an idea.'

J "Chapter 4, \"Simple Variable Types\""

What will not work is:

J 'I've got an idea.'

J "Chapter 4, "Simple Variable Types""

Note that a string does not need to have any characters in it: Both '' and "" are
valid strings, called empty strings.

JavaScript also has Boolean values: true and false. As JavaScript is a case-
sensitive language, you must use true and false, not True or TRUE or False or FALSE.

Two more simple, yet special, values are null and undefined. Again, these are
case-sensitive words. The difference between them is subtle. null is a defined
non-value and is best used to represent the consequence of an action that has no
result. For example, the result of a working Ajax call could be null, which is to say
that no data was returned.

Conversely, undefined is no set value, which is normally the result of inaction.
For example, when a variable is declared without being assigned a value, its value
will be undefined (Figure 4.1):

var unset; // Currently undefined.

Similarly, if a function does not actively return a value, then the returned value
is undefined (you’ll see this in Chapter 7).

Both null and undefined are not only different from each other, but different
from false, which is a known and established negative value. As you’ll see in
Chapter 5, Using Control Structures, when used as the basis of a condition, both
null and undefined are treated as FALSE, as are the number 0 and the empty string.
Still, there are differences among them.

TIP: as a reminder, the combination of two slashes together (//)
creates a comment in Javascript.

fiGURe 4 .1 Because this vari-
able has not yet been assigned
a value, its value is undefined.

BaSicS oF variaBleS 99

ptg7799847

s

Unlike a lot of languages, JavaScript only has a single number type, used to repre-
sent any numerical value, from integers to doubles (i.e., decimals or real numbers)
to exponent notation. You can rest assured in knowing that numbers in JavaScript
can safely represent values up to around 9 quadrillion!

Let’s look at everything you need to know about numbers in JavaScript, from
the arithmetic operators to formatting numbers, to using the Math object for more
sophisticated purposes.

arithMetiC oPerators

You’ve already been introduced to one operator: a single equals sign, which is the assign-
ment operator. JavaScript supports the standard arithmetic operators, too (Table 4.1).

TabLe 4 .1 Arithmetic Operators

sYMBol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder

The modulus operator, in case you’re not familiar with it, returns the remainder
of a division. For example:

var remainder = 7 % 2; // 1;

One has to be careful when applying the modulus operator to negative numbers,
as the remainder itself will also be negative:

var remainder = -7 % 2; // -1

These arithmetic operators can be combined with the assignment operator to
both perform a calculation and assign the result in one step:

var cost = 50; // Dollars

cost *= 0.7373; // Converted to euros

s

ptg7799847

You’ll frequently come across the increment and decrement operators: ++
and --. The increment operator adds one to the value of the variable; the decre-
ment operator subtracts one:

var num = 1;

num++; // 2

num--; // 1

These two operators can be used in both prefix and postfix manners (i.e., before
the variable or after it):

var num = 1;

num++; // num now equals 2.

++num; // num is now 3.

--num; // num is now 2.

A difference between the postfix and prefix versions is a matter of operator pre-
cedence. The rules of operator precedence dictate the order operations are executed
in a multi-operation line. For example, basic math teaches that multiplication and
division have a higher precedence than addition and subtraction. Thus:

var num = 3 * 2 + 1; // 7, not 9

Table 4.2 lists the order of precedence in JavaScript, from highest to lowest,
including some operators not yet introduced (I’ve also omitted a couple of opera-
tors that won’t be discussed in this book). There’s also an issue of associativity that
I’ve omitted, as that would be just one more thing you’d have to memorize. In fact,
instead of trying to memorize that table, I recommend you use parentheses to force,
or just clarify, precedence, without relying upon mastery of these rules. For example:

var num = (3 * 2) + 1; // Still 7.

That syntax, while two characters longer than the earlier version, has the same
net effect but is easier to read and undeniably clear in intent.

Some of the operators in Table 4.2 are unary, meaning they apply to only one
operand (such as ++ and --); others are binary, applying to two operands (such as
addition). In Chapter 5, you’ll learn how to use the one trinary operator, which
has three operands.

worKing with nuMBerS 101

ptg7799847

TabLe 4 .2 Operator Precedence

PreCedenCe oPerator note

1 . [] member operators

1 new creates new objects

2 () function call

3 ++ -- increment and decrement

4 ! logical not

4 + - unary positive and negative

4 typeof void delete

5 * / % multiplication, division, and modulus

6 + - addition and subtraction

8 < <= > >= comparison

9 == != === !== equality

13 && logical and

14 || logical or

15 ?: conditional operator

16 = += -= *= /= %= <<=
>>= >>>= &= ^= |=

assignment operators

The last thing to know about performing arithmetic in JavaScript is if the result
of the arithmetic is invalid, JavaScript will return one of two special values:

J NaN, short for Not a Number

J Infinity

For example, you’ll get these results if you attempt to perform arithmetic using
strings or when you divide a number by zero, which surprisingly doesn’t create an
error (Figure 4.2). In Chapter 5, you’ll learn how to use the isNaN() and isFinite()
functions to verify that values are numbers safe to use as such.

fiGURe 4 .2 The result of
invalid mathematical opera-
tions will be the special values
NaN and Infinity.

s

ptg7799847

Creating CalCulators

At this point in time, you have enough knowledge to begin using JavaScript to
perform real-world mathematical calculations, such as the kinds of things you’d
put on a Web site:

J Mortgage and similar loan calculators

J Temperature and other unit conversions

J Interest or investment calculators

For this particular example, let’s create an e-commerce tool that will calculate
the total of an order, including tax, and minus any discount (Figure 4.3). The most
relevant HTML is:

<div><label for=”quantity”>Quantity</label><input type=”number”
p name=”quantity” id=”quantity” value=”1” min=”1” required></div>

<div><label for=”price”>Price Per Unit</label><input type=”text”
p name=”price” id=”price” value=”1.00” required></div>

<div><label for=”tax”>Tax Rate (%)</label><input type=”text”
p name=”tax” id=”tax” value=”0.0” required></div>

<div><label for=”discount”>Discount</label><input type=”text”
p name=”discount” id=”discount” value=”0.00” required></div>

<div><label for=”total”>Total</label><input type=”text” name=”total”
p id=”total” value=”0.00”></div>

<div><input type=”submit” value=”Calculate” id=”submit”></div>

That would go in a page named shopping.html, which includes the shopping.
js JavaScript file, to be written in subsequent steps. You’ll notice that the HTML
form makes use of the HTML5 number input type for the quantity, with a minimum
value. The other types are simply text, as the number type doesn’t deal well with
decimals. Each input is given a default value, and set as required. Remember that
as Chapter 2, JavaScript in Action, explains, browsers that don’t support HTML5
will treat unknown types as text elements and ignore the unknown properties. The
final text element will be updated with the results of the calculation.

fiGURe 4 .3 A simple calculator.

worKing with nuMBerS 103

ptg7799847

To create a calculator:

1. Create a new JavaScript file in your text editor or IDE, to be named shopping.js.

2. Begin defining the calculate() function:

function calculate() {

 ‘use strict’;

This function will be called when the user clicks the submit button. It does
the actual work.

3. Declare a variable for storing the order total:

var total;

As mentioned previously, you should generally declare variables as soon
as you can, such as the first line of a function definition. Here, a variable
named total is declared but not initialized.

4. Get references to the form values:

var quantity = document.getElementById(‘quantity’).value;

var price = document.getElementById(‘price’).value;

var tax = document.getElementById(‘tax’).value;

var discount = document.getElementById(‘discount’).value;

In these four lines of code, the values of the various form elements are
assigned to local variables. Note that in the Chapter 2 example, variables
were assigned references to the form elements, and then the element val-
ues were later checked. Here, the value is directly assigned to the variable.

At this point in time, one would also perform validation of these values,
prior to doing any calculations. But as Chapter 5 more formally covers the
knowledge needed to perform validation, I’m skipping this otherwise needed
step in this example.

TIP: You can download all the book’s code at
www.LarryUllman.com.

s

www.LarryUllman.com

ptg7799847

5. Calculate the initial total:

total = quantity * price;

The total variable is first assigned the value of the quantity times the price,
using the multiplication operator.

6. Factor in the tax rate:

tax /= 100;

tax++;

total *= tax;

There are a couple of ways one can calculate and add in the tax. The first,
shown here, is to change the tax rate from a percent (say 5.25%) to a decimal
(0.0525). Next, add one to the decimal (1.0525). Finally, multiply this number
times the total. You’ll see that the division-assignment, incrementation, and
multiplication-assignment operators are used here as shorthand. This code
could also be written more formally:

tax = tax/100;

tax = tax + 1;

total = total * tax;

You could also make use of precedence and parentheses to perform all these
calculations in one line.

An alternative way to calculate the tax would be to convert it to decimal,
multiply that value times the total, and then add that result to the total.

7. Factor in the discount:

total -= discount;

The discount is just being subtracted from the total.

8. Display the total in the form:

document.getElementById(‘total’).value = total;

worKing with nuMBerS 105

ptg7799847

The value attribute can also be used to assign a value to a text form input.
Using this approach, you can easily reflect data back to the user. In later
chapters, you’ll learn how to display information on the HTML page using
DOM manipulation, rather than setting the values of form inputs.

9. Return false to prevent submission of the form:

return false;

The function must return a value of false to prevent the form from actu-
ally being submitted (to the page named by the form’s action attribute).

10. Complete the function:

} // End of calculate() function.

11. Define the init() function:

function init() {

 ‘use strict’;

 var theForm = document.getElementById(‘theForm’);

 theForm.onsubmit = calculate;

} // End of init() function.

The init() function will be called when the window triggers a load event
(see Step 12). The function needs to add an event listener to the form’s sub-
mission, so that when the form is submitted, the calculate() function will
be called. To do that, the function gets a reference to the form, by calling the
document object’s getElementById() method, providing it with the unique
ID value of the form. Then the variable’s onsubmit property is assigned the
value calculate, as explained in Chapter 2.

12. Add an event listener to the window’s load event:

window.onload = init;

This code was also explained in Chapter 2. It says that when the window
has loaded, the init() function should be called.

s

ptg7799847

It’s a minor point, as you can organize your scripts in rather flexible ways,
but this line is last as it references the init() function, defined in Step 12,
so that definition should theoretically come before this line. That function
references calculate(), so the calculate() function’s definition is placed
before the init() function definition. You don’t have to organize your code
this way, but I prefer to.

13. Save the file as shopping.js, in a js directory next to shopping.html, and
test in your Web browser (Figure 4.4).

Play with the numbers, including invalid values (Figure 4.5), and retest the
calculator until you’re comfortable with how arithmetic works in JavaScript.

ForMatting nuMBers

Although the previous example is perfectly useful, and certainly a good start, there
are several ways in which it can be improved. For example, as written, no checks
are made to ensure that the user enters values in all the form elements, let alone
that those values are numeric (Figure 4.5) or, more precisely, positive numbers.
That knowledge will be taught in the next chapter, which discusses conditionals,
comparison operators, and so forth. Another problem, which can be addressed here,
is that you can’t expect someone to pay, say, 22.1336999 (Figure 4.4). To improve the
professionalism of the calculator, formatting the calculated total to two decimal
points would be best.

fiGURe 4 .4 The result of the total
order calculation.

fiGURe 4 .5 Performing arithmetic
with invalid values, such as a quantity
of cat, will result in a total of NaN.

worKing with nuMBerS 107

ptg7799847

A number in JavaScript is not just a number, but is also an object of type Number.
As an object, a number has built-in methods, such as toFixed(). This method
returns a number with a set number of digits to the right of a decimal point:

var num = 4095.3892;

num.toFixed(3); // 4095.389

Note that this method only returns the formatted number; it does not change
the original value. To do that, you’d need to assign the result back to the variable,
thereby replacing its original value:

num = num.toFixed(3);

If you don’t provide an argument to the toFixed() method, it defaults to 0:

var num = 4095.3892;

num.toFixed(3); // 4095

The method can round up to 20 digits.
Similar to toFixed() is toPrecision(). It takes an argument dictating the total

number of significant digits, which may or may not include those after the decimal.
Let’s apply this information to the calculator in order to add some better for-

matting to the total.
To format a number:

1. Open shopping.js in your text editor or IDE, if it is not already.

2. After factoring in the discount, but before showing the total amount, format
the total to two decimals:

total = total.toFixed(2);

This one line will take care of formatting the decimal places. Remember
that the returned result must be assigned back to the variable in order for
it to be represented upon later uses.

Alternatively, you could just call total.toFixed(2) when assigning the
value to the total form element.

s

ptg7799847

3. Save the file, reload the HTML page, and test it in your Web browser (Fig-
ure 4.6).

An even better way of formatting the number would be to add commands
indicating thousands, but that requires more logic than can be understood at this
point in the book.

the Math oBJeCt

You just saw that numbers in JavaScript can also be treated as objects of type Number,
with a couple of built-in methods that can be used to manipulate them. Another
way to manipulate numbers in JavaScript involves the Math object. Unlike Number,
you do not create a variable of type Math, but use the Math object directly. The Math
object is a global object in JavaScript, meaning it’s always available for you to use.

The Math object has several predefined constants, such as π, which is 3.14… and
E, which is 2.71… A constant, unlike a variable, has a fixed value. Conventionally,
constants are written in all uppercase letters, as shown. Referencing an object’s
constant uses the same dot syntax as you would to reference one of its methods:
Math.PI, Math.E, and so forth. Therefore, to calculate the area of a circle, you
could use (Figure 4.7):

var radius = 20;

var area = Math.PI * radius * radius;

fiGURe 4 .6 The same input
as in Figure 4.4 now generates
a more appropriate result.

fiGURe 4 .7 The area of a
circle, πr2, is calculated using
the Math.PI constant.

worKing with nuMBerS 109

ptg7799847

The Math object also has several predefined methods, just a few of which are:

J abs(), which returns the absolute value of a number

J ceil(), which rounds up to the nearest integer

J floor(), which rounds down to the nearest integer

J max(), which returns the largest of zero or more numbers

J min(), which returns the smallest of zero or more numbers

J pow(), which returns one number to the power of another number

J round(), which returns a number rounded to the nearest integer

J random(), which returns a pseudo-random number between 0 (inclusive)
and 1 (exclusive)

There are also several trigonometric methods like sin() and cos().
Another way of writing the formula for determining the area of a circle is:

var radius = 20;

var area = Math.PI * Math.pow(radius, 2);

To apply this new information, let’s create a new calculator that calculates the
volume of a sphere, based upon a user-entered radius. That formula is:

volume = 4/3 * π * radius3

Besides using the π constant and the pow() method, this next bit of JavaScript
will also apply the abs() method to ensure that only a positive radius is used for
the calculation (Figure 4.8). The relevant HTML is:

<div><label for=”radius”>Radius</label><input type=”text”
p name=”radius” id=”radius” required></div>

<div><label for=”volume”>Volume</label><input type=”text”
p name=”volume” id=”volume”></div>

<div><input type=”submit” value=”Calculate” id=”submit”></div>

The HTML page includes the sphere.js JavaScript file, to be written in sub-
sequent steps.

fiGURe 4 .8 This calculator
determines and displays the
volume of a sphere given a
specific radius.

s

ptg7799847

To calculate the volume of a sphere:

1. Create a new JavaScript file in your text editor or IDE, to be named sphere.js.

2. Begin defining the calculate() function:

function calculate() {

 ‘use strict’;

 var volume;

Within the function, a variable named volume is declared, but not initialized.

3. Get a reference to the form’s radius value:

var radius = document.getElementById(‘radius’).value;

Again, this code closely replicates that in shopping.js, although there’s
only one form value to retrieve.

4. Make sure that the radius is a positive number:

radius = Math.abs(radius);

Applying the abs() method of the Math object to a number guarantees a
positive number without having to use a conditional to test for that.

5. Calculate the volume:

volume = (4/3) * Math.PI * Math.pow(radius, 3);

The volume of a sphere is four-thirds times π times the radius to the third
power. This one line performs that entire calculation, using the Math object
twice. The division of four by three is wrapped in parentheses to clarify
the formula, although in this case the result would be the same without
the parentheses.

6. Format the volume to four decimals:

volume = volume.toFixed(4);

Remember that the toFixed() method is part of Number, which means it’s
called from the volume variable, not from the Math object.

worKing with nuMBerS 111

ptg7799847

7. Display the volume:

document.getElementById(‘volume’).value = volume;

This code is the same as in the previous example, but obviously referencing
a different form element.

8. Return false to prevent the form’s submission, and complete the function:

 return false;

} // End of calculate() function.

9. Add an event listener to the form:

function init() {

 ‘use strict’;

 document.getElementById(‘calcForm’).onsubmit = calculate;

} // End of init() function.

window.onload = init;

This is the same code used in shopping.js. As in that example, when the
form is submitted, the calculate() function will be called.

10. Save the file as sphere.js, in a js directory next to sphere.html, and test
it in your Web browser.

gs

Strings and numbers are two of the most common types used in JavaScript, and
both are easy to comprehend and use. You’ve seen the fundamentals when it comes
to numbers—and there’s not all that much to it, really, so now it’s time to look at
strings in more detail.

Creating strings

Informally, you’ve already witnessed how strings are created: just quote anything.
As with a number, once you have a string value, you also have predefined methods
that can be used to manipulate that value. Unlike numbers, though, strings have a

s

ptg7799847

lot more methods, and even a property you’ll commonly use: length. The length
property stores the number of characters found in the string, including empty spaces:

var fullName = ‘Larry Ullman’;

fullName.length; // 12

If you’re following this book sequentially, you’ll have already seen this in Chapter 2:

var email = document.getElementById(‘email’);

if ((email.value.length > 0) { ...

What you’re actually seeing here is the beauty of object-oriented program-
ming: A string is a string, with all the functionality that comes with it, regardless
of how the string was created. The assignment to the email variable starts with the
document object, which is a representation of the page’s HTML. That object has a
getElementById() method, which returns an HTML element. The specific element
returned by that line is a text input, in other words, a text object. This is assigned
to email. That object has a value property for finding the text input’s value (or
for setting its value). Since the value returned by that property is a string, you can
then refer to its length property. Thanks to the ability to chain object notation,
this could be reduced to one line:

if ((document.getElementById(‘email’).value.length > 0) { ...

deConstruCting strings

Once you’ve created a string, you can deconstruct it—break it into pieces—in
a number of ways. As a string is just a sequence of length characters, you can
reference individual characters using the charAt() method. This method takes
an index as its first argument, an index being the position of the character in the
string. The trick to using indexes is that they begin at 0, not 1 (this is common to
indexes of all types across all programming languages). Thus, the first character
of string fullName can be retrieved using fullName.charAt(0). And a string’s last
character will be indexed at length - 1:

var fullName = ‘Larry Ullman’;

fullName.charAt(0); // L

fullName.charAt(11); // n

worKing with StringS 113

ptg7799847

Sometimes you don’t want to know what character is at a specific location
in the string, but rather if a character is found in the string at all. For this need,
use the indexOf() method. This method returns the indexed position where the
character is first found:

var fullName = ‘Larry Ullman’;

fullName.indexOf(‘L’); // 0

fullName.indexOf(‘a’); // 1

fullName.indexOf(‘ ‘); // 5

The first argument can be more than a single character, letting you see if entire
words are found within the string. In that case, the method returns the indexed
position where the word begins in the string:

var language = ‘JavaScript’;

language.indexOf(‘Script’); // 4

The indexOf() method takes an optional second argument, which is a location
to begin searching in the string. By default, this is 0:

var language = ‘JavaScript’;

language.indexOf(‘a’); // 1

language.indexOf(‘a’, 2); // 3

However you use indexOf(), if the character or characters—the needle—is
not found within the string (the haystack), the method returns −1. Also, indexOf()
performs a case-sensitive search:

var language = ‘JavaScript’;

language.indexOf(‘script’); // -1

Another way to look for needles within a string haystack is to use lastIndexOf(),
which goes backward through the string. Its second argument is also optional, and
indicates the starting point, but the search again goes backward from that starting
point, not forward:

var fullName = ‘Larry Ullman’;

fullName.indexOf(‘a’); // 1

s

ptg7799847

fullName.lastIndexOf(‘a’); // 10

fullName.lastIndexOf(‘a’, 5); // 1

To pull a substring out of a string, there’s the slice() method. Its first argu-
ment is the index position to begin at. Its optional second argument is the indexed
position where to stop. Without this second argument, the substring will continue
until the end of the string:

var language = ‘JavaScript’;

language.slice(4); // Script

language.slice(0,4); // Java

A nice trick with slice() is that you can provide a negative second argument,
which indicates the index at which to stop, counting backward from the end of the
string. If you provide a negative starting point, the slice will begin at that indexed
position, counting backward from the end of the string:

var language = ‘JavaScript’;

language.slice(0,-6); // Java

language.slice(-6); // Script

However you use slice(), this method only returns a new string, without
affecting the value of the original.

JavaScript also has a substring() method, which uses the same arguments as
slice(), but it has some unexpected behaviors, and it’s recommended that you
use slice() instead.

JavaScript has another string method for retrieving substrings: the aptly named
substr(). Its first argument is the starting index for the substring, but the second
is the number of characters to be included in the substring, not the terminating
index. In theory, you can provide negative values for each, thereby changing both
the starting and ending positions to be relative to the end of the string, but Internet
Explorer doesn’t accept negative starting positions.

NOTE: in Chapter 6, you’ll learn about the split() method, which breaks
a string into an array of strings.

worKing with StringS 115

ptg7799847

To test using slice(), let’s create some JavaScript code that limits the amount
of data that can be submitted by a textarea. For the time being, a second textarea
will show the restricted string; in Chapter 8, Event Handling, you’ll learn how to
dynamically restrict the amount of text entered in a text area in real time. The
relevant HTML for this example is:

<div><label for=”comments”>Comments</label><textarea name=”comments”
p id=”comments” maxlength=”100” required></textarea></div>

<div><label for=”count”>Character Count</label><input type=”number”
p name=”count” id=”count”></div>

<div><label for=”result”>Result</label><textarea name=”result”
p id=”result”></textarea></div>

<div><input type=”submit” value=”Submit” id=”submit”></div>

The HTML form has one textarea for the user’s input, a text input indicat-
ing the number of characters used, and another textarea showing the truncated
result. To make the truncated text more professional, it’ll be broken on the final
space before the character limit (Figure 4.9), rather than having the text broken
midword. The page, named text.html, includes the text.js JavaScript file, to be
written in subsequent steps.

To deconstruct strings:

1. Create a new JavaScript file in your text editor or IDE, to be named text.js.

2. Begin defining the limitText() function:

function limitText() {

 ‘use strict’;

 var limitedText;

The limitedText variable will be used to store the edited version of the
user-supplied text.

3. Retrieve the original text:

var originalText = document.getElementById(‘comments’).value;

The original text comes from the first textarea in the form and is assigned
to originalText here.

fiGURe 4 .9 The HTML form, as
it works in Internet Explorer.

s

ptg7799847

4. Find the last space before the one-hundredth character in the original text:

var lastSpace = originalText.lastIndexOf(‘ ‘, 100);

To find the last occurrence of a character in a string, use the lastIndexOf()
method, applied to the original string. This script is not looking for the abso-
lute last space, though, just the final space before the hundredth character,
so 100 is provided as the second argument to lastIndexOf(), meaning that
the search will begin at the index of 100 and work backward.

5. Trim the text to that spot:

limitedText = originalText.slice(0, lastSpace);

Next, a substring from originalText is assigned to limitedText, starting
at the beginning of the string—index of 0—and stopping at the previously
found space.

6. Show the user the number of characters submitted:

document.getElementById(‘count’).value = originalText.length;

To indicate that the user submitted too much data, the original character
count will be shown in a text input.

7. Display the limited text:

document.getElementById(‘result’).value = limitedText;

The value of the second textarea is updated with the edited string.

8. Return false and complete the function:

 return false;

} // End of limitText() function.

TIP: it’d be more professional to break the text on a space or
comma or the end of a sentence, but that capability is beyond this
point in the book.

worKing with StringS 117

ptg7799847

9. Add an event listener to the form:

function init() {

 ‘use strict’;

 document.getElementById(‘calcForm’).onsubmit = limitText;

} // End of init() function.

window.onload = init;

This is the same basic code used in the previous example. When the form
is submitted, the limitText() function will be called.

10. Save the file as text.js, in a js directory next to text.html, and test it in
your Web browser (Figure 4.9).

Try using different strings (Figure 4.10), and retest, to make sure it’s work-
ing as it should.

ManiPulating strings

The most common way to manipulate a string is to change its value using concat-
enation. Concatenation is like addition for strings, adding more characters onto
existing ones. In fact, the concatenation operator in JavaScript is also the arithmetic
addition operator:

var message = ‘Hello’;

message = message + ‘, World! ‘;

As with the arithmetic addition, you can combine the plus sign with the assign-
ment operator (=) into a single step:

var message = ‘Hello’;

message += ‘, World! ‘;

This functionality is duplicated by the concat() method, although it’s less com-
monly used. This method takes one or more strings to be appended to the string:

var address = ‘100 Main Street’;

address.concat(‘ Anytown’, ‘ ST’, ‘ 12345’, ‘ US’);

fiGURe 4 .10 In Chrome,
which supports the textarea’s
maxlength attribute, only 100
characters can be submitted,
but the partial word is still
chopped off.

s

ptg7799847

s

Many programming languages have the concept of a constant: a single value
that cannot be changed (depending upon how and where the constant was
created, and depending upon the language, the constant can have other
qualities, too). In theory, JavaScript has the ability to create a constant, using
this code:

const NAME = value;

The same naming rules as those for variables apply to constants, but con-
stants are conventionally written in all uppercase letters, using underscores
to separate words. Regardless, the const keyword is not supported across all
browsers; specifically, Internet Explorer doesn’t recognize it. There are ways
to fake a constant, but that requires code well beyond what you would know
at this point. The end result is that you shouldn’t plan on creating your own
constants in JavaScript code.

On the other hand, many built-in JavaScript objects have their defined con-
stants, like the Number object’s MAX_VALUE. This constant represents the maxi-
mum value that a number can have in the given environment. You’d refer to
it using Number.MAX_VALUE.

Two methods exist to simply change the case of the string’s characters:
toLowerCase() and toUpperCase(). You can apply these to a string prior to using
one of the previously mentioned methods, in order to fake case-insensitive
searches:

var language = ‘JavaScript’;

language.indexOf(‘script’); // -1, aka not found

language.toLowerCase().indexOf(‘script’); // 4

Added to JavaScript in version 1.8.1 is the trim() method, which removes extra
spaces from both ends of a string. It’s supported in more current browsers—Chrome,
Firefox 3.5 and up, IE9 and above, Safari 5 and up, and Opera 10.5 and above, but
isn’t available on older ones.

Note that, as with slice() and the other methods already covered, toLowerCase(),
toUpperCase(), and trim() do not affect the original string, they only return a modified
version of that string. Concatenation, however, does alter the original.

worKing with StringS 119

ptg7799847

To test this new information, this next example will take a person’s first and last
names, and then format them as Surname, First Name (Figure 4.11). The relevant
HTML is:

<div><label for=”firstName”>First Name</label><input type=”text”
p name=”firstName” id=”firstName” required></div>

<div><label for=”lastName”>Last Name</label><input type=”text”
p name=”lastName” id=”lastName” required></div>

<div><label for=”result”>Formatted Name</label><input type=”text”
p name=”result” id=”result” required></div>

<div><input type=”submit” value=”Submit” id=”submit”></div>

This would go into an HTML page named names.html, which includes the names.
js JavaScript file, to be written in subsequent steps. By this point in the chapter,
this should be a simple and obvious exercise for you.

To manipulate strings:

1. Create a new JavaScript file in your text editor or IDE, to be named names.js.

2. Begin defining the formatNames() function:

function formatNames() {

 ‘use strict’;

 var formattedName;

The formattedName variable will be used to store the formatted version of
the user’s name.

3. Retrieve the user’s first and last names:

var firstName = document.getElementById(‘firstName’).value;

var lastName = document.getElementById(‘lastName’).value;

4. Create the formatted name:

formattedName = lastName + ‘, ‘ + firstName;

To create the formatted name, assign to the formattedName variable the
lastName plus a comma plus a space, plus the firstName. There are other
ways of performing this manipulation, such as:

fiGURe 4 .11 The values
entered in the first two inputs
are concatenated together to
create a formatted name.

s

ptg7799847

formattedName = lastName;

formattedName += ‘, ‘;

formattedName += firstName;

That code would probably perform worse, though, than the one-line option.

5. Display the formatted name:

document.getElementById(‘result’).value = formattedName;

6. Return false and complete the function:

 return false;

} // End of formatNames() function.

7. Add an event listener to the form:

function init() {

 ‘use strict’;

 document.getElementById(‘calcForm’).onsubmit = formatNames;

} // End of init() function.

window.onload = init;

When the form is submitted, the formatNames() function will be called.

8. Save the file as names.js, in a js directory next to names.html, and test it
in your Web browser (Figure 4.11).

esCaPe sequenCes

Another thing to understand about strings in JavaScript is that they have certain
meaningful escape sequences. You’ve already seen two examples of this: to use a
type of quotation mark (single or double) within a string delimited by that same
type, the inserted quotation mark must be prefaced with a backslash:

J 'I\'ve got an idea.'

J "Chapter 4, \"Simple Variable Types\""

worKing with StringS 121

ptg7799847

Three other meaningful escape sequences are:

J \n, a new line

J \r, a carriage return

J \\, a literal backslash

Note that these work within either single or double quotation marks (unlike,
for example, in PHP, where they only apply within double quotation marks).

s

Because JavaScript is weakly typed, different value types can be used together with-
out causing formal errors. In, say, ActionScript, the following would cause an error:

var cost:int = 2;

cost += ‘ dollars’;

But in JavaScript, you can do that without the browser complaining. That being
said, although you can use different types together without causing formal errors,
it’s quite possible to end up with logical errors, which is to say bugs, if you’re not
careful. One complication stems from the fact that the addition operator in math
is the same as the concatenation operator for strings. When you add a string to a
number, or add a number to a string, JavaScript will convert the number to a string
and then concatenate the two. For example, say the shopping example added a
shipping value to the total:

var shipping = document.getElementById(‘shipping’).value;

total = quantity * price;

tax /= 100;

tax++;

total *= tax;

total += shipping;

TIP: When a user presses enter or return within a textarea,
that translates to \n in a corresponding Javascript string.

s

ptg7799847

By the time JavaScript gets to the final line, total is a number, but shipping is
a string, because it comes from a form’s text input. That final line won’t have the
effect of mathematically adding the shipping to the total but rather concatenating
the shipping onto the total (Figure 4.12).

This issue doesn’t apply to other operators, though. For example, subtraction
converts a string to a number and then performs the math, as the shopping example
already demonstrated.

To perform math using strings, without worrying about creating bugs, you can
forcibly convert the string to a number. There are many ways of doing so, starting
with parseFloat() and parseInt(). These are “top-level” functions, which is to
say they are not associated with any object and can be called directly. The first
function always returns a floating-point number (aka, a decimal), and the latter,
an integer. Both functions take the value to be converted as its first argument. The
parseInt() function takes the radix as the second. The radix is the number’s base,
as in base-8 (aka, octal), base-10 (decimal), and base-16 (hexadecimal). Although
the second argument is optional, you should always provide it to be safe, and will
normally use a value of 10:

total += parseFloat(shipping, 10);

To best use these functions, you should have an understanding of how they
work. Both functions begin at the start of the string and extract a number until an
invalid numeric character is encountered. If no valid number can be pulled from
the start of the value, both functions return NaN (Figure 4.13):

parseInt(‘20’, 10);

parseInt(‘20.0’, 10);

parseInt(‘20 ducklings’, 10);

parseInt(‘I saw 20 ducklings.’, 10);

fiGURe 4 .12 Adding the string ‘5.00’ to the total
has the impact of concatenation, converting the
total number into an unusable string.

fiGURe 4 .13 How the parseInt() function
extracts numbers from strings.

perForMing type converSionS 123

ptg7799847

s

A point that this chapter has thus far ignored is that values can be represented
in two ways: as objects or as literals. All of the examples in this chapter are
literals, such as these:

J 2

J 'JavaScript'

J false

This is the most common way for creating simple variable types, but you can
create numbers, strings, and Booleans as formal objects, too:

var number = new Number(2);

var fullName = new String(‘JavaScript’);

var flag = new Boolean(false);

In that code, the corresponding global function—String, Number, and
Boolean—is used to create and return an object of the given type.

Besides being more complicated to write, creating simple types as objects
will actually have slightly worse performance and have some unexpected
behaviors. And you can continue to use literals as if they were objects, as
many of the examples in this chapter have shown, without formally creat-
ing the object. In such cases, when needed, JavaScript will convert the literal
value to a corresponding object, call the object’s method, and then remove
the temporary object.

A trickier way to convert a string to a number is to prepend it with a +:

total += +shipping;

or

total += +(shipping);

TIP: You can also convert a string to a number by
multiplying it by 1.

s

ptg7799847

Using this unary operator is the fastest solution, in terms of how quickly JavaScript
performs the conversion, but is not as clear in terms of programmer readability as
parseInt() and parseFloat().

Converting from a number to a string is far less likely to cause problems, but
you can do so by invoking the toString() method:

var message = ‘Your total is $’ + total.toString();

The toString() method is supported by most objects and returns a string
representation of the object itself.

Earlier in the chapter, I mentioned two other meaningful values in JavaScript:
undefined and null. As a gotcha, you should be aware of what happens when
an undefined or null value is used as if it were a number. The undefined value
translates to NaN when used as a number. When a null value is used as a number,
the result is better, although not great: null values are treated as 0 as numbers
(Figure 4.14). In the next chapter, you’ll learn how to verify that a value is numeric
prior to attempting to use it as such.

revIeW and purSue

w

J How do you declare a variable?

J What is variable scope?

J What are the rules for a variable’s name?

J What is the assignment operator?

fiGURe 4 .14 How arithmetic is
handled if undefined or null is
involved.

review and purSue 125

www.LarryUllman.com/forums/

ptg7799847

J What simple types were introduced in this chapter?

J How can you use a single quotation mark within a string? A double quota-
tion mark?

J What does the *= operator do? How about +=? (There are two answers to
this last question.) And what about ++?

J What operator can cause bugs when used with a string and a number
together?

J What does the toFixed() method do?

J What are some of the differences between Number objects and the Math object?

J What is an empty string?

J What does the charAt() method do? What does indexOf() do? How about
lastIndexOf()? What are the arguments to the indexOf() and lastIndexOf()
methods? What happens when you use negative numbers for the second
argument to either method?

J What function should you use to pull a substring out of a string and how
do you use it?

J What are the various ways you can perform concatenation with strings?

J What are escape sequences?

J What are some of the ways you can convert a string to a number?

Pursue

J Use a development tool such as Firebug to practice creating and manipu-
lating variables.

J Look up some of JavaScript’s reserved words, if you have not already.

J If you’re curious, find out what “hoisting” is.

J Create another calculator, such as one that calculates the area of a shape
(rectangle, triangle, circle, etc.).

s

ptg7799847

J Look online (e.g., at https://developer.mozilla.org) to research all the
Number and Math object properties and methods.

J Look online to learn more about the String object and its methods.

J Create another string manipulation example.

J Update the shopping example to add a shipping cost option, and then rework
the JavaScript to properly add the shipping amount to the total.

J Test all of this chapter’s code in as many browsers and devices as you can
to see the various results.

WraPPing up

In this chapter, you started learning the fundamental lessons of real programming
in JavaScript, centered around the simple variable types. Those types include num-
bers, strings, and Booleans. You learned how to declare variables, how to properly
name them, and how to assign them simple values.

Next, the chapter looked into the number type in detail, which starts with basic
arithmetic. From there, you saw how to use the Number and Math object methods in
this object-oriented language to perform such commonplace tasks as formatting
numbers and rounding them.

After numbers, similar treatment was given to strings: what they are and how
to create them. You also learned that there are several methods defined within the
String object that are usable on any string you have. One of the most common
manipulations of strings is concatenation, accomplished via the plus sign. Atten-
tion was also given to using the backslash as an escaping character.

The chapter concluded with a discussion of type conversion between numbers
and strings. Implicit conversion can lead to bugs, as demonstrated, so it’s best to
formally convert values when needed. Along the way you also started creating
practical examples, mostly as mathematical calculators.

This knowledge will be expanded in the next chapter, where you will learn
about control structures. These are primarily conditionals and loops, but Chapter
5 will introduce more operators, too, before Chapter 6 gets into more complicated
variable types.

wrapping up 127

https://developer.mozilla.org

ptg7799847

s

ptg7799847

129

Programming is a matter of taking actions with data.

The previous chapter introduced the basics of data—

simple variables—and this chapter covers the information

you need to know in order to dynamically take action. Primar-

ily consisting of conditionals and loops, control structures are a

programmatic way to either execute statements only under cer-

tain situations or to execute statements repeatedly for a certain

number of times. Along the way, you’ll learn most of JavaScript’s

remaining operators. (Chapter 2, JavaScript in Action, snuck in a

couple of conditionals and operators, but this chapter teaches the

bulk of them in full detail.)

ptg7799847

Program Flow

condition do this if
TRUE

JavaScript has the standard conditionals that exist in most programming languages,
which is to be expected as JavaScript’s syntax comes from Java and C. The three
forms of JavaScript conditionals are the if, the switch, and the conditional opera-
tor. These are all branching statements, directing JavaScript to head down different
paths based upon the situation (Figure 5.1).

To start, let’s look at the basics of the if conditional, what it means for a condi-
tional to be TRUE, and what operators you’ll commonly use to establish conditions.
As you read through this chapter, remember that JavaScript is case-sensitive, so
it’s if, not IF, or If, for example.

the iF Conditional

The if conditional is one of the most common and necessary constructs in any
programming language. In JavaScript, the conditional uses the syntax:

if (condition) {

 // Execute these statements.

}

If the condition is TRUE, the statement or statements within the curly braces
will be executed. If the condition is FALSE, the statements will be ignored, as if they
were never there. The syntax is simple, the complexity comes from establishing
the conditions. Technically, JavaScript does allow you to omit the curly braces if
there’s only one line of code being executed as a result of the condition:

fiGURe 5 .1 Conditionals allow
you to change the program-
ming flow based upon the
particular circumstances of
your choosing.

s

s

ptg7799847

if (condition)

 // Execute this statement.

However, I would highly recommend that you always include the curly braces.
Doing so makes code that is easier to read and less likely to have bugs. Very, very
rarely I might omit them, but in those cases, I would put the statement on the
same line:

if (condition) // Execute this statement.

I only do this when I’m willing to compromise clarity for brevity, but, again, I
generally recommend using curly braces.

There is an entire war about where the opening curly brace should go: on the
same line as the condition or on the following line. Some programmers prefer the
symmetry offered by this format:

if (condition)

{

 // Execute these statements.

}

Which style you use is entirely up to you; there’s no right answer just be consis-
tent. For added clarity, you should indent the statements to be executed to visually
indicate their subservient position in the code. The indention is normally either
four spaces or one tab (again, there are minor skirmishes over spaces versus tabs:
pick a style you like and stick with it).

What is true?

In order to accurately use any type of control structure, you must fully grasp what
constitutes truth in the language. Obviously, the Boolean true is, um, TRUE:

if (true) { // Always works!

(I’m using the capitalized TRUE and FALSE to indicate truth and falsehood,
differentiating those from the Booleans true and false.)

BaSicS oF conditionalS 131

ptg7799847

JavasCriPt CommentS, one laSt tIme

I haven’t formally discussed JavaScript’s syntax for comments yet in this book, although there’s been
the occasional reference and you’ve certainly seen them several times over. Here, though, is a quick, yet
complete, coverage of comments in JavaScript.

One way to create comments is to use two slashes together (//). Anything following those two slashes
until the end of the line is a comment. This syntax is used to add documentation either on the line
before or on the same line immediately after some code:

// Initialize the variable:

var n = 1;

n++; // Add one to n

Whenever you use //, understand that they are for single-line comments only. To create multiline com-
ments in JavaScript, use /* to begin the comment and */ to conclude it. This comment format is often
used to add more verbose documentation to a file or function:

/*

 * somefile.js

 * Created by Larry Ullman.

 * This file does yadda, yadda, yadda.

 */

(The use of the additional asterisks on intermediary lines is a convention, but certainly not required.)

The multiline comment can also be used as a debugging tool: just wrap potentially problematic code
within these key combinations to render that code inert, without having to delete it from your script.
When you do this, be certain not to introduce parse errors, for example, by including an opening curly
brace but not a closing one, or vice versa, within the comment:

if (condition) {

 /* Start of comment.

} Problem! */

As a final note on comments, I generally say that you cannot overdocument your code. Be thorough
and accurate in your comments, and be certain to update your comments when you change your
code. That being said, since every client will also need to download your comments as it’s part of the
JavaScript code, there’s a good argument for removing comments from the production version of your
scripts. Chapter 14, Advanced JavaScript, will explain this concept in more detail.

s

ptg7799847

To understand what is TRUE in JavaScript, one just needs to know what is
FALSE: Everything that’s not FALSE is TRUE. In JavaScript, the following values
are all evaluated as FALSE in a conditional:

J false

J 0

J an empty string ("" or '')

J NaN (Not a Number)

J null

J undefined

Everything else is TRUE. With this in mind, a very simple conditional in JavaScript
confirms that a variable has a non-FALSE value:

if (myVar) {

Behind the scenes, JavaScript converts variables used in a conditional like this
to a Boolean object. If the variable has a non-FALSE value, then it will be converted
to a Boolean for that conditional.

Four of the values in that list—false, NaN, null, and undefined—make sense
as FALSE, but both 0 and an empty string can trip you up. Later in this chapter,
you’ll learn ways to distinguish between values that are actually FALSE and those
that just get treated as FALSE.

CoMParison oPerators

More sophisticated conditionals require the use of operators. The comparison
operators are generally easy to understand and use (Table 5.1).

TabLe 5 .1 Comparison Operators

oPerator Meaning oPerator Meaning

> greater than == Equal to

< Less than != Not equal to

>= greater than or equal to === Identical to

<= Less than or equal to !== Not identical to

BaSicS oF conditionalS 133

ptg7799847

For the most part, you shouldn’t have a problem with most of these. In fact,
Chapter 2 already used a comparison operator and a logical operator:

if ((email.value.length > 0) && (password.value.length > 0)) {

The email.value.length > 0 condition will be TRUE if the email variable’s
value property, which is a string, has a length (i.e., the number of characters in
the string) greater than 0. The entire condition will only be TRUE if both clauses
are TRUE, which is how the logical and operator works.

Later in the chapter, I’ll go through some of the specifics about comparing
simple value types—numbers and strings, but first I want to highlight two common
causes of problems when using comparison operators. The first is to accidentally
use the assignment operator when you should be using the equality operator. The
following conditional will always evaluate to TRUE (Figure 5.2):

if (myVar = 2) {

That code should be:

if (myVar == 2) {

If you find yourself frequently making this mistake, you can reverse the
comparison:

if (2 == myVar) {

That condition is equivalent to the one just above, but if you accidentally write

if (2 = myVar) {

you’ll see an error (Figure 5.3), as the number 2 cannot be assigned a value.

fiGURe 5 .2 Inadvertently
using the assignment operator
is a common cause of bugs.

fiGURe 5 .3 Reversing a com-
parison will prevent you from
accidentally using the wrong
operator.

TIP: Javascript validation tools such as Jslint and Jshint will
catch misuses of the assignment operator.

s

ptg7799847

The other common problem is more complicated: the difference between two
values being equal or being identical. An equality comparison in JavaScript com-
pares the values, automatically performing type conversion in the process. For
example, start with the following:

var n = 0;

if (n) {

Will that condition be TRUE or FALSE? You might think it’d be TRUE, as n is
assigned a value immediately before the conditional. However, the number 0 is
evaluated as a FALSE value, and when you use just a variable as the basis of a condi-
tion, JavaScript will convert the variable to a Boolean behind the scenes. Thus, that
condition is FALSE, as n is equivalent to false when used in that way.

In situations where you might be dealing with a FALSE-like value, you can instead
perform identical comparisons (also referred to as “strict equality”). Three equals signs
together constitutes the identical comparison operator. An identical comparison is
TRUE if both comparators have the same value and are of the same type:

if (n === false) { // FALSE!

Assuming the same numeric n value, that condition is FALSE, as the value of n
is equal to false, but not of the same type (n is a Number object; false is a Boolean).
The following conditions are all also FALSE:

J null === undefined

J ‘’ === NaN

J 1 === true

Conversely, these conditions are all TRUE (note the specific use of both equality
and identical comparisons):

J null == undefined

J null !== undefined

J 1 == true

J 1 !== true

(I’m purposefully not making equal and identical comparisons against NaN, as
that value behaves a bit differently in this area.)

BaSicS oF conditionalS 135

ptg7799847

This can be confusing for the beginning programmer, and a likely cause of bugs,
so I’ll leave you with one simple rule. You should perform an identical comparison
when you want to confirm that a variable has a value of undefined, null, or false,
not a FALSE-like value (i.e., 0, null, an empty string, and undefined).

To clarify, remember that a variable that’s been declared but not assigned a
value has an initial value of undefined. Even if the variable has a value of false,
0, an empty string, or even null, the variable will not be identical to undefined:

if (myVar === undefined) { // No value.

or

if (myVar !== undefined) { // Has a value.

As another example, to distinguish between a FALSE-like value, such as an
empty string, 0, null, or undefined, and an actual value of false, again turn to
identical comparisons:

if (myVar === false) { // Definitely false!

or

if (myVar !== false) { // Has a non-false value!

Later in the chapter, you’ll learn about the typeof operator, which is also useful
in conditionals like these.

logiCal oPerators

Along with the comparison operators, you’ll frequently use the three logical opera-
tors in your conditionals (Table 5.2).

TabLe 5 .2 Logical Operators

oPerator Meaning

&& And

|| Or

! Not

s

ptg7799847

A compound and condition will be TRUE only if both subconditions are TRUE:

var x = 5;

if ((0 < x) && (x < 10)) { // TRUE!

if ((0 < x) && (x > 10)) { // FALSE!

if ((0 > x) && (x < 10)) { // FALSE!

if ((0 > x) && (x > 10)) { // FALSE!

A compound or condition will be TRUE if at least one of the subconditions is TRUE:

var x = 5;

if ((0 < x) && (x < 10)) { // TRUE!

if ((0 < x) && (x > 10)) { // TRUE!

if ((0 > x) && (x < 10)) { // TRUE!

if ((0 > x) && (x > 10)) { // FALSE!

A negation will be TRUE if the condition being negated is FALSE:

var x = 5;

if (!(0 > x)) { // TRUE!

if (!(false)) { // TRUE!

When you start using more operators and creating more complex conditionals,
you may want to reconsider JavaScript’s list of operator precedence (see Chapter 4,
Simple Variable Types). The and and or operators have lower precedence than
most others, aside from the assignment operators, meaning you can generally
forgo wrapping subconditions in parentheses when using them. The not operator,
though, has a higher precedence, above the comparison operators, for example,
meaning you should be in the habit of applying the negation to an expression in
parentheses, as in the above examples.

Or, you could do what I do in all my code, and just always use parentheses to
enforce operator precedence as you need it to be, without having to rely upon your
memorization of complicated rules.

BaSicS oF conditionalS 137

ptg7799847

Another factor to be aware of when using the and and or logical operators is
something called short circuit evaluation. JavaScript will evaluate such conditionals
as efficiently as possible, which is a good thing. This means that if the first condition
in an and conditional is FALSE, the second condition will not be evaluated, because
it’s already been determined that the entire condition is FALSE. The converse is true
for or conditionals: If the first condition is TRUE, the second condition need not be
evaluated, because it has already been decided that the entire condition is TRUE.

Putting it all together

It’s time to put together the information covered thus far to demonstrate a real-
world use. This first example will be a simple update of an example from the
previous chapter, using a conditional to check for a positive radius value before
attempting to calculate the volume of a sphere (Figure 5.4). As a reminder, you can
download all of the code for this book from www.LarryUllman.com.

To use a conditional to check for positive values:

1. Open sphere.js in your text editor or IDE.

2. Change the assignment to the radius variable to read:

var radius = document.getElementById(‘radius’);

Rather than going straight to the form element’s value, this script will now
get there in two steps. First, a reference will be made to the element.

3. Replace the use of Math.abs(), line 16 of the original script, with:

if (radius && (radius.value > 0)) {

The first part of this condition confirms that the radius variable has a TRUE
value. So long as the document.getElementById() method was able to find
an element in the page that has an id of radius, this will be the case. The
second part of the condition checks that the radius object’s value attribute
is greater than 0. This is an improvement over just applying the absolute
method to the value, as it more stringently requires that the user entered
a positive number.

fiGURe 5 .4 The improved
version of this calculator now
requires a positive radius.

s

www.LarryUllman.com

ptg7799847

4. Change the calculation of the volume to:

volume = (4/3) * Math.PI * Math.pow(radius.value, 3);

Since the radius variable is a reference to the form element, not the form
element’s value (as in the previous version of the script), the calculation
has to be updated accordingly.

5. After displaying the calculated volume, complete the if conditional:

} // End of IF.

6. Save the file as sphere.js, in a js directory next to sphere.html (from
Chapter 4), and test it in your Web browser (Figure 5.5).

This script would be improved by indicating an error to the user when a
nonpositive number is entered (as in Figure 5.5), but you don’t quite know
how to do that yet. Still, this version of the script is better than that in
Chapter 4, which would have attempted to calculate the volume even when
a non-numeric value was provided (Figure 5.6).

fiGURe 5 .5 If an invalid radius is
provided, nothing happens.

fiGURe 5 .6 The result of the same
invalid radius (as Figure 5.5), using
the original version of the script.

BaSicS oF conditionalS 139

ptg7799847

s

This chapter began with the core principles of conditionals in JavaScript: the basic
if conditional, the nature of truth in JavaScript (very philosophical), and the opera-
tors you’ll often use. Let’s now build on that information, covering the other types
of conditionals you can create.

iF-else Conditionals

After the if conditional, the most used is the if-else. That syntax is simply:

if (condition) {

 // Execute these statements.

} else {

 // Execute these other statements.

}

It’s best to think of the else clause as being the default: that which will happen
unless a specific criterion is met.

With this in mind, sphere.js could be updated so that a message is displayed
when an invalid radius is supplied (Figure 5.7):

if (radius && (radius.value > 0)) {

 volume = (4/3) * Math.PI * Math.pow(radius.value, 3);

 volume = volume.toFixed(4);

} else {

 volume = ‘Please enter a valid radius!’;

}

document.getElementById(‘volume’).value = volume;

fiGURe 5 .7 Using an else
clause, the script now reports
problems.

s

ptg7799847

iF-else iF Conditionals

If you have multiple criteria to consider, there’s the if-else if:

if (condition1) {

 // Execute these statements.

} else if (condition2) {

 // Execute these other statements.

}

With if-else and if-else if conditionals, you can also omit the curly braces
if only a single line of code is to be executed, but I highly recommend you never do
so. You can have as many else if clauses as you need. For performance reasons,
I recommend listing the conditions in the order from most likely to be TRUE to
least, thereby minimizing how many conditions JavaScript will need to evaluate.

You can also use an else clause with if-else if, but the else clause must
always come last, and will again act as the default action:

if (gender == ‘Female’) {

 // It’s a Barbie.

} else if (gender == ‘Male’) {

 // It’s a Ken.

} else {

 // Error!

}

More conditionalS 141

ptg7799847

s

Conditionals and other control structures can be nested by placing one
within another. For example, a registration form would have two inputs for
the password: the one used to confirm the value of the other. Validating the
password therefore requires:

J That the first password has a value

J That the second password matches the first

This can be succinctly accomplished thanks to an if-else nested within an
if-else:

if (pass1.length > 0) {

 if (pass1 == pass2) {

 // Good!

 } else {

 // Passwords don’t match.

 } // End of inner else.

} else {

 // First password not set.

} // End of primary else.

When nesting control structures, I recommend that you:

J Indent subservient code to visually indicate the logical structure

J Completely create one control structure (e.g., one if-else), with all the
curly braces and parentheses, and then add the nested control structure

J use comments to indicate where control structures end

The main thing is that you’re very careful when creating nested control
structures, as improperly nested control structures are a common cause of
parse errors.

s

ptg7799847

the sWitCh Conditional

A third way of writing conditionals is to use switch. Its syntax is actually more
verbose than any of the other approaches discussed thus far, but it can be a much
cleaner, more legible alternative to a long if-else if-else:

switch (expression) {

 case value1:

 // Execute these statements.

 break;

 case value2:

 // Execute these statements instead.

 break;

 default:

 // No, execute these statements.

 break;

}

The expression in parentheses will be compared against the various case values.
Often, this expression will just be a variable:

switch (sign) {

 case ‘Aquarius’:

 // Execute these statements.

 break;

 case ‘Pisces’:

 // Execute these statements instead.

 break;

 /* Etc. */

}

Note that, as with any value in JavaScript, strings must be quoted, numbers
and Booleans not.

More conditionalS 143

ptg7799847

JavaScript will go through the cases in order until an identity (not equality)
match is made. At that point, JavaScript will execute the subsequent statements,
stopping when a break is reached. This means that if you fail to use break state-
ments, all of the remaining statements in the switch will be executed.

The default case is optional. If present, the default case is normally listed last,
although this isn’t required (unlike in most other languages). The default case’s
statements will be executed only if none of the other cases are a match. You don’t
have to use a break for the last case, but doing so constitutes parallel structure
and consistency that make for good programming.

There are a couple of neat tricks one can pull off when using the switch. The
first is the ability to perform fallthroughs. A fallthrough is where multiple cases have
the same resulting statements, made possible by not using a break for every case:

switch (weekday) {

 case ‘Monday’:

 case ‘Wednesday’:

 case ‘Friday’:

 // Execute these statements.

 break;

 case ‘Tuesday’:

 case ‘Thursday’:

 // Execute these statements instead.

 break;

 default:

 // The default statements.

 break;

}

s

ptg7799847

In that code, if the weekday variable has a value of Monday, Wednesday, or
Friday, the first set of statements will be executed. If it has a value of Tuesday
or Thursday, the second set will apply. If weekday has any other value, including
but not limited to Saturday and Sunday, the default statements will be executed.

You can also use more elaborate expressions as the basis of comparison. This
next switch replicates the gender conditional created earlier:

switch (gender) {

 case ‘Female’:

 // Barbie!

 break;

 case ‘Male’:

 // Ken!

 break;

}

(To be clear, however, when you only have two cases, you shouldn’t be using
a switch.)

To use much of this new information, this next example will calculate the total
cost of a membership (to whatever site), based upon the membership type and the
number of years (Figure 5.8). The HTML page will be named membership.html. Its
most critical HTML is:

fiGURe 5 .8 The HTML form, with
the calculated membership cost.

More conditionalS 145

ptg7799847

<div><label for=”type”>Type</label> <select name=”type”
p id=”type” required>

 <option value=”basic”>Basic - $10.00</option>

 <option value=”premium”>Premium - $15.00</option>

 <option value=”gold”>Gold - $20.00</option>

 <option value=”platinum”>Platinum - $25.00</option>

</select></div>

<div><label for=”years”>Years</label><input type=”number”
p name=”years” id=”years” min=”1” required></div>

<div><label for=”cost”>Cost</label><input type=”text” name=”cost”
p id=”cost” disabled></div>

<input type=”submit” value=”Calculate” id=”submit”>

That would be placed within a form with an id value of theForm. The HTML
form makes use of the HTML5 number input type for the years, with a minimum
value. A select element is used to choose the type of membership being purchased.
For now, the final text element will be updated with the results of the calculation
(Figure 5.8), or an error message (Figure 5.9). It’s set as disabled, so that the user
cannot change its value.

This page will include the membership.js JavaScript file, to be written in the
subsequent steps.

To create the calculator:

1. Create a new JavaScript file in your text editor or IDE, to be named
membership.js.

fiGURe 5 .9 If the user does
not enter a valid years value,
an error message is displayed.

s

ptg7799847

2. Begin defining the calculate() function:

function calculate() {

 ‘use strict’;

 var cost;

This function will be called when the form is submitted. Within the function,
the cost variable will store the calculated cost of membership.

3. Get a reference to the first two form elements:

var type = document.getElementById(‘type’);

var years = document.getElementById(‘years’);

4. Convert the year to a number:

if (years && years.value) {

 years = parseInt(years.value, 10);

}

This conditional confirms that the year variable has a non-FALSE value
and that its value property also has a non-FALSE value. This condition will
be TRUE so long as there’s an HTML element with an id of years (because
that’s how the years variable is first assigned a value) and if that element
has a value property whose value is anything other than null, undefined,
false, NaN, 0, or an empty string. If this entire condition is TRUE, the value
is converted to an integer, as an extra precaution.

Because JavaScript is weakly typed, you can change the years variable from
being a reference to a form element to being a number.

5. Validate all the data:

if (type && type.value && years && (years > 0)) {

The first two clauses are like those already used on the year form element.
The third condition—years—tests that the variable has a TRUE value. It
would have a FALSE value if the parsing of years.value couldn’t create a
number other than 0. The final condition ensures that the number is positive.

More conditionalS 147

ptg7799847

6. Determine the base cost:

switch (type.value) {

 case ‘basic’:

 cost = 10.00;

 break;

 case ‘premium’:

 cost = 15.00;

 break;

 case ‘gold’:

 cost = 20.00;

 break;

 case ‘platinum’:

 cost = 25.00;

 break;

} // End of switch.

Because type.value is based upon a select menu, with multiple possible
values, a switch conditional is a great way in JavaScript to make comparisons
to those options. Each associated membership type has its own base cost.

7. Factor in the number of years:

cost *= years;

The membership total will be based upon the cost per year times the num-
ber of years.

8. Factor in the discount:

if (years > 1) {

 cost *= .80; // 80%

}

s

ptg7799847

The total membership cost is being discounted 20 percent if more than one
year is being purchased. A simple if conditional can test for that scenario.
To do the math, you can use this code to subtract 20 percent:

cost -= (cost * .20);

Or you can just multiply the total by .80, to find the remaining 80 percent
of the cost, as in the above.

9. Display the total in the form:

document.getElementById(‘cost’).value = ‘$’ + cost.toFixed(2);

Here the calculated cost is being shown to the end user. To make the total
look nicer, it’s both rounded to two decimal places and prefaced with a
dollar sign.

Understand that JavaScript cost calculations are a convenience to the user.
Because JavaScript runs in the client, those calculations could easily be
tampered with. Actual e-commerce transactions should always be based
upon server-side calculations, which cannot be manipulated in the browser.

10. Show an error if the data wasn’t valid:

} else { // Show an error:

 document.getElementById(‘cost’).value =
p ‘Please enter valid values.’;

}

If the condition in Step 5 isn’t TRUE, then this else clause takes effect (see
Figure 5.9).

11. Return false to prevent submission of the form and complete the function:

 return false;

} // End of calculate() function.

More conditionalS 149

ptg7799847

12. Add an event listener to the form:

function init() {

 ‘use strict’;

 document.getElementById(‘theForm’).onsubmit = calculate;

} // End of init() function.

window.onload = init;

This code was explained in Chapter 2 and Chapter 4. The end result is that
when the form is submitted, the calculate() function will be called.

13. Save the file as membership.js, in a js directory next to membership.html,
and test it in your Web browser (Figures 5.8 and 5.9).

CrYPtiC Conditionals

There are a couple of variations on the standard if-else conditionals that are
worth knowing, although their syntaxes are more cryptic and less obvious. The first
alternative is the conditional operator, known as the ternary or trinary operator
in other languages (it has three components). Its syntax is:

(condition) ? return_if_true : return_if_false;

The conditional operator returns one of two values depending upon the truth
of the condition. Because this operator returns a value, it can be used to assign a
value to a variable:

var even = ((n % 2) === 0) ? true : false;

That code assigns a Boolean value to the even variable, depending upon whether
or not the number n is divisible by 2 without any remainder. That code is equivalent
to the longer:

s

ptg7799847

var even;

if ((n % 2) === 0) {

 even = true;

} else {

 even = false;

}

Although it is common to use the conditional operator to assign a value to a
variable, it can be used in other ways, such as (Figure 5.10):

alert(((myVar !== undefined) ? ‘Has a value’ :
p ‘Does not have a value’));

var msg = ‘The number ‘ + n + ‘ is ‘ + (((n % 2) ==
p 0) ? ‘even’ : ‘odd’);

You should note that when used inline like this, it’s best to wrap the entire
conditional operator structure within parentheses in order to avoid issues caused
by operator precedence.

Another way you can cryptically create a conditional is by taking advantage
of how JavaScript evaluates the and and or logical operators. Take, for example,
the following:

var x = y || 1;

The and and or operators don’t necessarily return a Boolean value, but rather
the value of one of the operands. Looking at that line of code, JavaScript will first
evaluate the left-hand operand: y. If that variable has a non-FALSE value, its value
will be returned. If y has a FALSE value, then 1 will be returned. The end result is
that the variable x is assigned the value of the variable y, if it’s set, or 1 otherwise.
This is equivalent to:

fiGURe 5 .10 Here, the conditional opera-
tor is used inline to concatenate one of
two different strings onto another string,
depending upon a variable’s value.

More conditionalS 151

ptg7799847

var x;

if (y) {

 x = y;

} else {

 x = 1;

}

While this is a nice shortcut, if you find the syntax to be confusing, you can
stick to the formal conditional structure. Also be aware that:

J With an or conditional, the first value will always be returned if it’s TRUE
(as in the above)

J With an and conditional, the first value will always be returned if the first
value is FALSE, as the whole condition will therefore be FALSE

This is due to how JavaScript performs short circuit evaluations, as already
discussed.

s

ptg7799847

s

The heart of any conditional isn’t the particular kind in use—if, if-else, the
conditional operator, switch, etc.—so much as the particular condition being
established. In this section of the chapter, you’ll see how best to validate num-
bers, how conditions can be written using strings, and you’ll start learning about
validating data by type.

CoMParing nuMBers

You would think that making comparisons with numeric values would be straight-
forward, and it generally is. There are a couple of technical details to be aware of,
however. First, you should know that it’s quite difficult for computers to accurately
represent numbers. For example, the following does not behave as you would
expect (Figure 5.11):

var n = 1 - .8; // .2, right?

var m = .3 - .1; // .2, right?

if (n == m) { // FALSE!

The problem here is that JavaScript cannot cleanly handle the decimals (Fig-
ure 5.12). This isn’t just particular to JavaScript; it’s common with most languages,
often with integers, too. Fortunately, most code doesn’t check the equality of two
exact values, but rather compares the two to see which is larger or smaller. In fact,
with JavaScript, the following condition isn’t actually a test if x is greater than or
equal to y, but rather that x is not less than y (it’s a subtle but meaningful distinction):

if (x >= y) {

If you need to perform exact equality comparisons of two numbers, there are
tricks you can employ to do so reliably. The first is to round the decimals to the
digits you need and then make the comparison:

var n = 1 - .8;

fiGURe 5 .11 Arithmetic and numeric equality
comparisons in JavaScript do not always work
as you might hope.

fiGURe 5 .12 JavaScript, and other languages,
represent numbers using approximations.

More coMpleX conditionS 153

ptg7799847

n = n.toFixed(1);

var m = .3 - .1;

m = m.toFixed(1);

if (n == m) { // TRUE!

This solution works because it drops extraneous decimals and because the
toFixed() method converts numbers to strings. The end comparison is between
two strings, which is more reliable.

The second option is to use integers for all the math and comparisons, and
then convert to a decimal for presentation purposes:

var quantity = 5;

var cost = 199; // 1.99, actually.

var total = cost * quantity;

total /= 100;

alert (‘The total is ‘ + total.toFixed(2));

Moving on, there’s another kind of numeric equality comparison that cannot be
done in JavaScript. Mentioned earlier in the chapter, you cannot perform equality
or identity comparisons against the value NaN (Not a Number), as it’s a special kind
of value. Oddly, even the following condition will be FALSE:

if (NaN === NaN) { // FALSE!

Instead, when you need to check if a number is not a number, you can use the
isNaN() function:

if (isNaN(n)) { // Not a number.

This is a “top-level” function, meaning it’s not called on any object, as in the above.
You can also validate that a number is a number by invoking the isFinite()

function:

if (isFinite(n)) { // Usable number.

The isFinite() function returns true if the provided number is not NaN or
infinite (positive or negative). The function will also attempt to convert the variable
to a number, as if you had applied parseInt() or parseFloat().

s

ptg7799847

CoMParing strings

Next, let’s look at how one makes string comparisons in JavaScript. With strings,
a simple equality comparison is natural:

if (myVar1 == myVar2) {

or

if (password == ‘truthiness’) {

Such comparisons are case-sensitive. To perform a case-insensitive comparison,
apply either toLowerCase() or toUpperCase() to both values being compared:

if (email.toLowerCase() == storedEmail.toLowerCase()) { // Okay!

In Chapter 4, the indexOf() method was introduced as a way to test if one
string (i.e., the needle) exists within another (i.e., the haystack):

if (comments.indexOf(‘spam’)) { // Contains spam, but…

This method returns the value −1 if the needle is not found, and the indexed posi-
tion where it begins if it is found. Taking into account what you’ve already learned
in this chapter, you cannot simply use the above code to test for the presence of the
needle in the haystack (hence the “but” in the comment). The indexOf() method
would return 0 if spam is found at the very beginning of comments, and 0 evaluates
to false in this situation. Conversely, if spam is not found within comments at all,
the method returns −1, which evaluates to true here. Thus, what you’d really want
to do is specifically check that the method hasn’t returned −1:

if (comments.indexOf(‘spam’) != -1) { // Contains spam!

Finally, if you need to compare two strings alphabetically to see which comes
first, you can use the less than and greater than operators:

if (‘cat’ > ‘dog’) { // FALSE

if (‘cat’ < ‘catalog’) { // TRUE

More coMpleX conditionS 155

ptg7799847

Again, just apply the case manipulation methods to perform a case-insensitive
comparison. One thing to be aware of is that uppercase letters are “less than” low-
ercase letters:

if (‘cat’ > ‘Cat’) { // TRUE

To use this new information, the next example will perform some validation
on a simple contact form (Figure 5.13). The relevant HTML, in a page named
contact.html, is:

<div><label for=”email”>Email Address</label><input type=”email”
p name=”email” id=”email” required></div>

<div><label for=”comments”>Comments</label><textarea name=”comments”
p id=”comments” required></textarea></div>

Naturally, this is within a form whose id value is theForm.
The HTML form makes use of the HTML5 email input type, plus a text area. The

HTML page includes the contact.js JavaScript file, to be written in the subsequent
steps. For this example, errors will be shown using alerts (Figure 5.14), and the
form’s submission will only be allowed to go through if no errors occurred. Keep
in mind that if your browser supports HTML5, the browser itself will perform the
validation, only allowing the JavaScript to be called if the requirements are met.

fiGURe 5 .13 The contact form,
with two inputs.

fiGURe 5 .14 Error messages
are revealed to the user via
alert boxes.

TIP: if you perform a comparison between a string and a num-
ber, they’ll be compared as numbers.

s

ptg7799847

To avoid that situation, you can switch browsers, not use HTML5, or simply add
novalidate to the opening form tag.

To process a contact form:

1. Create a new JavaScript file in your text editor or IDE, to be named contact.js.

2. Begin defining the process() function:

function process() {

 ‘use strict’;

 var okay = true;

The process() function will be called when the form is submitted. The okay
variable will be a flag used to indicate whether the form has been completed
properly or not. It is initially set to true, as no problem has occurred. When
a form element fails its validation, this variable will be set to false.

3. Get a reference to the first two form elements:

var email = document.getElementById(‘email’);

var comments = document.getElementById(‘comments’);

4. Validate the email address:

if (!email || !email.value

|| (email.value.length < 6)

|| (email.value.indexOf(‘@’) == -1)) {

 okay = false;

 alert(‘Please enter a valid email address!’);

}

This four-part conditional will be TRUE if any of the subconditions are
TRUE. The first condition checks if email has a FALSE value, which will be
the case if no reference could be made to the form element. The second
condition checks if the email variable has a value property, as an added
precaution. Next, the third condition confirms that the length of the value
is at least six characters, which is the bare minimum for an email address
(a@b.co). Finally, a condition confirms that @ is found within the value. For

More coMpleX conditionS 157

ptg7799847

a tighter validation, you could confirm that the last instance of @ is found
at the same point in the string as the first instance, which is to say that the
@ symbol is only being used once.

If any of these conditions is TRUE, the entire conditional is TRUE, in which
case the okay variable is set to false and an alert message is shown. More
precise validation of an email address requires a complicated regular expres-
sion, to be explained in Chapter 10, Working with Forms.

5. Validate the comments:

if (!comments || !comments.value

|| (comments.value.indexOf(‘<’) != -1)) {

 okay = false;

 alert(‘Please enter your comments, without any HTML!’);

}

The first two clauses are like those already used on the email form element.
The third clause checks for the presence of an opening angle bracket, which
would imply the user may have attempted to submit some HTML.

6. Determine the status and complete the function:

 return okay;

}

Since the okay variable has a Boolean value indicating the status of the
form validation, it can be returned directly. If okay is still true, the form’s
submission will be allowed to go through. If okay has been assigned false,
for either reason, the form’s submission will be halted.

7. Add an event listener to the form:

function init() {

 ‘use strict’;

 document.getElementById(‘theForm’).onsubmit = process;

} // End of init() function.

window.onload = init;

s

ptg7799847

This code has been explained many times over by now. When the form is
submitted, the process() function will be called.

8. Save the file as contact.js, in a js directory next to contact.html, and test
it in your Web browser (Figures 5.13 and 5.14).

the tYPeoF oPerator

Sometimes, especially in more advanced programming, you don’t need to compare
a variable’s value to another value, but rather determine what type of value it is.
For example, a number in JavaScript is also an object of type Number and a string is
also a String. When you get to working with complex types, being able to confirm
what exact type of object you’re working with is invaluable, too. In fact, especially
in more advanced programming, confirming the type of a variable is often the
most reliable approach.

To compare a value’s type, you can use the typeof operator:

if (typeof myVar == ‘number’) {

The typeof operator returns the object’s type as a string. Some of the values
typeof could return are listed in Table 5.3. The table does omit a couple of types
that would not mean much to you at this point.

TabLe 5 .3 typeof Return Values

tYPe returns

undefined undefined

Null object

Boolean boolean

Number number

String string

Array object

Object object

More coMpleX conditionS 159

ptg7799847

There are a couple of situations where the value returned by typeof can be
confusing:

J null returns object

J NaN returns number

J Array returns object

For historical reasons, the null value’s type is object. In future implementations,
it will be null. That being said, you don’t really need to see if a value is of type null,
but rather if it is identical to null:

if (myVar === null) {

In the second situation, NaN, which stands for Not a Number, has a type of
number. Odd as this may seem, it’s simply because the NaN value is defined as
part of the Number object. In the previous pages, you saw how to test against NaN.

The final example, where an Array object is of type object, will be explained
in the next chapter.

s

ptg7799847

s

For

initial
expression

after
expression

do this if
TRUE

Exit loop
once

condition is
FALSE

condition

Along with conditionals, the other major control structure type is the loop. Loops
are used to perform an action a repeated number of times. There is also a conditional
aspect to loops, though, as every loop uses a condition to determine whether or
not to execute the loop’s contents. The two primary JavaScript loops are for, which
is the more commonly used of the two, and while.

the For looP

The syntax of the for loop can be imposing, especially when you’re first learning it:

for (initial expression; condition; after expression) {

 // Execute these statements.

}

To understand this syntax, one has to comprehend how JavaScript executes
the for loop (Figure 5.15). The very first time JavaScript encounters the loop, the

fiGURe 5 .15 The program
flow for the for loop.

BaSicS oF loopS 161

ptg7799847

initial expression will be evaluated (which is to say, executed). This segment of the
loop is normally used to define a variable or otherwise establish whatever baseline
information will be needed for the loop. This expression will always be executed
once (assuming JavaScript gets to that point in the code), and only once.

The second segment is where a condition is established. When the condition is
TRUE, the contents of the loop will be executed. When the condition is, or becomes,
FALSE, the loop’s interaction halts. For some loops, the condition will never be
TRUE; for other loops, like when you make a mistake, the condition will always
be TRUE, resulting in an infinite loop (which is bad).

The third segment is evaluated after the loop’s statements are executed. This
means that the third expression will be executed the same number of times as the
contents of the loop itself.

As a simple example of this, the next for loop iterates ten times:

for (var i = 1; i <= 10; i++) {

 // Do something.

}

The first time that loop is encountered, the i variable is declared and assigned
the value 1. Then the loop checks to see if i is less than or equal to ten. For the ten
times that’s TRUE, the loop’s statements will be executed. After each execution, i
is incremented.

Normally, code within the for loop’s statements or in the third clause will cause
the condition to eventually become FALSE.

The first and last clauses can have more than one expression be evaluated. To
do that, separate the expressions with commas while continuing to use semicolons
to differentiate between the three parts of the loop structure:

for (var i = 1, var j = 0; (i + j) <= 10; i++, j += i) {

 // Do something.

}

s

ptg7799847

To demonstrate using loops, this next example will output a series of lucky
numbers, such as might be used for a lottery (Figure 5.16). Rather than using a
meaningless form for this purpose, I’m going to introduce a new concept, related
to DOM manipulation, otherwise covered in Chapter 9, JavaScript and the Browser.

The HTML page, named random.html, contains this code:

<p>Winning Numbers: </p>

The JavaScript code will get a reference to that span:

var output = document.getElementById(‘output’);

Using JavaScript, you can dynamically assign text to be placed within an HTML
element by assigning a string to that element’s textContent or innerText property.
The former is the W3C standard and works on most browsers; innerText is for
Internet Explorer. To determine which property to use, you can check that one
property is not undefined:

if (output.textContent !== undefined) {

 output.textContent = ‘some string’;

} else {

 output.innerText = ‘some string’;

}

The conditional is TRUE if the textContent property is not identical to undefined.
In layman’s terms, this conditional asks, Does this element have this property? If so,
then the string is assigned to that property. Otherwise, the string is assigned to the
innerText property. In either case, the end result would be:

<p>Winning Numbers: some string</p>

Note that these properties only allow you to assign text to an element. To assign
HTML to an element, you would use innerHTML:

output.innerHTML = ‘some link’;

This property exists on all modern browsers.

fiGURe 5 .16 Six random numbers are determined
by JavaScript and shown in the text input.

BaSicS oF loopS 163

ptg7799847

With that new information introduced, the HTML page only needs that para-
graph and span, and it will include the random.js JavaScript file, to be written in
the subsequent steps. When the page is loaded, the numbers will be generated
and shown on the page.

To generate several random numbers:

1. Create a new JavaScript file in your text editor or IDE, to be named random.js.

2. Begin defining the showNumbers() function:

function showNumbers() {

 ‘use strict’;

 var numbers = ‘’;

This function will be called when the page loads. It needs to generate six
random numbers and display them on the page. The numbers variable will
store the six random numbers as a string. It’s given an initial value of an
empty string.

3. Begin defining a for loop:

for (var i = 0; i < 6; i++) {

The first expression creates a variable named i, initially set to 0. The condi-
tion then checks that i is less than six. After the loop’s body is executed, the
post expression increments i. The end result will be six iterations of the loop.

4. Within the loop, add a random number to the string:

numbers += parseInt((Math.random() * 100), 10) + ‘ ‘;

There are a few things happening in this one step, so I’ll break it down. To
find a random number, invoke the Math.random() method, introduced in
Chapter 4. This method returns a random number between 0 (inclusive)
and 1 (exclusive). To convert that to a random number up to 100 (exclusive),
multiply it by 100. To get just an integer from that, the resulting value is sent
through the parseInt() method. This is concatenated onto the numbers
variable, along with a single space.

5. Complete the loop:

}

s

ptg7799847

6. Display the numbers on the page:

var output = document.getElementById(‘output’);

if (output.textContent !== undefined) {

 output.textContent = numbers;

} else {

 output.innerText = numbers;

}

This is an application of the code just explained, used to place the value of
the numbers variable within the span tags of the HTML page.

If you wanted to be extra neat, you could trim off the final space from numbers
before displaying it in the form.

7. Complete the function:

} // End of showNumbers() function.

8. Add an event listener to the page’s load event:

window.onload = showNumbers;

9. Save the file as random.js, in a js directory next to random.html, and test
it in your Web browser (Figure 5. 16).

Reload the page to see new numbers (Figure 5.17).

fiGURe 5 .17 Six more
random numbers.

BaSicS oF loopS 165

ptg7799847

s

Just as conditionals can be nested, so can loops. Moreover, you can nest
loops within conditionals and conditionals within loops. Whenever you’re
nesting one control structure within another, be certain to always use
curly braces, mind your syntax, and use comments to clearly indicate the
structures.

When nesting loops in particular, you’ll need to make sure that you use
different variables within each loop so that the one loop’s variables do not
conflict with the other’s. For example, an outer loop might use i as a counter,
and the inner loop j.

the While looP

The second primary type of loop in JavaScript is while. Its syntax is much more
straightforward:

while (condition) {

 // Statements to be executed.

}

A counterpart to the while loop is do…while:

do {

 // Statements to be executed.

} while (condition);

Unlike the while loop, the do…while loop will always be executed at least once,
as its condition is not checked until after the first, and every subsequent, execution.
Do note that there’s a semicolon that terminates the construct, after the condition.

In theory, any time you need a loop you could use either a while or a for. In
practice, you’ll find that the for loop is best in situations where the number of
iterations is knowable in advance and the while loop is best in situations where
one doesn’t know in advance how many iterations will be required. This distinc-
tion will make more sense in time, but the for loop is generally used more often
in JavaScript.

s

ptg7799847

s

Along with the conditionals and loops, there are a couple of useful control
statements to be familiar with. You’ve already seen one: break, used to exit a
switch conditional. It can also be used to exit a loop:

while (condition) {

 if (some_other_condition) break;

}

Once that break statement is executed, the loop stops iterating, even if the
loop’s condition would have been TRuE on the next iteration.

Note that break terminates the immediate control structure. By that I mean
that if you have loop B within loop A, a use of break within loop B closes that
loop, returning execution to loop A. You can specify the control structure to
exit using a label, but that’s an esoteric enough concept not to be covered in
this book.

The continue keyword leaves the current iteration of the loop but doesn’t,
in itself, terminate the loop’s execution. For a while loop, this means that
the condition will be tested again, and whether or not the loop is executed
depends upon that condition’s truth. The same is true for a do…while loop. For
a for loop, this means that the loop’s after expression (i.e., the third clause)
will be evaluated, and then the condition will be checked.

Another control statement has been used repeatedly throughout this book
already: return. When a return statement is executed, the code leaves the
current function.

In Chapter 12, Error Management, you’ll learn about throw, which is another
statement that affects the flow of programming logic. It’s used to indicate an
error, sending the script progression to the error-handling portion of the code.

BaSicS oF loopS 167

ptg7799847

revIeW and purSue

w

J What is the syntax of the if conditional? Of if-else? Of if-else if? Of
if-else if-else?

J What are other ways you can write conditionals in JavaScript?

J What are some of the operators introduced in this chapter?

J What is the difference between = and ==?

J What is the difference between == and ===?

J How do you perform a case-insensitive comparison of two strings?

J What is the typeof operator?

J What is the syntax of the for loop? Of the while loop? Of the do…while loop?

J What are the textContent, innerText, and innerHTML properties and why
are they useful?

Pursue

J Apply conditionals and the isNaN() or isFinite() functions to sphere.js
to ensure that valid numbers are in use.

J Apply the information discussed in this chapter to the examples in Chapter 4.

J Update membership.js so that the discount percentage varies based upon
the number of years being purchased (e.g., 10 percent for two or three years,
15 percent for four, and 20 percent for five or more).

J Modify membership.js to use a paragraph or span, along with textContent
and innerText, rather than a form element to show the calculated cost.

s

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

ptg7799847

J As suggested in the step sequence, add another condition to contact.js
that confirms that only one use of @ is present in the email address.

J Use your browser’s console interface to practice with variables and
conditionals.

J Trim the extra space off of numbers in random.js, as suggested in those steps.

J Remove the initialization of the numbers variable in random.js (i.e., remove
the assignment of the empty string), and then rerun the script. See what
happens and then try to figure out why.

WraPPing up

In this chapter, you’ve learned quite a lot of information about control structures
in JavaScript. The key bits were the conditionals, the loops, the comparison and
logical operators, and a slew of ways you can establish conditions. You should
remember to pay close attention to uses of =, ==, and ===, and keep in mind that
numeric comparisons, including the special NaN value, can be tricky. And always
be mindful of your syntax when creating any control structure, let alone complex
and nested ones.

Between the knowledge acquired here and in Chapter 4, you should now be
familiar with the fundamentals of simple data types and how to dynamically take
actions depending upon considerations of your choosing. In short, you have seen
what you need to know to do basic JavaScript programming, which includes form
validation and then some.

Much of the information covered thus far isn’t that different from the syntax,
structures, and simple data types you’d see in other programming languages. The
content you’re about to encounter in the next two chapters will go far toward dif-
ferentiating JavaScript from other languages, though. Starting, in the next chapter,
with objects: the heart of JavaScript.

wrapping up 169

ptg7799847

s

ptg7799847

171

Chapter 4, Simple Variable Types, introduced the

basics of working with variables in JavaScript, including

the simplest of types: strings, numbers, and Booleans. The true

potential of any language comes through its complex data types.

In JavaScript, this primarily means arrays and objects, although

I’ve included the Date type in this chapter, too. While arrays are

common to all languages (in one format or another), JavaScript’s

implementation of objects is significantly different from any other

language, and key to understanding JavaScript as a whole.

ptg7799847

The first complex type to be discussed in this chapter is the Date object. Although
Date is used quite differently than the array and (generic) object you’ll learn about
in later pages, Date is more complex than the simple types already discussed, so
I’ve chosen to cover it here. Like all well-designed objects, Date is specific in its
intended use, while still being very helpful. The Date object in JavaScript is able
to represent any date and time 100 million (yes, 100,000,000) days before or after
midnight on January 1, 1970. That’s an arbitrary date commonly used by computers
as a point of reference, called the epoch or Unix epoch.

Creating dates

To create a Date object, use this syntax (Figure 6.1):

var today = new Date();

After the first three parts—use of the var keyword, the variable’s name, and the
assignment operator—this is a different syntax for creating a variable than you’ve
otherwise seen in the book. The new operator is used to create new objects. The
specific object type to be created follows the operator. In the above, this is Date.
That line creates a new Date object whose value—the date and time it stores—is
the current date and time. Understand that when JavaScript is running in the client
(e.g., the Web browser), the current date and time are those for the client machine.

There are three ways of creating dates for specific dates and times:

var someday = new Date(year, month, day, hour, minute, second,
p milliseconds);

var someday = new Date(milliseconds);

var someday = new Date(‘date string’);

fiGURe 6 .1 The creation of
a new variable of type Date,
representing the current date
and time.

s

s

ptg7799847

These three approaches correspond to the three ways dates can be represented:

J As atomic year, month, day, hour, minute, second, and millisecond values

J As a timestamp, which is the number of seconds, or in JavaScript, milliseconds,
before or after the epoch

J As a string, such as July 5, 2012

Let’s look at these options in order.

uSing atoMic date valueS
The first way you can create a Date object for a specific date is to provide separate
year, month, and day values. The day value is optional and defaults to 1. The time
values are optional, too. If provided, those values will be used to set the time on
that date, too. The hours start at 0, but use 24-hour time: from 0 to 23. If no time
values are provided, the time will be set as 00:00:00 and (0 milliseconds), which
is to say midnight.

The year should be set as four digits. The month is one or two digits, but, tragi-
cally, start at 0 for January, not 1. I suspect this decision was made because most lists
in most programming languages begin counting at 0, but it’s frankly a terrible and
confusing choice when it comes to identifying months. This decision is made even
more egregious when you learn that the day of the month starts at 1. But I digress…

Thus, to create a representation of July 5, 2012, you’d use:

var thatDate = new Date(2012, 6, 5); // July is 6, not 7!

To create a representation of 1:30 p.m. on that date, you’d use (Figure 6.2):

var thatDate = new Date(2012, 6, 5, 13, 30); // July is 6, not 7!

fiGURe 6 .2 Creating two Date
objects, first representing a specific
date, but not time, then representing
a specific date and time.

generating dateS and tiMeS 173

ptg7799847

uSing a tiMeStaMp
The second way to set a specific date and time is to provide a single value to the
Date object. This value is a timestamp representing the number of milliseconds
since the epoch. As there are 86,400,000 milliseconds in a single day, the value
used here will be quite large. For example, to create a Date object representing
January 10, 1970—ten days after the epoch, you’d use (Figure 6.3):

var thatDate = new Date(86400000 * 10);

As you’ll see over the next pages, rather than calculating your own timestamp
and providing it to the Date object, you’ll normally use a timestamp calculated in
another way (such as by a second Date).

uSing a String
The third way to establish a specific date and time is to provide a string to the Date
object. The catch is that the string must be formatted appropriately. Examples include:

J July 5, 2012

J Jul 5, 2012

J 5 July 2012

J 07/05/2012

J 07/05/2012 13:30

J Thu, 05 Jul 2012 13:30:00 GMT-0500

The caveat with this approach is that if your syntax is incorrect, the result will
be an invalid date, or the epoch, depending upon the browser (Figure 6.4):

fiGURe 6 .3 Creating a
Date object by providing a
timestamp.

fiGURe 6 .4 The string
provided must be of a correct
format or else the variable
will be assigned an invalid or
default date.

s

ptg7799847

The syntax must be in the RFC822/IETF format (that’s a more technical state-
ment than I like to make, but check out www.w3.org/Protocols/rfc822/#z28 for
details). This syntax generally comes down to day date time, with the day and time
being optional. If present, the day must be followed by a comma (as in the last
example above). And, as you can see, the month can be represented in a number
of formats. You can even indicate the time zone, if you want.

date Methods

Once you’ve established a Date object that represents a particular date and time,
there are oodles of methods you can use for retrieving the date and time, in part or
in whole. To start, the getTime() method returns the date and time as the number
of milliseconds since the epoch (i.e., as a timestamp):

var timestamp = someday.getTime();

(Note that in these examples, it’s assumed that the someday variable has already
been created as a Date object representing a valid date and time.)

As you’ll see shortly, the number of milliseconds since the epoch can be used
to perform date arithmetic. A negative timestamp means that the date and time
is before midnight on January 1, 1970 (Figure 6.5):

var someday = new Date(1969, 11, 31, 12, 00, 00);
p // Dec 31, 1969 at 12:00:00 PM

Table 6.1 lists many of the methods you can use to retrieve pieces of the rep-
resented date and time. There is no method for returning the month name, but
you’ll see how to do that later in the chapter.

fiGURe 6 .5 Dates occurring before
the epoch have negative timestamps
(in milliseconds).

generating dateS and tiMeS 175

www.w3.org/Protocols/rfc822/#z28

ptg7799847

TabLe 6 .1 Atomic Value Retrieval Date Methods

Method returns

getDate() Day of the month

getDay() Day of the week, with 0 representing Sunday

getFullYear() Year as four digits

getHours() Hours, from 0 to 23

getMilliseconds() Milliseconds

getMinutes() Minutes

getMonth() Month number, with 0 representing January

getSeconds() Seconds

getTime() Milliseconds from the epoch

Table 6.2 lists methods that return various strings for different ways the date
and time can be represented. To understand these best, the table includes not a
description of what each method returns, but an example value.

TabLe 6 .2 More Date Object Methods

Method exaMPle

toDateString() Thu Jul 05 2012

toISOString() 2012-07-05T17:30:05.000Z

toJSON() 2012-07-05T17:30:05.000Z

toLocaleDateString() July 5, 2012

toLocaleString() July 5, 2012 1:30:05 PM EDT

toLocaleTimeString() 1:30:05 PM EDT

toString() Sun Aug 05 2012 13:30:05 GMT-0400 (EDT)

toTimeString() 13:30:00 GMT-0400 (EDT)

s

ptg7799847

You should note that the toISOString() and toJSON() methods are new in
ECMAScript 5, meaning they aren’t available in all browsers. You can check for
support for these methods before attempting to use them:

if (someday.toJSON) { // Safe to use!

} else { // Use another approach.

}

It may not be obvious from the example data, but toISOString() returns the date
and time in the ISO 8601 Extended Format and toJSON() returns it in JSON format.

As for the methods with “locale” in the name, those return the stated informa-
tion—the date and/or time—formatted appropriate for the environment’s locale.
A locale is a combination of language, country, and customs that impact how dates
are written, numbers are formatted, and so forth. Most aspects of the user’s locale
will be established by the computer; others will differ from one browser to another
on the same computer.

Let’s use all this information to create a page that simply reflects the user’s date
and time (Figure 6.6). The very simple HTML page, named today.html, just has
an empty paragraph that will be updated by the JavaScript code, using information
taught in the previous chapter:

<p id=”output”></p>

That HTML page should include the today.js JavaScript file, to be written in
the subsequent steps. As a reminder, you can download all the book’s code from
www.LarryUllman.com.

fiGURe 6 .6 The user’s current
date and time.

TIP: When you begin using a new computer and are asked to
select your language, country, keyboard, time zone, and so forth,
your answers go toward your custom locale.

generating dateS and tiMeS 177

www.LarryUllman.com

ptg7799847

To show today’s date and time:

1. Create a new JavaScript file in your text editor or IDE, to be named today.js.

2. Begin defining the init() function:

function init() {

 ‘use strict’;

The init() function will be called when the document is loaded. It will
do all the work.

3. Create a new Date object:

var today = new Date();

As the object is being created without any provided values, the today vari-
able will represent the current date and time for the user.

4. Create a custom message:

var message = ‘Right now it is ‘ + today.toLocaleDateString();

message += ‘ at ‘ + today.getHours() + ‘:’ +
p today.getMinutes();

The message variable is a string that reflects the date and time. To fetch
the date, the toLocaleDateString() method of the today object is called.
To fetch the time, the getHours() and getMinutes() methods are called
individually, as the toLocaleTimeString() method also returns the seconds,
which I don’t want to display.

5. Get a reference to the paragraph for the output:

var output = document.getElementById(‘output’);

The paragraph that already exists in the HTML will be used to display the
message.

s

ptg7799847

6. Update the appropriate property of the paragraph with the custom message:

if (output.textContent !== undefined) {

 output.textContent = message;

} else {

 output.innerText = message;

}

This code was explained in Chapter 5, Using Control Structures. On some
browsers, the textContent property will exist for HTML elements, and
that property can be used to assign plain text to a paragraph. To confirm
that this property exists, the condition checks that the property’s value
does not equal undefined. If it does equal undefined, then the innerText
property needs to be used instead. Again, see Chapter 5 for a slightly more
thorough discussion.

7. Complete the function:

}

8. Tell the browser to call the init() function when the window has been
loaded:

window.onload = init;

9. Save the file as today.js, in a js directory next to today.html, and test it
in your Web browser (Figure 6.6).

You can reload the script to show the most current time, or view it in another
browser to see it how the date might be displayed differently (Figure 6.7).

fiGURe 6 .7 In Safari (here), the day of the week is not
shown (compare with Figure 6.6, which is Chrome).

generating dateS and tiMeS 179

ptg7799847

Working With tiMe zones

When working with the Date object, one thing to be wary of, especially with times,
is the issue of the various time zones that exist in the world. By default, JavaScript
represents dates and times using the client’s time zone setting. But there are situa-
tions where it’s best to work with a “neutral” date and time: one that is consistently
the same across all clients. For example, if you’re running an auction site, you
can’t just set an auction to end at, say, 8:00 p.m., as my 8:00 p.m. is undoubtedly
a different time than yours. The solution is to use a standardized time zone, such
as UTC, which strangely stands for Coordinated Universal Time. UTC represents
the same time zone as Greenwich Mean Time (GMT), but UTC is the preferred
term to use anymore.

To establish a Date object using UTC, there are a couple of options. The first is
to use a UTC-appropriate timestamp. For example, if the details of the hypotheti-
cal auction come from a database, and that database stores the information using
UTC, the server could provide the UTC timestamp to the JavaScript:

// JavaScript code.

var ending = new Date(<?php echo $timestamp; ?>);

This approach will work so long as that JavaScript code is being processed by a
server-side technology (such as PHP in the above) before being sent to the client.

The second option is to use the string format for creating the date and time, as
that format does allow you to identify the time zone, too:

var end = new Date(‘05 Jul 2012 13:30:00 UTC’);

Now when you fetch the local date and time, it will be adjusted for the user’s
time zone, from the initial UTC time (Figure 6.8):

end.toTimeString();

fiGURe 6 .8 The standard get*
and to* methods return the
local date and time, even if it
was originally set using UTC.

s

ptg7799847

Another way of setting a date and time to Coordinated Universal Time is to
perform a calculation with the user’s time zone offset. You can find that informa-
tion by calling the getTimeZoneOffset() method (Figure 6.9):

var now = new Date();

now.getTimezoneOffset();

The getTimezoneOffset() returns a numeric value that is the number of min-
utes, plus or minus, that the user’s time zone is from UTC.

Just as you can start with a UTC date and time and then retrieve local date and
time information (as in Figure 6.8), you can also start with the local date and time
and retrieve UTC equivalents. To do that, use getUTC* methods instead of get*:
getUTCHours() instead of getHours(), getUTCDate() instead of getDate(), and
so forth. For each of the methods listed in Table 6.1, there’s a UTC equivalent. To
return the entire date as a UTC string, there’s toUTCString():

var now = new Date();

var london = now.toUTCString();

Changing dates

Moving on, if you need to change the date being represented by a Date object, you
can do so using several methods (Table 6.3).

TabLe 6 .3 Date Changing Methods

Method sets

setDate() Day of the month

setFullYear() Year

setHours() Hours

setMilliseconds() Milliseconds

setMinutes() Minutes

setMonth() Month (starting with 0 for January)

setSeconds() Seconds

fiGURe 6 .9 The getTimezone
Offset() method returns
the user’s offset, in minutes,
from UTC.

generating dateS and tiMeS 181

ptg7799847

Each of these is also available in a UTC-specific version, such as setUTCDate(),
setUTCFullYear(), and so forth. The setTime() method can be used to change
both the date and the time. It takes a timestamp as its lone argument.

These methods are most useful when combined with date arithmetic.

date arithMetiC

The final thing you need to know about using the Date object is how to perform
arithmetic. While you wouldn’t ever multiply dates and you certainly never divide
them (I don’t even know what either would mean, although they are possible in
JavaScript), being able to add and subtract dates and times is quite useful. For
example, you may need to:

J Calculate the interval between two dates and/or times

J Add or subtract days or times from a date

J Time how long a process has taken

This is all easily done when you consider that dates can be represented as a
timestamp.

tiMeStaMp arithMetic
A timestamp just being a number, you can perform any kind of arithmetic with
it as you would any other number. For example, to find the date two weeks from
now, you can start by getting the current timestamp. One way to do that would be
to create a new Date object and invoke its getTime() method:

var now = Date();

var ts = now.getTime();

This can be cryptically shortened to just:

var ts = (new Date()).getTime();

The part within parentheses returns a new Date object and then the getTime()
method is applied to the returned object. (After this line, the generated Date object
is immediately forgotten.)

s

ptg7799847

revisiting eCmaSCrIpt 5

In Chapter 1, (Re-)Introducing JavaScript, you learned that JavaScript is
derived from the ECMAScript standard. In this chapter, several new editions
to ECMAScript 5 are mentioned, but you may wonder what this means
to you as a Web developer. Some of the new methods have actually been
around in browsers for years, and have just been made official as of ECMA-
Script 5. Other new methods were formally introduced in ECMAScript 5 and
will take some time to be widely supported by all browsers. Regardless of
which came first—support or recognition—you can always test for a meth-
od’s support prior to attempting to use it, as you see in the Date.now() code
demonstrated in this section of the chapter.

New in ECMAScript 5 is the now() function, which can be called without creat-
ing your own instance of a Date object:

var ts = Date.now();

That line returns the timestamp that represents the current moment, down to
the precise millisecond. This is equivalent to the getTime() method called on a
Date object variable, but is instead invoked from the Date object proper. This is the
same premise as calling the various methods of the Math object (although, unlike
with Date, you never create variables of the Math object type). This new method is
well supported by modern browsers, but if you want to use code that’s 100 percent
reliable for even older browsers, you could use:

if (Date.now) {

 var now = Date.now()

} else {

 var now = (new Date()).getTime();

}

Returning to the example at hand—fetching the date and time two weeks from
now—the goal is to find out how many milliseconds need to be added to the cur-
rent moment. Two weeks from now is 1000 milliseconds times 60 seconds times
60 minutes times 24 hours times 14 days:

var interval = 1000 * 60 * 60 * 24 * 14;

generating dateS and tiMeS 183

ptg7799847

Now add the two values together:

var ts = now + interval;

Then, create a new Date object for that value:

var then = new Date(ts);

To get the resulting date, use one of the appropriate methods (Figure 6.10):

then.toString();

Subtraction, of course, would work much the same way.

uSing SetX() and getX()
You can also add an interval to a date and time, or subtract an interval from a date
and time, via the setDate() method, providing the current date plus the interval
as its new value. The generic syntax is:

var someday = new Date();

someday.setX(someday.getX() + Y);

For example, to add a week (seven days) to the current date, you would use the
setDate() and getDate() methods (Figure 6.11):

var someday = new Date(); // Today!

someday.setDate(someday.getDate() + 7); // One week!

fiGURe 6 .10 Some basic arithmetic and the use of timestamps makes
it easy to convert a date from one to another, some time later.

fiGURe 6 .11 Various other ways of changing a date or time by a
certain interval.

s

ptg7799847

To add 6 hours, use setHours() and getHours():

someday.setHours(someday.getHours() + 6); // Six hours later!

To subtract a year, use setFullYear() and getFullYear():

someday.setFullYear(someday.getFullYear() - 1); // Last year!

Obviously, if you’re changing a date by a single interval—minutes, hours, days,
years—using this latest code is the easiest solution. If you’re changing a date by
a more complicated interval, you can either use the timestamp approach first
explained, or use multiple executions of this last bit of code (i.e., first change the
days, then the hours).

calculating intervalS
Sometimes, instead of finding the date that’s some interval from another date, you
may want to find the interval between two dates. To do that, you can actually just
subtract the one Date object from the other:

var now = new Date();

var then = new Date(‘07/07/2012 13:30’);

var diff = then - now;

The resulting value will be in milliseconds and will always be positive, regard-
less of which Date object is “greater.”

Returning to the auction example, you could calculate the time remaining for
the auction by subtracting the current time from the auction’s ending time, and
then convert the milliseconds into minutes, hours, and days.

When needed, you can use comparative operators to see which date comes later:

if (now > then) { // then is in the past.

NOTE: You cannot directly add two Date objects as the result will
be a concatenation of the two date strings, not an addition of the two
underlying timestamps.

generating dateS and tiMeS 185

ptg7799847

putting it all together
Let’s use all this information to create a page that lets the user select a starting and
ending date for an event. The script will then validate those dates, and calculate
how many days they span (Figure 6.12). The HTML page, to be named event.html,
uses two text inputs for the starting and ending dates. Just above the form is an
empty DIV that will be updated by the JavaScript code, providing confirmation
(Figure 6.12) or error messages (Figure 6.13).

<div id=”output”></div>

<p>Enter the starting and ending dates of the event.</p>

<div><label for=”start”>Start</label><input type=”text” name=”start”
p id=”start” placeholder=”MM/DD/YYYY” required></div>

<div><label for=”end”>End</label><input type=”text” name=”end”
p id=”end” placeholder=”MM/DD/YYYY” required></div>

The HTML page includes the event.js JavaScript file, to be written in the
subsequent steps.

To work with dates:

1. Create a new JavaScript file in your text editor or IDE, to be named event.js.

2. Begin defining the process() function:

function process() {

 ‘use strict’;

The process() function will do the work when the form is submitted.

fiGURe 6 .12 After validation,
the particulars of the event are
reported back to the user.

fiGURe 6 .13 Error messages
are revealed to the user, too.

s

ptg7799847

3. Get references to the HTML elements:

var start = document.getElementById(‘start’);

var end = document.getElementById(‘end’);

var output = document.getElementById(‘output’);

The first two variables reference the two text inputs. The third is a reference
to the DIV, where the output will be placed.

At this point, you could also consider validating that the start and end
variables are good, and that both have value properties.

4. Declare three variables for the output:

var message = ‘’;

var interval = ‘’;

var day = 1000 * 60 * 60 *24;

The first two variables are empty strings that will be used for the output: the
message to the user. The third variable represents the number of milliseconds
in a single day, which will be useful later on in the script, during the calculations.

5. Create two new Date() objects:

var startDate = new Date(start.value);

var endDate = new Date(end.value);

A direct way of creating the Date objects is to provide the user-entered
dates. This represents the third way of creating Date objects for specific
dates: using a string.

6. Confirm that the two dates are valid:

if (startDate.getTime() && endDate.getTime()) {

As you saw earlier in the chapter, if you use an invalid string to create a Date
object, the result will be an invalid date or the epoch (Figure 6.5). But how do
you test for that? There are several possible solutions. Here, the getTime()
method is called on both. It returns a timestamp (i.e., a number), or in the
case of an invalid date, the value NaN. That value is evaluated as FALSE in

generating dateS and tiMeS 187

ptg7799847

a condition like this. If the created date is assigned the value of the epoch,
then getTime() will return 0, as the date will be 0 milliseconds from the
epoch. That value will also be evaluated as FALSE.

If either date is not valid, this condition will be FALSE.

7. Make sure the start date comes first:

if (startDate < endDate) {

A simple use of the comparison operator can quickly confirm that the start-
ing date comes before the ending date.

8. Determine the interval between the two dates:

var diff = endDate - startDate;

if (diff <= day) {

 interval = ‘1 day’;

} else {

 interval = Math.round(diff/day) + ‘ days’;

}

The first line uses subtraction to calculate the interval between the two dates.
The result will be in milliseconds. The code then determines whether this
difference is just one day or multiple days, by comparing the difference to
the day number already calculated. In either case, a string is assigned to the
interval variable. If the difference is more than one day, division is used,
and rounded off, to calculate the exact number of days.

Philosophically, I’m treating an event that goes from, say, the first to the
third as being a two-day event, but you may consider that to be three days.

9. Generate the message to be displayed:

message = ‘The event has been scheduled starting on ‘ +
p startDate.toLocaleDateString();

message += ‘ and ending on ‘ + endDate.toLocaleDateString();

message += ‘, which is a period of ‘ + interval + ‘.’;

s

ptg7799847

The final step (in the good result side of things) is to output a nice message.
Here that message is built up, using concatenation, the interval variable,
and two calls to the toLocaleDateString() method.

10. Create the errors as messages:

 } else {

 message = ‘The start date must come before the
 p end date!’;

 }

} else {

 message = ‘Please enter valid start and end dates in the
 p format MM/DD/YYYY.’;

}

These two else clauses complete the conditions begun in Steps 6 and 7.

11. Update the page with the custom message:

if (output.textContent !== undefined) {

 output.textContent = message;

} else {

 output.innerText = message;

}

This is the same code as in the previous example.

12. Complete the function:

 return false;

}

13. Add an event listener to the form’s submission:

function init() {

 ‘use strict’;

 document.getElementById(‘theForm’).onsubmit = process;

} // End of init() function.

window.onload = init;

generating dateS and tiMeS 189

ptg7799847

14. Save the file as event.js, in a js directory next to event.html, and test it
in your Web browser.

Try different possible date values to see the results.

As a reminder, if your Web browser supports HTML5, it will do some vali-
dation for you, such as not allowing the form to be submitted without you
having provided values in both text inputs. To work around this, you can use
a nonsupportive browser (gasp!) or add novalidate to the opening form tag.

s

The defining characteristic of the simple variable types as I’m calling them in this
book—numbers, strings, and Booleans—is that they only represent a single value
at a time. Conversely, complex data types, even the Date object just covered, can
simultaneously store multiple pieces of information. The standard-bearer of complex
data types in any programming language is the array. An array is simple in theory
and a bit more complex in actuality. You can think of an array as just a list of values.
For example, an array of people’s names is just a list of strings; an array of daily tem-
peratures is a list of numbers. Form data can often be manipulated as an array, as can
some data returned by server requests. Over the next several pages you’ll learn the
fundamentals of creating, using, and manipulating arrays in JavaScript.

Creating arraYs

As arrays store multiple values, how they are created and accessed differs signifi-
cantly from the simple variable types. The naming rules for arrays are the same as
for other variables, but the similarities largely end there. There are two ways you
can create an array. The first is to use the new operator:

var myVar = new Array();

s

ptg7799847

Similar to how you create a new Date object, that line creates an empty array, as
it has no defined values in its list. To establish the array’s contents while creating
it, add the values, separated by commas, between the parentheses:

var myList = new Array(1, 2, 3);

var people = new Array(‘Fred’, ‘Daphne’, ‘Velma’, ‘Shaggy’);

var options = new Array(true, false);

As with any value in JavaScript, you should quote strings but not other types.
The second way you can create an array is to use literal syntax. Literal syntax,

a phrase less advanced than it sounds, is actually something you’ve been doing
thus far. When you create a number, string, or Boolean using the following code,
you’re using literal syntax:

var n = 2;

var lang = ‘JavaScript’;

var test = true;

Those variables can also be created more formally by creating Number, String,
and Boolean objects:

var n = new Number(2);

var lang = new String(‘JavaScript’);

var true = new Boolean(true);

There are minor differences as to the impact on your overall code when you
use object syntax (i.e., use new) versus literal syntax, but simple variable types are
almost always created literally. With arrays, you can also use literal syntax, with
the square brackets being the array notation indicators:

var myVar = [];

var myList = [1, 2, 3];

var people = [‘Fred’, ‘Daphne’, ‘Velma’, ‘Shaggy’];

As with the simple types, it’s most common to create arrays using literal syntax.
In fact, as you’ll see by the end of the chapter, the general preference is to create
any standard variable type using literal syntax (except for Date, which does not
have a literal equivalent).

worKing with arrayS 191

ptg7799847

The above examples are arrays containing the same types of values, but you
can mix up the stored types, too:

var collection = [1, ‘Fred’, ‘Daphne’, 2, false];

Because of the nature of arrays in JavaScript, to be explained at the very end of
the chapter, mixing types in an array is less common than having the array consist
entirely of a single type of value.

Once you’ve created an array, you can see how many items are in it by checking
the array’s length property:

myVar.length; // 0

myList.length; // 3

people.length; // 4

Unlike a string’s length property, which reflects the number of characters in
the string, there are times when an array’s length property does not accurately
represent the number of items in the array. To understand why, you must first know
how items are stored in an array, and how you access them.

aCCessing an arraY eleMent

With simple variable types, you can access the variable’s value by just using the
variable’s name, as in:

var n = 2;

var four = n + n;

With complex variables, storing multiple values, simply using alert() or console
.log() reveals all of the values, but won’t let you access individual values (Figure 6.14):

var people = [‘Fred’, ‘Daphne’, ‘Velma’, ‘Shaggy’];

console.log(people);

alert(people);

As you can see in Figure 6.14, when using alert(), JavaScript converts the
array to a string, with each value separated by commas. In the console, the array
is displayed using the literal syntax that would create it.

s

ptg7799847

To access an individual array item, you once again turn to the square brackets,
this time providing the index of the particular item (Figure 6.15):

alert(people[0]);

(Conventionally, the items in an array are called its elements, so I’ll be using
that term in lieu of items from here on out.)

To understand indexes, you have to think of arrays not just as a list of values,
but as a numbered list. By default, arrays begin indexing at 0, just as a string’s
characters are indexed beginning at 0.

You can use an array’s index to both retrieve an individual element, as in Fig-
ure 6.15, or when assigning an item to the array:

people[4] = ‘Charlie’;

If there is no element in the array indexed at that position, then a new element
will be added to the list. If an element does already exist at that position, its value
will be replaced with the new value. Thus:

people[0] = ‘Mac’;

// People now stores ‘Mac’, ‘Daphne’, ‘Velma’, ‘Shaggy’, ‘Charlie’

Returning to the topic of an array’s length, that property is a misnomer, as
it doesn’t reflect the number of items in the array but rather one more than the
largest index being used:

people.length; // 5

people[10] = ‘Dennis’;

people.length; // 11!

fiGURe 6 .14 Attempting to
use just an array variable’s
name refers to the array’s
entire contents.

fiGURe 6 .15 Use square brack-
ets to access individual values
stored in the array.

worKing with arrayS 193

ptg7799847

You may wonder what the benefit is of the length property storing that value,
rather than the number of elements in the array. One reason is that you cannot
add new items to the array using this syntax:

people[] = ‘Dee’; // Won’t work!

To add (or change) a value with literal syntax, you must indicate an index. To
use an available index, so that you don’t overwrite an existing value, provide the
array’s length as the new element’s index:

people[people.length] = ‘Dee’; // Works!

Now that you know how to refer to an individual array element, I can explain
how one would quickly find the month name for a given date (mentioned in the first
section of this chapter). As stated earlier, the getMonth() method of a Date object
returns the month number, indexed beginning at 0. To associate a month name
with the getMonth() value, you need to create an array of months, also indexed
beginning at 0, which, of course, is the default:

var months = [‘January’, ‘February’, ‘March’, ‘April’, ‘May’,
p ‘June’, ‘July’, ‘August’, ‘September’, ‘October’, ‘November’,
p ‘December’];

With that array defined, you can now do this (Figure 6.16):

var now = new Date();

var thisMonth = months[now.getMonth()];

A new way to find array element values is to use the indexOf() or lastIndexOf()
methods, added in ECMAScript 5. Both work like the string counterparts (see
Chapter 4), returning the indexed position in the array of the value if it is found. If
the value does not exist in the array, both methods return -1:

fiGURe 6 .16 Using an array, you
can easily associate a numeric
month number, starting at 0,
with its name.

s

ptg7799847

months.indexOf(‘February’); // 1

months.indexOf(‘Smarch’); // -1

As with the string uses of these functions, you want to perform a comparison
against -1 when using one of these functions as the basis of a conditional:

if (months.indexOf(‘February’) != -1) {

As with the string versions of these same functions, both take optional second
arguments indicating where to begin the search.

putting it all together
At this point, let’s begin using this array information in some real code. The specific
example will be the basis of a “to-do list” management system (Figure 6.17). The
HTML page, to be named tasks.html, contains an HTML form wherein the user
can enter an item to be done. There’s a spot underneath the form for indicating
the number of items on the list:

<form action=”#” method=”post” id=”theForm”>

 <fieldset><legend>Enter an Item To Be Done</legend>

 <div><label for=”task”>Task</label><input type=”text”
 p name=”task” id=”task” required></div>

 <input type=”submit” value=”Add It!” id=”submit”>

 <div id=”output”></div>

 </fieldset>

</form>

The page includes the tasks.js JavaScript file, to be written in the subsequent steps.

fiGURe 6 .17 This application
stores a series of tasks the user
has to do, presenting a count
of them (for added pressure).

worKing with arrayS 195

ptg7799847

To work with arrays:

1. Create a new JavaScript file in your text editor or IDE, to be named tasks.js.

2. Create a global variable as an array:

var tasks = [];

Generally speaking, global variables are to be avoided (as first suggested in
Chapter 4). However, in this case a global variable is necessary.

The tasks variable is declared here as an empty array. This line of code will
be executed the first time the JavaScript is loaded. Within a function that is
called whenever the user clicks the submit button, new to-do items will be
added to this array. If this variable was declared within that function, then it
would cease to exist when the function terminates, and would be declared
anew—and empty—with each function call. In other words, global variables
have a permanence that function variables do not have.

By declaring this variable here, outside of any function, it will retain its
value (until the user refreshes the page or closes the browser).

3. Begin defining the addTask() function:

function addTask() {

 ‘use strict’;

4. Get references to the HTML elements:

var task = document.getElementById(‘task’);

var output = document.getElementById(‘output’);

The first variable references the text input where the user enters a task. The
second is a reference to the DIV where the output will be placed.

5. Declare a variable for the output:

var message = ‘’;

The message variable is an empty string that will be used for the output:
the message to the user.

s

ptg7799847

6. If a task was entered, add it to the array:

if (task.value) {

 tasks[tasks.length] = task;

The conditional just confirms that there’s a value in the text input. If so, it’s
added to the array using code already explained.

7. Update the page:

message = ‘You have ‘ + tasks.length + ‘ task(s) in your
p to-do list.’;

if (output.textContent !== undefined) {

 output.textContent = numbers;

} else {

 output.innerText = numbers;

}

The message to be displayed to the end user shows the number of tasks in
the list. Because arrays are indexed beginning at 0, the length property is
the same as the number of elements in the array. This is true so long as the
elements are numbered sequentially without “holes,” as in this example (see
the “Sparsely Populated Arrays” sidebar for more on this subject).

8. Complete the conditional begun in Step 6, and complete the function:

 } // End of task.value IF.

 return false;

}

As written, if the user doesn’t provide a task, nothing happens.

9. Add an event listener to the form’s submission:

function init() {

 ‘use strict’;

 document.getElementById(‘theForm’).onsubmit = addTask;

worKing with arrayS 197

ptg7799847

} // End of init() function.

window.onload = init;

When the user submits the form, the addTask() function will be called.

10. Save the file as tasks.js, in a js directory next to tasks.html, and test it
in your Web browser (Figure 6.18).

To complete this system, one would add a login system, invoke Ajax to send
the tasks to the server to be stored, and add a server-side script to be used
when JavaScript is disabled.

aCCessing all arraY eleMents

The previous section demonstrated how to access individual array elements, using
the element’s index. There is a way to access array elements without knowing the
specific indexes: use a loop, which also provides access to every array element.
Understanding that arrays begin indexing at 0, and the maximum index is 1 minus
the array’s length, a for loop can be used to iterate through the array:

for (var i = 0; i < myList.length; i++) {

 // Do something with myList[i].

}

The first time the loop is encountered, the i variable is set to 0: the first possible
indexed position. The condition then checks if i is less than the length property
of the array. While that condition is TRUE, the loop’s body can do something with
myList[i]: myList[0], myList[1], and so forth. Then i is incremented. Once i
equals the length of the array, the loop is terminated, as there is no element indexed
at myList[length].

fiGURe 6 .18 Another task has
been added.

s

ptg7799847

s

Arrays in JavaScript have an odd behavior in that they can be sparsely popu-
lated, meaning they can have “holes” in their lists of values. These holes
appear when you:

J Delete an element

J use a value other than the array’s length for the indexed position of an
item being added (as demonstrated earlier)

J Skip values when creating the array

The latter can occur if you use this syntax:

var myList = [1, , 3, , 5];

That array has two undefined values. As a best practice, though, if you need
to create an array with holes, it’s best to be explicit about it:

var myList = [1, undefined, 3, undefined, 5];

Never use an empty comma at the end, though, as JavaScript will ignore it
(and older browsers will choke on it).

For performance reasons, it’s best not to compare i against the array’s length with
each iteration of the loop, as that requires that JavaScript look up the array’s length
each time. A better version of the same loop assigns the array’s length to another
variable in the loop’s first clause and then uses this new variable for the conditional:

for (var i = 0, count = myList.length; i < count; i++) {

 // Do something with myList[i].

}

Because an array can be “sparsely populated” (see the sidebar), the for loop
may need to have a condition ensuring there is an element indexed at each given
position. To do that, you could use:

if (myList[i] !== undefined) { // Exists!

You can also use the in operator, which returns TRUE if the index exists in
the array:

if (i in myList) { // Exists!

worKing with arrayS 199

ptg7799847

reMoving arraY eleMents

You can remove an element from an array via the delete operator:

delete people[0];

Again, you use the square brackets and the index to specify the element to
be removed. Keeping in mind how the length property works with JavaScript’s
arrays, deleting a specific array element will not change the array’s length value.
In fact, the indexed element will still exist in the array, only it will have a value of
undefined (i.e., the array will have a “hole” in it).

arraY Methods

Now that you know how to create an array and access its stored values, it’s time to
move on to the more powerful ways of working with arrays: using built-in methods.

An alternative way to add an element to an array is to use the push() method.
It takes one or more arguments as the values to be appended:

var primes = [];

primes.push(1); // [1]

primes.push(3, 5, 7); // [1, 3, 5, 7]

The push() method is common to arrays in many programming languages, and
is preferred over the arrayName[arrayName.length] syntax.

One thing to be aware of when using push() is that if a value being pushed
onto an array is itself an array, the new value will be added intact (i.e., creating a
multidimensional array; see the following sidebar).

An alternative to push() is unshift(). It forces new items onto the front of the
array, pushing the array’s existing elements back as needed:

var primes = [3, 5, 7]; // [3, 5, 7]

primes.unshift(1); // [1, 3, 5, 7]

The unshift() method is slower than push() so you should use the latter
whenever possible.

s

ptg7799847

s

The values of array elements don’t have to be simple; they can also be complex, such as other arrays. When
you have an array whose values are other arrays, the result is a multidimensional array:

var grid = [[2, 4, 6, 8], [1, 3, 5]];

That is a multidimensional array. The primary array has two values, indexed at grid[0] and grid[1], each
value also being an array. The primary array’s length attribute still represents one more than the largest
index in the primary array, not the largest index in any of the arrays. Each subarray has its own length prop-
erty, too:

grid.length; // 2

grid[0].length; // 4

grid[1].length; // 3

To reference an element in an inner array, follow the primary array name, plus the appropriate index,
followed by the inner array’s index:

grid[0][0]; // 2, first item in the first subarray

grid[1][2]; // 5, third item in the second subarray

You can loop through a multidimensional array by using nested for loops:

for (var i = 0, count1 = grid.length; i < count; i++) {

 for (var j = 0, count2 = grid[i].length; j < count2; j++) {

 // Use grid[i][j].

 } // End of inner for loop.

} // End of outer for loop.

As shown in that code, do be certain to use different variables and conditions for the inner loop than you
use for the outer one.

Another alternative to push() is concat(), which performs concatenation for
arrays. It also takes one or more values, but unlike push(), arrays present in the
values to be added will be expanded to separate elements and then added:

var primes = [];

primes.concat(1, [3, 5, 7]); // [1, 3, 5, 7]

worKing with arrayS 201

ptg7799847

In this regard, the concat() method can be used to flatten multidimensional
arrays into a one-dimensional array.

Just as you can add elements to an array using multiple methods, there are
several methods for removing elements from an array. The first is pop(), which
removes the last item from the array and returns it:

var primes = [1, 3, 5, 7]; // [1, 3, 5, 7]

primes.pop(); // [1, 3, 5]

Because this method also returns the element being removed, that value can
be assigned to another variable or used in other ways:

var primes = [1, 3, 5, 7]; // [1, 3, 5, 7]

var n = primes.pop(); // n == 7; primes == [1, 3, 5];

The shift() method removes the first element from the array and returns it. In
other words, shift() is the corollary to unshift(), and is similarly slower than pop().

As both pop() and push() are faster than shift() and unshift(), you may
wonder why one would ever use the latter two. It all depends on the type of array
being used. With push() and pop(), you’re working with a stack, which is a Last-
In, First-Out (LIFO) data type. For example, many applications (and dynamic Web
pages) have a series of pages, or views, that are shown in order. As the user pro-
gresses through the application, each new view can be pushed onto the stack of
views. To go backward, the top view is popped off the stack.

If you instead use push() and shift(), you’re working with a queue, which is
a First-In, First-Out (FIFO) structure.

If you need to cut out elements from the middle of an array, or add new elements
there, you can invoke splice(). This method lets you both cut elements out of an
array and insert new ones at the same time. Its first argument is the indexed posi-
tion to begin at. The second argument is the number of elements to remove. The
third and subsequent arguments, all of which are optional, are new values to insert.

For example, this code removes the first element:

var people = [‘Fred’, ‘Daphne’, ‘Velma’, ‘Shaggy’];

people.splice(0,1); // [‘Daphne’, ‘Velma’, ‘Shaggy’]

s

ptg7799847

Note that this method returns the element(s) being removed from the array.
Moreover, splice() returns the element(s) as an array, regardless of how many
elements are spliced from the original:

var people = [‘Fred’, ‘Daphne’, ‘Velma’, ‘Shaggy’];

var person = people.splice(0,1); // person == [‘Fred’]

This next bit of code does not remove any elements, but adds two new values
as the third and fourth items in the array:

var people = [‘Fred’, ‘Daphne’, ‘Velma’, ‘Shaggy’];

people.splice(2, 0, ‘Charlie’, ‘Mac’);

If you provide a negative starting point, the alteration will begin counting back-
ward from the end of the array (Figure 6.19):

var people = [‘Fred’, ‘Daphne’, ‘Velma’, ‘Shaggy’];

people.splice(-1, 1);

One last array method to be discussed is slice(). The slice() method takes
a starting point—an indexed position in the array—and an optional ending point
and returns the corresponding element(s):

var primes = [1, 3, 5, 7]; // [1, 3, 5, 7]

var twoPrimes = primes.slice(0,2);

// primes == [1, 3, 5, 7]; twoPrimes == [1, 3];

The ending point is optional, but is not inclusive (i.e., the element indexed
at the ending position is not returned). If the ending point is omitted, the slice
continues until the end of the array.

fiGURe 6 .19 The splice() method
can be used to manipulate arrays
in different ways.

worKing with arrayS 203

ptg7799847

Like the string slice() method, the starting point can be a negative number,
in which case the starting point counts backward from the end of the array. If a
negative ending point is provided, it also counts backward from the end of the array:

var primes = [1, 3, 5, 7]; // [1, 3, 5, 7]

var aPrime = primes.slice(-2); // [5, 7]

var bPrime = primes.slice(-2, -1); // [5]

Note that the slice() method never affects the original array and always returns
an array, even if it’s an array of only one element.

updating the to-do Manager
Next, let’s update the task management application written earlier in two ways:

J Use push() instead of array notation to add new tasks.

J Use a for loop to display all of the tasks (Figure 6.20).

The HTML page does not need to be modified for this purpose, but the tasks.js
JavaScript file will be touched up in the subsequent steps.

To do more with arrays:

1. Open tasks.js in your text editor or IDE, if it is not already.

2. Change how a new item is added to the array so that the push() method
is used:

tasks.push(task.value);

It’s more conventional to use push() than [], so the code is updated
accordingly.

fiGURe 6 .20 The list of tasks is
now shown under the form.

s

ptg7799847

3. Change the assignment to the message variable to begin:

message = ‘<h2>To-Do</h2>’;

In this version of the script, the output will contain not the number of
tasks but the actual tasks themselves. The best way to display those is as
an HTML list of some sort, here, an ordered one. To accomplish that, the
message variable will be assigned the appropriate HTML, which will then
be added to the page. First, here, the opening ordered list tag is assigned to
message, and prefaced with a heading.

4. Within a for loop, assign each task to message as a list item:

for (var i = 0, count = tasks.length; i < count; i++) {

 message += ‘’ + tasks[i] + ‘’;

}

The for loop will be used to access each item in the array. The syntax has
already been explained: first, two variables are defined and assigned values.
The condition then checks if the i variable is less than count (the number
of elements in the array). After completing each loop iteration, the i vari-
able is incremented. Within the loop body, another string is concatenated
onto message. The string itself is the specific task—tasks[i]—within the
list item tags.

5. After the loop, complete the message variable:

message += ‘’;

The last step is to close the ordered list element.

6. Update the page:

output.innerHTML = message;

Because message is a string that contains HTML, the innerHTML property of
the output element (i.e., the DIV) must be assigned this value (as opposed
to using innerText or textContent). The innerHTML property was also
introduced in Chapter 5.

7. Save the file and test it in your Web browser (Figure 6.21).

worKing with arrayS 205

ptg7799847

Converting BetWeen strings and arraYs

Since JavaScript is a weakly typed language, variables and values are frequently
converted from one type to another. For example, in the previous chapter, it was
mentioned that variables will be temporarily converted into Booleans in situa-
tions such as:

if (someVar) {

Generally speaking, any conversion that you would do intentionally, or JavaScript
would do as a by-product, is from a simple type to another simple type. There are
exceptions, of course. A common conversion you’ll make in your own code is between
a string and an array. To convert an array to a string, call the join() method on the
array, providing the character or characters to use as the “glue” between the array
pieces in the new string (Figure 6.22):

var people = [‘Fred’, ‘Daphne’, ‘Velma’, ‘Shaggy’];

var gang = people.join(‘ - ‘);

The default separator is the comma, but you can use any string as the glue, even
HTML. The most recent tasks.js code could have its entire for loop, plus the line
before and after, replaced with:

message += ‘’;

message += tasks.join(‘’);

message += ‘’;

The end result would be the same.

fiGURe 6 .21 And another
thing to do!

fiGURe 6 .22 An array of
strings is quickly turned into a
single string, with a specified
glue, using the join() method.

s

ptg7799847

As a matter of fact, performing a lot of concatenation in JavaScript code is ter-
ribly inefficient, as JavaScript creates a new string (and discards the old one) with
each concatenation. For performance reasons, many developers prefer to build up
an array of strings and then join the array pieces together to create the final string.

To convert a string to an array, invoke the split() method on the string, provid-
ing the character or characters used to break up the string into its pieces:

var gang = ‘Fred,Daphne,Velma,Shaggy’;

var people = gang.split(‘,’);

s

As stated several times over by this point in the book, JavaScript is an object-oriented
programming language, which means that the object is the fundamental type used in
the language. Chapter 1 talks about how JavaScript differs from other object-oriented
(OO) languages in that you don’t define classes and then create objects using those
class definitions. Instead, in JavaScript objects are derived from prototypes: model
objects. If you’ve never done any object-oriented programming before, all of this may
not mean much to you, but the impact on your day-to-day programming is that you
can more easily begin using objects in JavaScript, as you’re about to see. (On the other
hand, creating your own custom objects is trickier, and there are some limitations
on the highest end of OOP in JavaScript.)

An object is made up of both properties (also called attributes) and methods (i.e.,
functions). If you’re reading this book sequentially, then you’ve already used various
object properties and methods many times over. In the next several pages, you’ll
learn how to create your own objects with your own custom properties. In Chapter 7,
Creating Functions, you’ll see how to add method definitions to custom objects.

Creating oBJeCts

Just as with any variable type in JavaScript, there are two ways of creating objects:
using the new operator or literal syntax. Here is the first:

var myObj = new Object();

worKing with oBJectS 207

ptg7799847

That creates a new, empty object. Literal syntax for object creation uses the
curly braces:

var myObj = {};

That line is equivalent to the above in that it creates an empty object. However,
literal syntax is generally preferred in JavaScript, and you’ll primarily see literal
syntax throughout the rest of the book.

To add properties to an object, use the format property: value, separating each
property with a comma, as in:

var chapter = {num: 6, title: ‘Complex Variable Types’};

or

var chapter = new Object(num: 6, title: ‘Complex Variable Types’);

As with any value in JavaScript, strings are quoted, numbers are not. The prop-
erty names themselves need not be quoted. For the property names, stick to letters
(and if absolutely need be, letters and numbers), without spaces or punctuation.
Also avoid using any of JavaScript’s keywords. And do not place an extra comma
after the last property, as that could cause problems in some browsers.

To make it clearer, you can create objects over multiple lines:

var chapter = {

 num: 6,

 title: ‘Complex Variable Types’

};

When creating literal objects, especially over multiple lines, don’t forget the
semicolon after the closing curly brace, which completes the statement.

The values themselves aren’t limited to just simple types; they can even be
objects or arrays:

var me = {

 name: ‘Larry Ullman’,

 age: 42,

 car: {

s

ptg7799847

 make: ‘Honda’,

 model: ‘Fit’,

 year: 2008

 },

 favoriteColors: [‘Black’, ‘Blue’, ‘Gray’],

 tired: true

};

As you can see, the object structure is extremely flexible, making it a powerful
data type.

aCCessing oBJeCt ProPerties

Once you have created an object, you need to know how to access its properties.
You’ve already seen how arrays use special syntax—specifically, the square brack-
ets—to access individual array elements. There is special syntax to access individual
object properties, too: objName.propertyName. This, of course, is syntax you’ve
seen many times over by now, called object notation:

var chapter = {

 num: 6,

 title: ‘Complex Variable Types’

};

chapter.num; // 6

With an object created, you can change any property using the assignment
operator:

chapter.title = ‘Rather Complex Variable Types’;

If the named property does not exist in the object, it will be added to it:

chapter.startPage = 256;

You can confirm that an object has a property in a couple of ways. The first is
to just use the syntax objName.propertyName:

if (chapter.startPage) { // Already exists!

worKing with oBJectS 209

ptg7799847

This can trip you up with values that get evaluated to false, however, such as
an empty string or 0.

The second way to test if an object has a property is to use the in operator. Its
syntax is ‘propertyName’ in objectName and it returns true if the property is
found in the object:

if (‘startPage’ in chapter) { // Already exists!

A third option is to use the typeof operator, assuming you know what the
property’s type should be:

if (chapter.startPage == ‘number’) {

If you have a more complicated object structure, as in the me example, which
contains a string, a number, another object, an array, and a Boolean, you can just
apply the syntax you already know, whether this means chaining object notation
or also using square brackets for an array:

me.car.model; // Fit

me.favoriteColors[0]; // Black

Another way you can access an object property is to use array notation (i.e.,
the square brackets), this time quoting the properties as if the object was an array
with strings for its indexes instead of numbers. These two lines are equivalent to
those just written:

my[‘car’][‘model’];

my[‘favoriteColors’][0];

You may rightfully wonder why you’d use the array syntax when the object
notation already exists. The answer is that there are situations where you can’t use
object notation. For example, say that a string represents the name of a property:

var prop = ‘title’;

(Presumably, this string would be assigned its value dynamically, such that the value
would not otherwise be known in advance and hardcoded into the page.) Assuming
the chapter object exists, you could not use the syntax chapter.prop, as that would
attempt to look for the prop property of chapter. This code, however, will work:

chapter[prop];

s

ptg7799847

That code works because array syntax allows you to use expressions instead
of literal values to find properties dynamically.

aCCessing all oBJeCt ProPerties

Object notational syntax does require that you know what properties exist in the
object. To access every object property, you can use a variation on the for loop,
called for…in. That syntax is:

for (var p in myObj) {

 // Use myObj[p].

}

There are a couple of things to be aware of when using a for…in loop. First, the
properties will not be returned in any particular order, not even in the order in
which they are listed when the object was created. Second, depending upon the
object being iterated over, you may end up seeing properties that you did not create.
This has to do with JavaScript’s prototypical inheritance, a more advanced subject
(see Chapter 14, Advanced JavaScript). Third, you have to use the array notation
to find each object property’s value. And, fourth, for...in is a slower construct,
that should only be used when no other loop will do.

Using a loop like this, you can create an object inspector: a great debugging
tool that provides feedback on an object’s properties. The code starts off with a
simple loop. Within the loop, you may want to display both the property name
and its value (Figure 6.23):

for (var p in myObj) {

 console.log(p + ‘ = ‘ + myObj[p] + ‘\n’);

}

Within the loop, you can use the typeof operator to distinguish between the
object’s attributes (i.e., variables) and its methods (functions):

if (typeof myObj[p] == ‘function’) { // Function!

fiGURe 6 .23 Object inspectors can be used to
show the properties and values of an object.

worKing with oBJectS 211

ptg7799847

ImmutaBle and mutaBle oBJeCtS in JavaSCrIpt

Pretty much everything in JavaScript either is an object, or can be treated as
an object. For example, you can create a string as:

var name = ‘Larry Ullman’;

But then still call methods on that variable as it’s a string object:

name.toLowerCase();

The real distinction between the simple types (technically called primitives)
and the more complex types is that nonprimitive JavaScript types, such as
Date, Array, and Object, are mutable: their values can be changed. Conversely,
when you go to change the value of a simple type, JavaScript—behind the
scenes—creates a new variable of that type and destroys the old. As proof of
this, think about all the simple type methods you’ve learned, like toLower-
Case() for strings and toFixed() for numbers: these methods don’t modify
the original value, but return that value in its modified form.

reMoving oBJeCt ProPerties

The only way to actually remove a property from an object is to use the delete
operator:

delete obj.property;

delete chapter.title;

putting it all together
For the final example in this chapter, this next page will present a form through
which a user can add new employees (Figure 6.24). The HTML page, named
employee.html, includes both the form and a DIV for the output:

<form action=”#” method=”post” id=”theForm”>

 <fieldset><legend>Add an Employee</legend>

 <div><label for=”firstName”>First Name</label><input
 p type=”text” name=”firstName” id=”firstName”
 p required></div>

s

ptg7799847

 <div><label for=”lastName”>Last Name</label>
 p <input type=”text” name=”lastName” id=”lastName”
 p required></div>

 <div><label for=”department”>Department</label>
 p <select name=”department” id=”department”>

 <option value=”Accounting”>Accounting</option>

 <option value=”Administration”>Administration</option>

 <option value=”Human Resources”>Human Resources</option>

 <option value=”Marketing”>Marketing</option>

 </select></div>

 <input type=”submit” value=”Submit” id=”submit”>

 </fieldset>

 <div id=”output”></div>

</form>

The page includes the employee.js JavaScript file, to be written in the subse-
quent steps.

To work with objects:

1. Create a new JavaScript file in your text editor or IDE, to be named employee.js.

2. Begin defining the process() function:

function process() {

 ‘use strict’;

When the user submits the form, the process() function will be called.

fiGURe 6 .24 After the user submits the
form, JavaScript creates a new employee
object that stores the form data.

worKing with oBJectS 213

ptg7799847

3. Get references to the HTML elements:

var firstName = document.getElementById(‘firstName’).value;

var lastName = document.getElementById(‘lastName’).value;

var department = document.getElementById(‘department’).value;

The form has three elements whose values must be retrieved. To simplify
this example, the JavaScript directly grabs the form values. You could alter-
natively get form element references and then validate the values.

4. Get a reference for the output:

var output = document.getElementById(‘output’);

5. Create a new object, representing the employee:

var employee = {

 firstName: firstName,

 lastName: lastName,

 department: department,

 hireDate: new Date()

}; // Don’t forget the semicolon!

The employee object has four properties: firstName, lastName, department,
and hireDate. The values for the first three come directly from the form. The
value for the last one will be a new Date object. The hireDate property is set
to the current date, but you could get this value from a form element instead.

6. Create the output as HTML:

var message = ‘<h2>Employee Added</h2>Name: ‘ +
p employee.lastName + ‘, ‘ + employee.firstName + ‘
’;

message += ‘Department: ‘ + employee.department + ‘
’;

message += ‘Hire Date: ‘ + employee.hireDate.toDateString();

The message to be displayed to the end user shows the details of the
employee object. The message string also contains some HTML.

s

ptg7799847

7. Display the output:

output.innerHTML = message;

8. Complete the function:

 return false;

}

9. Add an event listener to the form’s submission:

function init() {

 ‘use strict’;

 document.getElementById(‘theForm’).onsubmit = process;

} // End of init() function.

window.onload = init;

10. Save the file as employee.js, in a js directory next to employee.html, and
test in your Web browser (Figure 6.25).

fiGURe 6 .25 Another hire!

worKing with oBJectS 215

ptg7799847

s

The final thing to be discussed in this important chapter on complex data types
is how arrays and objects compare. You might have gathered, especially over the
past several pages, that arrays and objects have a lot in common. In fact, arrays
in JavaScript are rather unique compared with other languages, in that arrays are
just a specific type of object. This may not surprise you as, in JavaScript, Booleans
are objects, numbers are objects, strings are objects, and dates are objects. In fact,
as Chapter 7 explains, in JavaScript, even functions are objects! But the fact that
all of these types in JavaScript are objects does not mean they are all the same
or should be treated equally. The logical question, then, is what object type you
should use and when.

Clearly, if you’re only representing a single value—a Boolean, a number, or a
string—you should stick to the simple types. Even though you can create such
values as formal objects, you should stick with literal syntax for them:

var test = new Boolean(true); // Unnecessary!

var test = true; // Much better!

Secondarily, if you need to represent a date and time, then the Date object is
the solution, not a generic object.

The more common question beginning JavaScript programmers have is: When
should you use an array and when should you use an object? Because arrays in
JavaScript are objects, they don’t perform quite as well as arrays in other languages.
Arrays are best when any of the following conditions apply:

J The order of the stored values is important.

J The values can be numerically indexed.

J You may need to quickly know how many values are being stored.

For all other situations, you should use objects.
Expanding on these three thoughts, first, keep in mind that an object is an

unordered collection of properties. You simply cannot sort an object’s values in a
meaningful way. Thus, if that’s a need, use an array.

Second, although you can use strings as the indexes for arrays, JavaScript arrays
are really not intended to be used in a such a way. In situations where values should
be paired with meaningful labels, you should be using an object instead.

s

ptg7799847

Third, an array differs from an object in that it has a length attribute, which
represents one more than the highest index in the array. As you’ve already seen, this
property can be used to find out how many values the array is storing, assuming
the array does not have “holes.” There is no equivalent for objects.

Think of objects as representing a lot of different information about one thing
(e.g., an employee or a book chapter or whatever). Think of arrays as representing
the same information about a lot of things (e.g., a list of grades, a list of names,
and so forth).

revIeW and purSue

w

J How do you create a new Date object? How do you create a Date object rep-
resenting other than the current date and time (there are multiple answers)?

J What are some of the Date methods that exist for fetching part of the rep-
resented date and time or entire strings for that date and time?

J What is a timestamp and what is the epoch?

J What is a locale?

J What is UTC? Why is it useful?

J How can you change what specific date and time is represented by a variable?

J How can you calculate the interval between two dates?

J What is an array? How do you create an array? How do you access an indi-
vidual array element?

J What does an array’s length property represent?

review and purSue 217

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

ptg7799847

J How do you add new values to an array? (There are multiple correct answers.)

J How can you confirm that an array element exists?

J What is a multidimensional array? How do you refer to specific elements
in a multidimensional array?

J What does the splice() method do? How do you use it?

J How do you turn an array into a string? How do you turn a string into an array?

J How do you create a variable of type object (with properties)?

J How do you reference an object’s properties? (This should be really easy
for you by now.)

J What control structure is used to access every one of an object’s properties?

Pursue

J Implement the auction deadline example: choose a specific ending date
and time, then show the amount of time left in an auction.

J Update event.js to confirm that the starting date is in the future.

J Update the original tasks.js so that the output also shows a random task.

J Update tasks.js so that the task just added is cleared from the text input
after the task has been added to the array.

J If you’re the very curious and eager type, search online for more information
on the new array and object features added in ECMAScript 5.

J Update tasks.js so that it uses join() to create the final message, instead
of concatenating together multiple strings.

J If you’re feeling particularly confident, combine the techniques demonstrated
in tasks.js and employee.js so that an array of employee objects is created.

s

ptg7799847

WraPPing up

This chapter starts off in casual way: merely presenting the complex data types,
a corollary to the simple types already covered. But this chapter really breaks
open the door on what JavaScript is as a programming language. As you know
now, JavaScript is about objects (specifically prototypical objects). Whether you’re
working with dates, arrays, or generic objects, at the core, they are all just objects.

The chapter begins with a fairly exhaustive coverage of the Date object. It’s
a snap to use, but you may have to regularly look up which method you need or
what precise syntax is correct. The middle of the chapter walks through arrays,
which are objects with their own syntax and several unique methods. Arrays are a
great way to represent lists of data. The chapter ends with a discussion of generic
objects. Despite being so integral to programming in JavaScript, objects are easy
to use, even for those new to object-oriented programming.

In the next chapter, you’ll learn all the details you need to know about creating
functions in JavaScript, something you’ve been doing to a basic degree already. As
already mentioned, and as you’ll see, functions in JavaScript are also objects, which
has a huge impact on how they can be used in your code.

wrapping up 219

ptg7799847

s

ptg7799847

221

In the past couple of chapters, you’ve used several

functions built into JavaScript, but now it’s time to start

writing your own. Out of necessity, Chapter 2, JavaScript in

Action, explained how to write a most basic function, but in this

chapter you’ll learn all the particulars of user-defined functions.

Not only are user-defined functions necessary in JavaScript for

event handling, but, as in any language, being able to create your

own functions constitutes a huge step toward creating modular

and easily reusable code. The chapter begins with the fundamen-

tals, and slowly works its way into the more advanced concepts.

ptg7799847

This chapter starts by walking through the basics of functions in JavaScript. Not
only will the next few pages be stuff you need to know, but it’s the most approach-
able material when it comes to functions, too. In fact, if you’ve worked with any
other programming language, most of the fundamentals will be old hat to you.

deFining Your oWn FunCtions

As you’ve already seen by now (many times over in this book, and probably in code
elsewhere), the basic syntax for creating your own function is:

function functionName() {

 // Function body.

}

The function’s name has to adhere to the same naming rules as variables: use
letters, numbers, and the underscore (if needed), but the name cannot start with
a number. The name cannot also be the same as a reserved JavaScript word. The
function name should be descriptive, and is conventionally a verb, as functions take
actions: previous examples in the book include addTask(), calculate(), process(),
and init(), short for initialize. As with everything in JavaScript, function names
are case-sensitive.

Unlike with control structures, in which the curly braces are sometimes optional
(but, at least for me, almost always recommended), the curly braces that encapsulate
the function’s body are always required, as are the parentheses. Within the paren-
theses, you identify the function’s parameters: placeholders for values to be passed
to the function when it’s called. The chapter will return to this subject shortly.

Within the body of the function, you’ll place the code to be executed when the
function is called. Some functions may only contain a single line of code; others
will have dozens, including complex control structures. Conventionally, the func-
tion’s body is indented (four spaces or a tab) from the function keyword, to visually
indicate the subservient nature of that code.

If you’re following this book sequentially, none of the scripts thus far have
had the JavaScript code calling a user-defined function, as every example has
only used functions as event handlers. So, once you’ve defined a function, you
can call it in this manner:

functionName();

s

s

ptg7799847

With this function, which is defined independent of any object, you only use
the function name to call it, just like JavaScript’s parseInt() function, among oth-
ers. Later in the chapter, you’ll learn how to define a function as part of an object
(thereby creating a method), in which case invoking the function uses the syntax
objectName.functionName(), as you’ve seen many times over by now. As in the
function’s definition, the parentheses are required in the function’s call.

Conventionally, one defines a function prior to invoking it, although that’s not
technically required, as functions in JavaScript, like variables, are hoisted. This
means that JavaScript first looks for function definitions prior to executing any code.

If the JavaScript code cannot find a corresponding function definition, you’ll
see an error (Figure 7.1).

Passing values to FunCtions

Functions defined using the code just explained (and the code frequently used in
the book prior to this point) take no arguments: the functions work without any
values being passed to them. Many functions require more information, though,
which is where function parameters come into play. For example, JavaScript’s
parseInt() function takes a string and a radix as its two arguments, with the first
value passed being parsed by the function:

var someString = ‘20 cats’;

var n = parseInt(someString, 10); // n == 20

To have your function take arguments, place one or more variable names within
the function definition’s parentheses:

function functionName(someVar) {

 // Function body.

}

If a function is meant to take multiple arguments, each gets separated by a comma:

function functionName(someVar, someOtherVar) {

 // Function body.

}

fiGURe 7 .1 If you misspell
or miscapitalize a function’s
name, or if JavaScript doesn’t
have access to the function’s
definition, an error will result.

the FundaMentalS 223

ptg7799847

function functionName(someVar, someOtherVar) {

 // Function body.

}

functionName(x, y);

functionName(‘Larry’, ‘Ullman’);

Note that you don’t use the var keyword in front of these variable names, but
the names themselves must adhere to the same rules as any other variable you
create in JavaScript.

To call a function that takes arguments, provide values within the parentheses
of the function call. Each value can be represented by a variable or a literal value:

functionName(aVar);

functionName(aVar, true);

doSomethingWithChapter({num: 7, title: ‘Creating Functions’});

When you place complex objects within a function call, be mindful of the syntax
so as not to create an error. It may be more foolproof in such cases to create the
array or object first, and then use it in the function call.

To be absolutely clear, the names of the variables used in a function call need
not be the same as the names of the variables in the function’s definition. The
reason why will be explained in time.

A direct association gets made between the values listed in the function call
and the variables in the function definition (Figure 7.2). You cannot change the
order in which the values are passed to the variables.

fiGURe 7 .2 Values in function
calls are assigned to function
parameters in order.

NOTE: to be precise, the variables in a function’s definition are
technically called parameters. the values passed to a function when

it’s called are arguments.

s

ptg7799847

Once the function has been called and values have been passed to the function’s
parameters, you can use those parameter variables like any other variable in the
function. For example, the following function defines a simple routine for indicat-
ing the progress of a script, which can be used as a debugging tool (Figure 7.3):

function reportStatus(message) {

 console.log(‘Now at step: ‘ + message + ‘\n’);

}

It would be used in this manner:

// Do some stuff.

reportStatus(‘Just did some stuff’);

// Do some other stuff:

reportStatus(‘Just did some other stuff’);

Or if you wanted to create an object inspector (another debugging tool), that
might be defined like so:

function displayObject(obj) {

 for (var p in obj) {

 console.log(p + ‘ = ‘ + obj[p] + ‘\n’);

 }

}

That code merely wraps functionality explained in Chapter 6, Complex Variable
Types, in a function that takes one argument: the object to be inspected. And this
is what defining your own functions is about: encapsulating code you repeatedly
use, and providing, as arguments, the data the code requires.

fiGURe 7 .3 Repeated calls to the same
function with different argument values
will output different results.

the FundaMentalS 225

ptg7799847

validating FunCtion ParaMeters

Since parameters are common to most functions, there are several factors you
ought to be aware of; let’s delve into this subject in more detail.

FunctionS do not checK typeS
One thing to know is that there is no type checking involved with function param-
eters. This shouldn’t surprise you, as JavaScript is weakly typed, with no type
declaration for any variable, let alone parameters. This means that although you
might have written a function to expect two numbers, it could be sent two strings
without error:

function add(x, y) {

 x + y;

}

If that function is called using the following code, it will perform mathemati-
cal addition:

add(2, 2);

But if that same function is called using one or more strings, it will perform
concatenation:

add(‘Hello, ‘, ‘World!’);

The solution is to add your own type checking, as needed. For example:

function add(x, y) {

 if ((typeof x == ‘number’) && (typeof y == ‘number’)) {

 x + y;

 }

}

That’s the basic idea; later on you’ll learn how to have functions return values,
which is an important addition to completing a function like this (the function as
written does nothing with the result of the arithmetic). In Chapter 12, Error Manage-
ment, you’ll learn how to have functions throw errors when they’re not used properly.

s

ptg7799847

s

Functions automatically have access to a variable called arguments. This is an array-like object that reflects
every value passed to the function when the function is called. This is not a true array (e.g., you can’t add
items to it within the function), but it does have a length property, like normal arrays. This means that
you can use arguments.length as the basis of a quick test to see that a function was called with the proper
number of arguments:

function functionName(someVar, anotherVar, yetAnotherVar) {

 if (arguments.length == 3) { // Good to go!

 } else { // Missing something!

 }

}

You can also use a for loop within the function to loop through every received argument:

for (var i = 0, count = arguments.length; i < count; i++) {

 // Do something with arguments[i].

}

The arguments variable is used all over the place in JavaScript’s built-in methods, such as the concat()
method, which can take any number of values to be concatenated together:

myArray.concat(1);

myArray.concat(2, 3, 4);

There is one more way to pass a variable number of values to a function, and that’s to only pass one
argument, but of type object:

function showText(argObject) {

 // Use argObject.

}

To call this function, you would create an object that gets passed to the function when it’s called:

showText({text: ‘Hello, World!’, bold: true, size: 12});

Another benefit of using objects as a single argument is that objects are passed to functions by reference,
a subject to be discussed in just a couple of pages.

the FundaMentalS 227

ptg7799847

FunctionS do not checK the nuMBer oF paraMeterS
In most programming languages I’ve worked with, failing to provide the correct
number of arguments when a function is called results in an error. In JavaScript,
that is not the case, which is surprising to many learning the language. The fol-
lowing code will not show errors, although presumably the function will not be
able to work properly (Figure 7.4):

function functionName(someVar, someOtherVar) {

 // Function body.

}

functionName();

functionName(true);

functionName(true, false, 0);

Proper type checking (just discussed) and variable validation (covered next) will
catch misuses of the function, but you can also write functions to purposefully take
a variable number of arguments, as discussed in the sidebar on the previous page.

paraMeterS cannot have deFault valueS
Moving on, unlike in many languages, function parameters in JavaScript cannot be
set with a default value (which has the secondary effect of making them optional).
If a function has an parameter that is not passed a value when the function is called,
that parameter will have a value of undefined (Figure 7.5):

function functionName(someVar) {

 console.log(someVar + ‘\n’);

}

functionName(true); // someVar is true

functionName(); // someVar is undefined

fiGURe 7 .4 No JavaScript
errors occur when a function is
called with the wrong number
of arguments.

fiGURe 7 .5 This test function
just shows the values received
by its lone parameter.

s

ptg7799847

Using this information, you can test that a value was received in a function
parameter by confirming that the parameter variable isn’t undefined:

function functionName(someVar) {

 if (typeof someVar == ‘undefined’) { // Not set!

 } else { // Good to go!

 }

}

To create default value-like functionality, add a default value assignment within
the function:

function functionName(someVar) {

 if (typeof someVar == ‘undefined’) {

 someVar = ‘default value’;

 }

}

Because you cannot skip over parameters when calling a function, if you want
to, say, provide a value for the third parameter but not the second, use undefined
as the second argument’s value:

function functionName(a, b, c) {

}

functionName(true, undefined, false);

That being said, it’d make the most sense when defining your functions that
the parameters are listed in order of most obligatory to least.

the FundaMentalS 229

ptg7799847

hoW values are Passed

A more complicated subject, but one you have to understand, is exactly how values
are passed to functions. There are two possibilities: by value or by reference. In
JavaScript, simple values—numbers, strings, and Booleans—are passed by value.
Passing by value means that the actual variable (in the function call) is not passed
to the function, but rather the variable’s value is. Consequently, changes to the
simple value within the function have no impact on the variable outside of the
function (Figure 7.6):

function willNotChange(x) {

 console.log(‘In the function, x = ‘ + x + ‘\n’);

 x = 2;

 console.log(‘After the assignment, x = ‘ + x + ‘\n’);

}

var y = 1;

console.log(‘Outside of the function, y = ‘ + y + ‘\n’);

willNotChange(y);

console.log(‘Outside of the function, y = ‘ + y + ‘\n’);

fiGURe 7 .6 Simple variables
used for function argument
values will not be changed
inside the function.

s

ptg7799847

This behavior—simple values being passed by value—shouldn’t trip you up.
What can cause problems is that objects and arrays are passed by reference. This
means that the function does not receive the complex values, but rather refer-
ences to the original variables. If you change that variable within the function,
the variable outside of the function will also be changed, because the function’s
parameter will refer to the exact same variable, even if the argument has a differ-
ent name (Figure 7.7):

function willChange(x) {

 console.log(‘In the function, x.num = ‘ + x.num + ‘\n’);

 x.num = 2;

 console.log(‘After the assignment, x.num = ‘ + x.num + ‘\n’);

}

var y = {num: 1}; // y.num == 1

console.log(‘Outside of the function, y.num = ‘ + y.num + ‘\n’);

willChange(y);

console.log(‘Outside of the function, y.num = ‘ + y.num + ‘\n’);

The benefit of this behavior is that complex data types can be a vessel for get-
ting complex data back out of a function.

fiGURe 7 .7 When an object is passed to a
function, if its properties are changed within
the function, those changes alter the object
outside of the function.

the FundaMentalS 231

ptg7799847

As an example of the information covered thus far, let’s take some of the code
used in the last chapter and make a function out of it. In Chapter 6, there are many
situations where an HTML element’s text is updated with new text, using this code:

if (output.textContent !== undefined) {

 output.textContent = numbers;

} else {

 output.innerText = numbers;

}

As that’s frequently replicated code, it makes a good candidate for being con-
verted into a function (see the “Function Design Theory” sidebar later in the chapter
for more). The function needs to take two arguments: the id value of the destination
element and the message itself.

Although this code was used multiple times in Chapter 6, let’s just update today.js.
The HTML page itself will not need to be modified, though.

To create and call your own function:

1. Open today.js in your text editor or IDE.

2. Begin defining a new function:

// This function is used to update the text of an HTML element.

// The function takes two arguments: the element’s ID and the
text message.

function setText(elementId, message) {

 ‘use strict’;

Since this function will be called by code in the init() function, I would go
ahead and define this function before that function (although, as already
explained, it doesn’t technically matter). When creating your own functions,
it’s best to include detailed comments before the function’s definition indi-
cating what the function does, what arguments the function takes (perhaps
including the expected argument types), and so forth.

This particular function takes two arguments, assigned to the elementId
and message variables.

s

ptg7799847

3. Validate the function’s parameters:

if ((typeof elementId == ‘string’)

&& (typeof message == ‘string’)) {

This function can only work if it receives both values and both are of type
String (well, technically, the message could be a number). To validate the
parameters, before attempting to actually perform the function code, this
two-part conditional checks each parameter’s type. If either is not a string,
this function will do nothing.

4. Get a reference to the destination HTML element:

var output = document.getElementById(elementId);

This code is virtually the same as that used elsewhere in the book, but now it
uses the elementId parameter as the value provided to document.getElement
ById(). Note that you need to use the variable name here unquoted. If you
were to use ‘elementId’ instead, the JavaScript would look for an HTML ele-
ment whose id value is literally elementId.

As a next step, the function could validate that output is not null (i.e., that
an element with the provided ID exists in the page).

5. Update the element’s text:

if (output.textContent !== undefined) {

 output.textContent = message;

} else {

 output.innerText = message;

}

This is the same code as was first explained in Chapter 5, Using Control
Structures.

6. Complete the if conditional begun in Step 3, and the function:

 } // End of main IF.

} // End of setText() function.

the FundaMentalS 233

ptg7799847

7. Within the init() function, replace the creation of the output variable,
plus the assignation to its innerText or textContent property, with a func-
tion call:

setText(‘output’, message);

And that’s all there is to using the new function!

8. Save the file and test in your Web browser (Figure 7.8).

returning values FroM FunCtions

Another aspect to a function’s definition is what value the function returns. Hav-
ing a function return a value provides a way for the function to communicate with
the code that called it. The function might return a calculated number, a modified
string, or a Boolean indicating the success of an operation. In any case, functions
return values via the return statement:

function functionName() {

 // Function body.

 return something;

}

The value returned by the function can be a literal value or a variable, and be
of any type.

You should know that when a return statement is encountered, the function’s
execution terminates, even if there is more code after the return statement:

function functionName() {

 // Function body.

 return something;

 // This code will not be executed!

}

fiGURe 7 .8 The end user
would not be aware that this
output was created by a new
user-defined function.

s

ptg7799847

Hence, only one return statement in a function will ever be executed (at most),
but this doesn’t restrict functions to only having a single return. Many functions
are written to return a Boolean based upon some criteria:

function functionName() {

 if (condition) {

 return true;

 } else {

 return false;

 }

}

If a function has no return statement, or uses return without a value, the
function automatically returns the value undefined.

When a function returns a value, you can assign the results of that function
call to a variable:

var check = functionName(true);

You can also use the function call directly within some other code:

var msg = ‘This ‘ + functionName() + ‘ that.’;

To have a function return multiple values, return an array;

function functionName() {

 return [1, 2, 3];

}

var myList = functionName();

Or you could have the function return an object:

function functionName() {

 return {x: 1, y: 2};

}

var myObj = functionName();

the FundaMentalS 235

ptg7799847

You’ve already seen the return statement used in this book, but only to return
Boolean values. This next example will define two new functions (updating random.js,
from Chapter 5, in the process), and make use of setText() just created. The first func-
tion will create a shortcut for using the common code document.getElementById().
The second function will return a random number. The end result will be the same
as it was in Chapter 5 (Figure 7.9), but it will use more modular and portable code.

To create and call your own function:

1. Open random.js in your text editor or IDE.

2. At the top of the page, begin defining a new function:

function $(id) {

Ordinarily, you want function names to be as descriptive as possible. This is
an exception, though, in that the sole purpose of the function is to replicate
code frequently used elsewhere, specifically document.getElementById().
After defining this function, every use of document.getElementById() in
the script can just use $() instead!

The dollar sign is one of the nonalphanumeric characters that can be used
in a function (or variable) name. I specifically chose it here, as this short-
cut function is common in the JavaScript community. In fact, the jQuery
framework (www.jquery.com) uses this syntax extensively.

3. Complete the $() function:

 ‘use strict’;

 if (typeof id != ‘undefined’) {

 return document.getElementById(id);

 }

} // End of $ function.

The function requires that it receive an id value, so that is validated first.
Then the function returns the result of calling document.getElementById().

fiGURe 7 .9 Again, the end
result is no different than
before, but the internals are
much improved.

s

www.jquery.com

ptg7799847

If document.getElementById() cannot find an element with the provided id,
or if no id value is provided to the $() function, then the function returns
undefined (implicitly in the latter case).

4. Define the setText() function:

function setText(elementId, message) {

 ‘use strict’;

 if ((typeof elementId == ‘string’)

 && (typeof message == ‘string’)) {

 var output = $(elementId);

 if (output.textContent !== undefined) {

 output.textContent = numbers;

 } else {

 output.innerText = numbers;

 }

 } // End of main IF.

} // End of setText() function.

This code is the same as explained before, except now it uses the $() func-
tion to fetch the HTML element reference for the output paragraph.

You could improve this function by having it check if the $() function
returned an element, prior to trying to update that element.

5. Begin defining a function that returns a random number:

function getRandomNumber(max) {

 ‘use strict’;

 var n = Math.random();

This function takes one argument, but it will be treated as optional. If pro-
vided, the function will return a random integer up to that maximum (not
inclusive). If no max value is provided, the function will just return a random
decimal between 0 (inclusive) and 1 (exclusive). This is what the random()
method of the Math object returns.

the FundaMentalS 237

ptg7799847

6. If a max value was received, factor that in:

if (typeof max == ‘number’) {

 n *= max;

 n = Math.floor(n);

}

As just explained, if a max argument was provided, and of type Number, it’ll
be factored into the random number. Because n will be a number between
0 and 1 at this point, multiplying by max will create a random number up
to that maximum (e.g., if n equals .7723 and max is 100, the result will be
77.23). Next, the integer is parsed from the number, as the presumption is
the decimal won’t be needed.

7. Return the number and complete the function:

 return n;

} // End of getRandomNumber() function.

8. Within the showNumbers() function, call the getRandomNumber() function:

numbers += getRandomNumber(100) + ‘ ‘;

This code goes within the for loop and concatenates each value returned
by the function onto the numbers string.

9. Also change the showNumbers() code so that the setText() function is
used for the output:

setText(‘output’, numbers);

10. Save the file and test it in your Web browser (Figure 7.9).

understanding variaBle sCoPe

In Chapter 4, Simple Variable Types, it was said that it’s bad to use, or at least to
rely upon, global variables, but that one couldn’t understand global variables, and
the broader topic of variable scope, without knowing about user-defined functions.
Now that the latter topic has been formally introduced, it’s time to return to the
issue of variable scope.

s

ptg7799847

what iS variaBle Scope?
A variable’s scope is simply the realm in which the variable exists and is available.
One scope is global. Variables defined within a JavaScript file, outside of any func-
tion, have global scope. The same goes for a special variable provided by the Web
browser (more on that in Chapter 9, JavaScript and the Browser).

When you define a function, that function creates a new level of scope, called
local scope. A function’s parameters—the variables that receive the values passed
to the function when it’s called—have function-level, or local, scope automatically:

function functionName(someVar) {

 // You can use someVar.

}

// You cannot use someVar here.

(Each independent function has its own local scope.)
A variable declared within a function also has function-level scope, so long as

it was declared using the var keyword:

function functionName() {

 var localVar = ‘test’;

 // You can use localVar.

}

// You cannot use localVar here.

Global variables are also available within a function, as they are global
(Figure 7.10):

var globalVar = ‘test’;

function functionName() {

 // You can use globalVar.

 return globalVar;

}

fiGURe 7 .10 Global variables
can be referenced within
functions.

the FundaMentalS 239

ptg7799847

A common and careless mistake made by many beginning JavaScript programmers
is to inadvertently create a global variable within a function by failing to use var:

function functionName() {

 shouldBeLocalVar = ‘test’; // Actually a global variable!

 // You can use shouldBeLocalVar.

}

// You can also use shouldBeLocalVar here!

But what happens if there’s a global variable and a local variable with the same
name? In those cases, the local variable takes precedence, meaning the global
variable becomes inaccessible (Figure 7.11):

function functionName() {

 var x = 3;

 console.log(‘In the function, x = ‘ + x + ‘\n’);

}

var x = 2;

console.log(‘Before the function, x = ‘ + x + ‘\n’);

functionName();

console.log(‘After the function, x = ‘ + x + ‘\n’);

fiGURe 7 .11 Changes to local
variables within a function do
not impact global variables
with the same name.

s

ptg7799847

reviSiting Function paraMeterS
Earlier in the chapter, it was stated that the variable names used for argument values
in the function call need not be the same as those in the function’s definition. Let’s
revisit this idea, taking into account variable scope (Figure 7.12):

function functionName(someVar) {

 someVar = true;

 console.log(‘In the function, someVar = ‘ + someVar + ‘\n’);

}

var someVar = false;

console.log(‘Before the function, someVar = ‘ + someVar + ‘\n’);

functionName(someVar);

console.log(‘After the function, someVar = ‘ + someVar + ‘\n’);

In that code, someVar outside of the function is a global variable, as it is declared
outside of any function. The someVar variable that is the function’s parameter (in
the function definition) is a local variable, as are all function parameter variables.
Even though both variables have the same name, and the one is used to provide a
value for the other, they are not the same variable—one is global and the other is
local. Further, changing the local variable’s value does not impact the global vari-
able. This is the case with simple value types. Using complex types for function
arguments changes things.

fiGURe 7 .12 Even if the variables used
in a function call and in the function
definition have the same name, they
are still two different variables.

the FundaMentalS 241

ptg7799847

This code was shown earlier:

function willChange(x) {

 console.log(‘In the function, x.num = ‘ + x.num + ‘\n’);

 x.num = 2;

 console.log(‘After the assignment, x.num = ‘ + x.num + ‘\n’);

}

var y = {num: 1}; // y.num == 1

console.log(‘Outside of the function, y.num = ‘ + y.num + ‘\n’);

willChange(y);

console.log(‘Outside of the function, y.num = ‘ + y.num + ‘\n’);

Because the value passed to the function is an object, changes to the object’s
properties within the function do affect the object outside of the function. This is
simply because objects (and arrays) are passed by reference, not value. The global y
and the local x are still two different variables with different scopes, but they both
represent the same complex value stored in memory. This would still be true even
if both variables were named x:

function willChange(x) {

 x.num = 2;

}

var x = {num: 1};

willChange(x);

The result of this code is the same as in the previous code, and even though
both variables are named x, they are two different variables. But because x outside
of the function is an object, its value is passed by reference, and both variables
point to the same stored value.

s

ptg7799847

FunCtion deSIGn theory

How you define your own functions is both a syntactical issue and a design
one in that there are better and worse uses of custom functions. A proper
user-defined function should be easily reusable, and likely to be reused
(i.e., if a Web site only ever calls a function once, there’s little need for it).

There should also be a “black box” mentality to functions: A programmer
shouldn’t need to know about the internals of a function in order to use it
properly. As an example of this, think of any function built into JavaScript:
You probably don’t know what the underlying function code does specifi-
cally, but you can still make use of it. Toward this end, proper function design
suggests that you be extremely cautious when using global variables, as the
function should be passed the data it needs to work with.

As a rule of thumb, the more independent a function is, the more useful—
and therefore, better—it becomes.

the proBleM with gloBal variaBleS
There are a couple of reasons why global variables are bad. First, the global vari-
ables you create can, accidentally or not, conflict with other global variables (such
as those provided by the Web browser or by third-party libraries). Such conflicts
lead to very pesky bugs that are hard to find and fix. This problem is known as
namespace pollution or namespace cluttering. The fewer the number of global
variables, the tidier the environment and the less likely the possibility of conflicts.

Second, as a global variable can also be accessed within any function, it allows
for the possibility that any function changes that variable’s value, again leading to
bugs. This problem is known as a lack of access control: access control is a restric-
tion on who or what can use or modify a resource.

Third, there can be a performance hit to using global variables, in that the
environment will always need to track the global variables. By comparison, local
variables will only exist—be tracked by the environment and require memory to
represent them—during a function’s execution.

This is not to say that global variables should never be used, just that they should
only be used deliberately and after the due consideration of the potential problems.
A general good rule for programming is: only do what is absolutely required. With
that in mind, you should only use a global variable if you absolutely have to.

the FundaMentalS 243

ptg7799847

s

Functions in JavaScript have a very unique quality in that functions are also
themselves objects. This makes functions “first-class” citizens in JavaScript: they
can be used and manipulated as you would any other value type. This probably
sounds rather abstract to you now, but the end result is that you can do things with
JavaScript functions that you cannot do with functions in many other languages.
Moreover, although the implications are complicated, understanding functions as
objects will help you to appreciate some of the things commonly done in JavaScript,
including many pieces of code you’ve already seen.

Looking back at what you already know, say you create a new (and unnecessary)
function in JavaScript like so:

function getOne() {

 return 1;

}

You understand, certainly, that getOne() is a function, and that it can be invoked:

getOne();

However, in JavaScript, a function is an object, specifically of type Function. By
declaring that function you’ve also created an object variable, with an identifier of
getOne, whose value is the function definition (Figure 7.13).

Because of this quality, you can test for the presence of a function using code like:

if (Date.now) {

That code verifies that there is a definition for now as part of the Date object.
This is different than the Date.now() function call.

More precisely, you could check that the property is a function:

if (typeof Date.now == ‘function’) {

fiGURe 7 .13 A function vari-
able’s value is the function
definition.

s

ptg7799847

Once you understand that a function definition is just another type of value
in JavaScript, you might realize that you can do with a function definition what
you can do with any value type, such as a number or string, including: assign the
function definition to a variable, use it as a value to be passed to another function,
or even return a function from another function. I’ll explain…

FunCtions as variaBle values

The syntax used thus far for declaring a function constitutes a JavaScript state-
ment. You can also create a function using an expression, whereby the creation of
the function as a value of a variable is overt:

var getTwo = function() {

 return 2;

}

This syntax probably seems strange, but the end result is the same: an object of
type Function has been created. Because it’s a Function object, it can be invoked,
unlike other objects (Figure 7.14):

getTwo();

Any value that can be assigned to a variable can also be assigned to an object
property, as an object property is just a variable associated with an object. This is
code that’s been used many times over in this book:

window.onload = init;

That code assigns to the unload property of the window object the value of the
init variable, which is to say the init() function definition.

Note that the code does not invoke the function—it’s lacking the invocation
parentheses:

window.onload = init(); // No!

fiGURe 7 .14 A function definition
can be a value assigned to a variable.

FunctionS aS oBJectS 245

ptg7799847

Doing the above would call the init() function and assign the value returned
by it to the window.onload property, which is not the intent.

Taking this further, you can skip the step of naming the function and/or creat-
ing a function variable, and just assign a function expression to an object property
directly:

window.onload = function() {

 // Function body goes here.

}

In that code, the function itself is called an anonymous function, as it has no
name. You’ll use anonymous functions frequently in JavaScript.

FunCtions as arguMent values

A second way you can use a function as an object is to pass a function definition
to another function, as you would any other argument value. This only makes
sense, of course, in situations where the function being called expects one of its
arguments to be a function. To do this, you can create the function and assign it
to a variable, then pass that variable to the other function:

var someFunction = function() {

};

someOtherFunction(someFunction);

Or, you can also simplify this and write the function definition within the other
function’s invocation:

someOtherFunction(function() {

});

When you do this, just be mindful of the syntax so that you don’t create a syn-
tactical error. (In both cases, these are also anonymous functions.)

As an example, in Chapter 6, it’s said that arrays have a sort() method, but that
the method is of limited use without knowing how to define your own functions.
This is because the built-in sort() method can only reliably be used to sort array
elements alphabetically. This is fine if you have an array of strings (Figure 7.15):

s

ptg7799847

var people = [‘Mac’, ‘Dennis’, ‘Dee’, ‘Frank’, ‘Charlie’];

people.sort();

In current browsers, sort() will properly sort numbers, but in older browsers,
sorting a list of numbers was done alphabetically, too:

var numbers = [1, 4, 3, 2];

numbers.sort(); // 4, 1, 3, 2

The solution (again, for the older browsers) was to create a function that will
perform the comparison needed, and then to tell the sort() method to use that
function instead of its default mechanism. The comparison function needs to take
two arguments—the two values being compared—and return:

J A negative value if the first argument comes before the second

J 0, if the two arguments are the same

J A positive value if the second argument comes before the first

Conventionally, the returned values are −1, 0, and 1.
Thus, to sort an array of numbers, the code to use is (Figure 7.16):

function compareNumbers(x, y) {

 return x-y;

}

var numbers = [1, 4, 3, 2];

numbers.sort(compareNumbers);

fiGURe 7 .15 The sort()
method will perform a proper,
case-sensitive sorting of
strings.

fiGURe 7 .16 To change how
array elements are sorted,
provide the method with your
own function definition.

FunctionS aS oBJectS 247

ptg7799847

First, note that the function identifier is being used as the argument value to
sort(), not a function call. Within the function, a little shortcut is being used to
determine what value is returned: the second argument is subtracted from the
first. If the result of the subtraction is positive, then x must be bigger (e.g., 8-7);
if the result is negative, then x must be smaller (e.g., 7-8); if the numbers are the
same, 0 will be returned.

As another example, if you wanted to perform a case-insensitive string sort,
you can write a function to do that:

function caseInsensitiveCompare(x, y) {

 x = x.toLowerCase();

 y = y.toLowerCase();

 if (x > y) {

 return 1;

 } else if (y > x) {

 return -1;

 } else {

 return 0;

 }

}

Putting it together

To practice providing functions as arguments to other functions, let’s look at some
of the new array functions added in ECMAScript 5. Each of these requires a user-
defined function in order to work:

J forEach() loops through an array, one element at a time.

J every() tests each array element against a condition and returns a Boolean
if every element passes.

J some() tests each array element against a condition and returns a Boolean
if at least one element passes.

s

ptg7799847

J map() provides each array element to a function where it will be modified
and returned, creating a new array.

J filter() tests each array element against a condition and only returns
those that pass, creating a new array in the process.

J reduce() can be used to group an array’s elements into a single value.

For example, to confirm that an array contains nothing but strings (e.g., prior
to sorting the array), you can use every(). It returns a Boolean value indicating if
every element in the array passes the condition set in the user-defined function
(Figure 7.17):

var mix = [1, true, ‘test’];

mix.every(function (value) {

 return (typeof value == ‘string’);

});

As a reminder, these are newer functions, and may not be supported by all
browsers (Figure 7.18). To test for support, and perform the same task regardless,
you could use code like this:

// Function that returns a Boolean indicating a String:

function testForString(value) {

 return (typeof value == ‘string’);

}

// Array to be tested:

fiGURe 7 .17 The every() method
returns false because not every
element in the array is a string.

fiGURe 7 .18 IE9 does not support
the every() method.

FunctionS aS oBJectS 249

ptg7799847

var mix = [1, true, ‘test’];

if (mix.every) { // Can use every()!

 var result = mix.every(testForString);

} else { // Must write every() equivalent.

 var result = true; // Assume truth.

 for (var i = 0, count = mix.length; i++) { // Loop through array.

 if (!testForString(mix[i])) { // Is it not a String?

 result = false; // Change result to false.

 break; // Terminate the loop.

 } // IF

 } // FOR

}

As another example, this next script will take a list of words from the user, then
perform a case-insensitive sort of the words, and output the result (Figure 7.19).
The relevant HTML, in a page named words.html, is:

<div><label for=”words”>Words</label><input type=”text” name=”words”
p id=”words” required></div>

<input type=”submit” value=”Sort!” id=”submit”>

<h2>Sorted Words</h2>

<div id=”output”></div>

fiGURe 7 .19 A sentence of
words is quickly parsed, sorted,
and redisplayed by this script.

s

ptg7799847

The form uses one text input for the list of words. Just below the submit button is
an empty DIV that will be updated by the JavaScript code, providing the sorted output.

The HTML page includes the words.js JavaScript file, to be written in the
subsequent steps.

To sort an array with a user-defined function:

1. Create a new JavaScript file in your text editor or IDE, to be named words.js.

2. Define the $() function:

function $(id) {

 ‘use strict’;

 if (typeof id != ‘undefined’) {

 return document.getElementById(id);

 }

} // End of $ function.

This function, explained earlier, will be used to get references to form
elements.

3. Define the setText() function:

function setText(elementId, message) {

 ‘use strict’;

 if ((typeof elementId == ‘string’)

 && (typeof message == ‘string’)) {

 var output = $(elementId);

 if (output.textContent !== undefined) {

 output.textContent = numbers;

 } else {

 output.innerText = numbers;

 }

 } // End of main IF.

} // End of setText() function.

This function will also be used by the script.

FunctionS aS oBJectS 251

ptg7799847

4. Begin defining the sortWords() function:

function sortWords(max) {

 ‘use strict’;

 var words = $(‘words’).value;

The sortWords() function does the work when the form is submitted. It
starts by getting a reference to the form value.

5. Convert the string to an array:

words = words.split(‘ ‘);

The split() function returns an array of pieces from a string, using the pro-
vided argument as the delineator. It was explained in Chapter 6. The result
of the operation is assigned back to words, changing that string into an array.

6. Perform a case-insensitive sort of the words:

var sorted = words.map(function(value) {

 return value.toLowerCase();

}).sort();

That code looks a bit complicated because it has two chained method calls
and an anonymous function, but here’s what is happening: To the words
array, the map() method is applied. The map() method takes a function as its
argument, and map() will pass to that function each array element, one at a
time. The anonymous function used as the map() argument therefore has to
be written to accept a value as an argument. This value can be manipulated
and returned: in this case, the value is converted to all lowercase letters.
The result of using map() is a new array. To this array, the sort() method is
applied. The result of that action is then assigned to the new sorted variable.

s

ptg7799847

You could write this out more overtly as:

var changeToLowerCase(value) {

 return value.toLowerCase();

}

var sorted = words.map(changeToLowerCase);

sorted = sorted.sort();

You could also combine the code in Steps 5 and 6 to make it more compli-
cated, but a single step.

To save space, this code does not check if the browser supports the map()
method. That can be a challenge for you to pursue, using the code already
explained as a starting point.

7. Send the output to the page:

setText(‘output’, sorted.join(‘, ‘));

Finally, the HTML page is updated using the setText() function. For the text
itself, a function call to join() provides that value. It returns a string using
the provided argument as the glue (it was also discussed in the last chapter).

8. Complete the sortWords() function:

 return false;

} // End of sortWords() function.

9. Add an event listener to the form’s submission:

function init() {

 ‘use strict’;

 $(‘theForm’).onsubmit = sortWords;

} // End of init() function.

window.onload = init;

10. Save the file as words.js, in a js directory next to words.html, and test it
in your Web browser.

FunctionS aS oBJectS 253

ptg7799847

the fanCIer Stuff

With the fundamentals in the bag, and an appreciation for functions as objects, let’s
start looking at some of the fancier things you can do with functions in JavaScript.
To be clear, what you’ll learn over the remaining few pages aren’t just tricks, but
rather sophisticated ways to solve sometimes complicated problems.

Context and this

In order to be able to fully grasp functions, one has to be aware of context, also
called execution context. For each line of code in a JavaScript file, there is a context
in which that line is being executed. For example, the code found between HTML
script tags, or in an external JavaScript file, executes within a global context. The
code within a function’s body operates within a different context, and code within
another function’s body will have another context. When each function’s execution
is over, the context returns to what it was previous to that function call. Within each
context, different objects exist and different properties will have different values.

A key tool involving context is a special object called this. The this variable
gets its value from the execution context. Often this refers to the object on which
a function was invoked. For example:

var n = 2;

n.toFixed(2); // Returns 2.00

Within the toFixed() method, this refers to the n variable, allowing the meth-
od’s internals to access that variable’s value.

When you have a function not associated with an object, the function is actu-
ally part of the global object (e.g., window, in the Web browser), meaning that this
normally refers to the global object.

Being able to refer to the object invoking the function is a critical component
in object-oriented programming. On a level that’s easy to understand, the this
keyword provides a way for an object to refer to its own properties. For example, as
just explained, since a function is an object, a function can be assigned to proper-
ties of other objects. What has not been shown yet is that this includes your own
custom objects:

s

ptg7799847

var someObj = {

 someProperty: true,

 someMethod: function() {

 // Function body.

 }

};

Now you can use someObj.someProperty to get the property value, and use
someObj.someMethod() to execute the function defined within the property. Object
methods commonly make use of other object properties, but they cannot do so in
JavaScript without this (Figure 7.20):

var chapter = {

 num: 7,

 title: ‘Creating Functions’,

 getNum: function() { return num; }

};

chapter.getNum();

The solution is to use this to refer to the current object (Figure 7.21):

var chapter = {

 num: 7,

 title: ‘Creating Functions’,

 getNum: function() { return this.num; }

};

chapter.getNum();

fiGURe 7 .20 The object
method cannot access the
object’s properties directly.

fiGURe 7 .21 By using the spe-
cial this keyword, an object’s
method can make use of the
object’s other properties.

the Fancier StuFF 255

ptg7799847

The this keyword can also be used to invoke an object method from within
another of the object’s methods.

To practice with this, let’s quickly and slightly modify employee.js from Chap-
ter 6 so that the employee object has a method for returning a formatted version
of the employee’s name.

To create an object method:

1. Open employee.js in your text editor or IDE.

2. Change the creation of the employee object so that it also has a method:

var employee = {

 firstName: firstName,

 lastName: lastName,

 department: department,

 getName: function() {

 return this.lastName + ‘, ‘ + this.firstName;

 },

 hireDate: new Date()

}; // Don’t forget the semicolon!

The getName() method is defined within the object. It returns the object’s
lastName property, followed by a comma and a space, followed by the object’s
firstName property.

3. Change the assignment to the message variable so that it uses the object’s
new method:

var message = ‘<h2>Employee Added</h2>Name: ‘ +
p employee.getName() + ‘
’;

Once the object has the method defined, it can be invoked using standard
object notation.

s

ptg7799847

4. Save the file as employee.js, in a js directory next to employee.html, and
test it in your Web browser (Figure 7.22).

anonYMous FunCtions

As mentioned a few pages ago, an interesting and common practice in JavaScript is
to create anonymous functions. An anonymous function is just a function without
a name. They are normally created when a function definition is:

J Assigned to a variable

J Assigned to an object property

J Used as a value being passed in a function call

You’ve already seen examples of these uses of anonymous functions. Another
use of an anonymous function is as an immediately invoked function. To do that,
you create an anonymous function and wrap it within a function call:

(function() {

 // Function body goes here.

})();

fiGURe 7 .22 Again, the visual result is
the same, but the internal workings
are getting smarter and smarter!

the Fancier StuFF 257

ptg7799847

To understand what’s going on with this cryptic syntax, the function code cre-
ates an anonymous function. This is wrapped within parentheses—(function()

{...}), so that the entire construct can be followed by the parentheses needed to
invoke the function.

One benefit of an immediately invoked function is that it can be used to separate
your variables and other code from the global scope:

(function() {

 var someVar;

 // Function body goes here.

})();

The function is created and executed, making a local variable in the process.
Then the function terminates, leaving no global functions or variables remain-
ing. This may not seem like much on its own right, but you can nest functions in
JavaScript, which expands the possibilities.

nested FunCtions

Another thing you can do with JavaScript functions that is rather unique is that
you can nest them, which is to say define one within another:

function functionName() {

 // Some function body.

 function anotherFunctionName() {

 // This function’s body.

 }

}

This is possible in JavaScript because objects can have methods, as you know,
and functions are just another type of object. Therefore, a function defined within
a function is just really a method of the outer function.

s

ptg7799847

There are some interesting qualities that come about from this arrangement.
For starters, the nested (i.e., inner) function will have its own scope. However, the
inner function will also automatically have access to the variables that are local
to the parent function, including its arguments (Figure 7.23). (Naturally, the inner
function also has access to global variables, because those are global.)

function test(arg) {

 var localVar = ‘local’;

 function innerTest(innerArg) {

 console.log(‘arg = ‘ + arg + ‘\n’);

 console.log(‘localVar = ‘ + localVar + ‘\n’);

 console.log(‘innerArg = ‘ + innerArg + ‘\n’);

 }

 innerTest(true);

}

test(‘argument’);

Second, the inner function will be “hidden” from the global scope, which means
that it cannot be called from outside of the primary, outer function. If the outer
function is immediately invoked, the inner function will never be part of the global
scope either.

fiGURe 7 .23 A nested function can
access variables found within its
parent scope and the global scope.

the Fancier StuFF 259

ptg7799847

As a very practical example of this, let’s rewrite the tasks application from
Chapter 6, without using any global variables or functions. The original script
required a global array, but you now have the knowledge to write that same appli-
cation more purely.

To create an immediately invoked, anonymous nested function:

1. Open tasks.js in your text editor or IDE.

2. Before the declaration of the tasks variable, add:

(function(){

All of the script’s code will get wrapped within an anonymous function
definition and call. That begins here.

3. As the very last line of code, add:

})();

This completes the anonymous function definition and then invokes it.

4. Indent all of the other lines of code to indicate that they constitute the body
of the anonymous function.

This isn’t required, but is for the best.

5. Save the file as tasks.js, in a js directory next to tasks.html, and test it
in your Web browser (Figure 7.24).

6. If your browser’s debugging tools lists the global variables, view the results
while executing the script (Figure 7.25).

fiGURe 7 .24 The still-working
tasks management application!

fiGURe 7 .25 The Web Inspec-
tor in Safari no longer lists
tasks as one of the global
variables.

s

ptg7799847

You’ll notice several things if you look at the variables that exist while the
script is running. First, there are a ton of global variables, which is one of
the reasons not to create any more. Second, the local variables will be those
within a specific function, such as addTask(). Third, there will be a new
category of variables titled Closure (see Figure 7.25), under which you’ll find
not only the tasks variable but the two named functions. A closure is an
advanced concept, to be discussed more in Part 3 of the book. In simplest
terms, a closure is a function whose definition automatically includes a
memorized state of the variables that existed when the function was defined.
If that went right over your head, don’t worry: closures have been tripping
up even seasoned JavaScript programmers for years. Chapter 14, Advanced
JavaScript, will return to the topic more deliberately.

PerForMing reCursion

Recursion is a concept that’s quite simple in theory and rather complex in actual-
ity. Recursion is just the act of a function calling itself, and it’s something that’s
possible in any programming language that allows you to define functions. One
of the easiest uses of recursion to grasp is a factorial function, where a factorial is
the product of all the integers from 1 to the given number:

5! = 5 * 4 * 3 * 2 * 1 (120)

The following function can be used to calculate and return the factorial of a
number:

function factorial(n) {

 if (n <= 1) {

 return 1;

 } else {

 return n * factorial(n-1);

 }

}

To understand what’s happening here, use a specific number and walk through
the code. The factorial of 5 is 120: 5 * 4 * 3 * 2 * 1. The first time the function will

the Fancier StuFF 261

ptg7799847

be called, with 5 provided as the argument value, the else clause comes into play.
In that case, the function returns n, which is 5, times the value returned by calling
the factorial function again, this time providing the value of n-1. In other words:

return 5 * factorial(4);

The result of that function call will be:

return 4 * factorial(3);

This makes the returned value of the original function call to be:

return 5 * (4 * factorial(3));

This process continues until n becomes equal to 1 and 1 is returned:

return 5 * (4 * (3 * (2 * (1))));

A recursive function is a good solution when the same process needs to be
repeated for an unknown number of times. For example, navigating a tree data
structure, such as an HTML document, can be done using recursion. Or, as another
example, if the tasks application could have subtasks, where each subtask could
also have one or more subtasks, recursion would be needed to display the entire
list of tasks.

However, there is a limit as to how many times a browser can perform recursion,
as recursion is memory intensive (the original function call’s return statement
cannot be executed until every recursive call returns its value). In some situations,
simple iteration using a loop can accomplish the same end goal without the larger
memory requirement. The factorial function can be written using a loop instead:

function factorial(n) {

 for (var product = 1; n > 1; n--) {

 product *= n;

 }

 return product;

}

Iteration requires less memory than deep recursion, although loops might
otherwise be slower.

s

ptg7799847

revIeW and purSue

w

J What is the syntax for defining your own functions? How do you write a
function that takes arguments?

J How can you validate the number and types of arguments passed to a func-
tion, and why is that necessary?

J How do you establish a default parameter value?

J What does it mean to say that an argument is passed by value or by refer-
ence? Which value types are passed in each way?

J How does a function return a value?

J What is variable scope? What is global scope? What is local scope? Why
should you avoid creating global variables?

J What does it mean that functions in JavaScript are “first-class”?

J What is the second (i.e., expression) syntax for defining a function?

J What are some of the new array methods discussed in this chapter? Why
were they covered here instead of in the previous chapter (with the other
array material)?

J What information and/or values does the this keyword provide to a func-
tion or method?

J What is an anonymous function? In what situations are anonymous func-
tions commonly used?

J Why is it possible to nest functions in JavaScript?

J What is recursion and when is it useful? What is an alternative to recursion
(in some situations)?

review and purSue 263

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

ptg7799847

Pursue

J Update today.js so neither argument can be an empty string.

J Update today.js so that message can also be a number.

J Update today.js so that the setText() function validates that the destina-
tion element was found.

J Try using the getRandomNumber() function in random.js with different
arguments (i.e., max values) to see the result. Be sure to try it with no argu-
ment value, too.

J Rewrite words.js so it still works even if the browser does not support the
map() method.

J Search online for some examples using the other new array methods:
forEach(), some(), filter(), and so forth.

J Continue reworking employee.js so it uses some of the other functions and
techniques taught in this chapter, such as the $() function.

s

ptg7799847

WraPPing up

This chapter walked you through the basics of defining and invoking your own
functions in JavaScript. As the first part of the chapter demonstrated, this concept
is not that hard to learn, at least on the primary level. Then you learned that func-
tions in JavaScript are actually objects, and that this one fact really changes what
can be done with functions. Functions can be assigned to variables, provided to
other functions as arguments, and even returned by functions (although you did
not see an example of that here).

By the end of the chapter, the information and possibilities got interesting (or
messy, depending upon your state of mind). Functions in JavaScript are a really
useful data type, able to be used anonymously, as an immediately invoked entity,
and nested within another function. I even managed to sneak in an example of
a closure in this chapter: one of the most advanced concepts involving JavaScript
functions. While you’ve learned a goodly amount when it comes to creating and
utilizing your own functions, there’s more to be had in Part 3 of the book, including
more detailed analysis of what, exactly, a closure is and how it works.

But first, there are more fundamentals to learn, beginning with an exhaustive cov-
erage of events in the next chapter. You’ve already learned a few things about events,
starting in Chapter 2 of the book, and now it’s time to finish covering the subject.

wrapping up 265

ptg7799847

g

ptg7799847

267

Handling events is one of the fundamental uses

of JavaScript. Loading a Web page, moving the cur-

sor, entering text into a textarea, submitting a form: these are

all events that occur within the browser to which JavaScript can

respond. Out of necessity, Chapter 2, JavaScript in Action, intro-

duced the very basics of event handling, and it also presented

two events, used in most of the book’s examples thus far. In this

chapter, you’ll learn everything you need to know to handle the

myriad of events in JavaScript.

ptg7799847

Chapter 2 explained that creating an event handler in JavaScript is a matter of
associating an event and an object with a JavaScript function. For example:

window.onload = init;

That one line says that when the load event happens with the window, the
init() function should be called. Formally speaking, you could say that an event
listener is created or registered, and that the init() function will act as the event
handler for the load event on the window object.

You’ve also seen variations on this code multiple times by now:

document.getElementById(‘theForm’).onsubmit = process;

When the element with an id value of theForm triggers a submit event, the
process() function is called.

Clearly, there are many other events that can occur, and those will be explained
in this chapter in detail. There are also alternative ways to create an event listener,
which will be covered first. As for the user-defined event handling function, the
last chapter covered functions in detail, but there are a few new things to learn
when it comes to using functions as event handlers.

As a warning in advance, the vast majority of all the code discussed to this point
has been browser neutral, with only a few noted exceptions. When it comes to event
handling, one has to start coding more flexibly, as different browsers implement
events and event handlers in different ways.

s

Although only one format has been used in this book to this point, JavaScript sup-
ports four different ways of creating event listeners. Over the next few pages, I’ll
recap the first, and cover the other three, although one of those should no longer
be used (I’m including it here as you might see it elsewhere, and sometimes it’s
best to know why you shouldn’t do something).

NOTE: events will occur whether they are handled or not.

g

268 ChaPter 8 event handling

ptg7799847

(don’t use) inline event handlers

Historically, JavaScript programmers first used inline event listeners, accomplished
by assigning a JavaScript function to an HTML element property:

<form action=”#” method=”post” onsubmit=”validateForm();”>

or

Some Link

This code was popular because it was easy to write and performed reliably well
across all browsers. Although you will still see inline event handling in legacy code,
and in some instructional resources, it is to be avoided. One reason is that inline
event handling makes a mess of the HTML, interspersing JavaScript here and there.
Not only is such code aesthetically harsh, it makes it that much harder for the
developer to debug and manage the project. Second, one can’t apply the concept
of progressive enhancement when the JavaScript code is written directly within
the HTML. Third, and most importantly, inline event handlers got developers into
thinking that JavaScript would always work, often undercutting standard function-
ality based upon this assumption. For example, this has been a common practice:

Some Link

The intention is that the doSomething() function will do what’s required when
the user clicks the link. That’s all fine and good, but without a valid href value, this
link would do absolutely nothing for those with JavaScript disabled or unavailable.
The end result for those users is that your Web page seems to be broken, having
links that don’t go anywhere.

I only mention inline event handling as it’s still seen, even in reputable places
such as Mozilla’s own documentation, and it was the standard for years. But inline
event handling should be avoided in modern JavaScript.

traditional event handling

The event listening code used in this book since Chapter 2 is normally called the
traditional approach:

window.onload = init;

creating event liStenerS 269

ptg7799847

s

From a style perspective, developers often name event-handling functions
using a combination of the event and the element, such as:

J onSubmitForm() or onFormSubmission() or formSubmissionHandler() or
handleFormSubmission()

J onClickLink() or onLinkClick() or linkClickHandler() or
handleLinkClick()

J onImageMouseOver() or onMouseOverImage() or imageMouseOverHandler() or
handleImageMouseOver()

I’m sure you get the idea. Personally, I prefer my function names to describe
what the function does, more than indicate its role as an event handler.
Regardless, as with anything in programming, whatever style you like, just
stick with it and be consistent.

There are two great arguments for using this method: it’s easy and it works reli-
ably on every browser released within the last decade or more. For these reasons,
it’s the route I’ve chosen to use to this point, and I will actually continue to use
the traditional approach for many of the examples in this book. Just remember
when assigning event handlers in this way, the property (i.e., onevent) must be in
all lowercase letters.

Chapter 7, Creating Functions, demonstrated that using the traditional approach
for creating an event handler is a perfect time to apply an anonymous function,
saving yourself from having to formally declare the function:

window.onload = function() {

 // Do whatever.

}

I haven’t previously mentioned this, but you can remove event handlers when
using the traditional approach by assigning null to the proper event property of
the object:

window.onload = null;

270 ChaPter 8 event handling

ptg7799847

As with any object property, you can confirm that an event listener exists by
checking the object’s property value:

if (typeof window.onload == ‘function’) { // Exists!

There are a couple of reasons why you wouldn’t want to use the traditional
approach. First, you can only assign a single event handler this way:

document.getElementById(‘theForm’).onsubmit = process;

document.getElementById(‘theForm’).onsubmit = calculate; // Oops!

After the second line of code, only the calculate() function will be called when
the form is submitted. The original event handler association with the process()
function has been replaced. This, then, is the second problem with the traditional
route: it’s too easy to overwrite an existing event handler.

Both problems can be mitigated by just creating one event-handling function
that invokes the two needed functions:

document.getElementById(‘theForm’).onsubmit = function() {

 process();

 calculate();

}

But this is an ugly kludge, best avoided. Moreover, in a more complicated proj-
ect, with multiple JavaScript files and libraries, if any JavaScript code uses the
traditional method, it’s possible that it will undo the event registrations that took
place in other JavaScript files.

W3C event handling

Eventually, the W3C (World Wide Web Consortium) came up with its own approach
for how event listeners should be created, defined as part of the DOM Level 2 speci-
fication (the DOM specifications define other browser behavior beyond just event
handling). This approach is an improvement on both the inline and traditional
methods in a couple of ways. First, DOM Level 2 event assignations are done within
JavaScript code, not HTML. Second, the DOM Level 2 specification allows you to
assign multiple event handlers to the same element.

creating event liStenerS 271

ptg7799847

In the W3C DOM approach, event listeners are created using the addEvent
Listener() method. It takes three arguments: the event type, the function to be
called when that event occurs, and a Boolean value indicating the event phase to
watch for. You’ll learn about event phases later in the chapter, but for now, you
can always use false for the third argument, or skip it, resulting in a FALSE-like
value of undefined (as explained in Chapter 7).

With this in mind, to create an event listener for the window’s load event, you
would write:

window.addEventListener(‘load’, init, false);

Note that here it’s just load, not onload: load is the event name, onload is the cor-
responding property of the window object. And, as with all function references, use
the function’s name, without any parentheses (because that would be a function call).

To add multiple event listeners for the same event on the same element, just
use multiple addEventListener() calls accordingly:

window.addEventListener(‘load’, process, false);

window.addEventListener(‘load’, calculate, false);

The corresponding removeEventListener() method removes an event listener
(it’s aptly named). For the method to work, it needs to be provided with the exact
same argument values as the addEventListener() call that’s being undone:

window.removeEventListener(‘load’, process, false);

Assuming the previous two method calls were part of the same script, at this
point in time, only the calculate() function will be called when the window trig-
gers a load event.

Understand that you should remove event listeners once they are no longer
needed, although many programmers fail to do so. The removeEventListener()
method will not throw an error if you attempt to remove an event listener that
does not exist.

NOTE: the inline and traditional event handling are collectively
referred to as doM level 0, which is to say the approaches existed

before there was a standard for event handling.

272 ChaPter 8 event handling

ptg7799847

The W3C DOM Level 2 approach is logical, flexible, and easy enough to apply.
It requires a bit more code than the traditional approach, sure, but it’s supported
in almost every browser. Unfortunately, the one browser that doesn’t have
addEventListener() is…Internet Explorer, prior to version 9. For older versions
of IE, there’s another way of creating event listeners.

ie event handling

Microsoft started off doing things differently in its line of Internet Explorer browsers
when it comes to DOM event listeners (and, well, many other things). At first glance,
Microsoft’s approach won’t seem that different than the W3C’s, but there are implica-
tions to the differences, to be explained in time. To start, instead of addEventListener()
and removeEventListener(), IE has attachEvent() and detachEvent(). Both take just
two arguments: the event and the function to be called when that event occurs. The
IE equivalent of the window.onload event handler is:

window.attachEvent(‘onload’, init);

Unlike with the W3C DOM version, the “on” is included before the event name
again, as in the traditional approach.

Fortunately, IE9 started supporting the W3C DOM methods. Still, developers
moving beyond DOM Level 0 event listening need to write event handlers in a way
that’s cross-platform compatible. That code will be explained next.

Creating an event assigner

To create reliable event listeners, let’s start by looking at how one would write the
init() window.onload code in a cross-browser manner:

if (window.addEventListener) { // W3C

 window.addEventListener(‘load’, init, false);

} else if (window.attachEvent) { // Older IE

 window.attachEvent(‘onload’, init);

}

(To be more precise, each conditional could check that the typeof the cor-
responding property is a function.)

creating event liStenerS 273

ptg7799847

When adding lots of event listeners to lots of page elements, rewriting this
conditional time and again becomes impractical. Therefore, it should be moved
into a function whose sole purpose is to add an event in a cross-browser manner.
The function will need to take three arguments—the object, the event type, and
the function:

function addEvent(obj, type, fn) {

}

Within the function, replicate the above code, replacing the particulars with
the function’s arguments:

function addEvent(obj, type, fn) {

 if (obj && obj.addEventListener) { // W3C

 obj.addEventListener(type, fn, false);

 } else if (obj && obj.attachEvent) { // Older IE

 obj.attachEvent(‘on’ + type, fn);

 }

}

In that code, I’ve added checks that the object provided exists (has a non-FALSE
value). And, in the attachEvent() method call, the prefix on is added to the event’s
name, to be in keeping with what attachEvent() expects.

You would then call this function using this code, for all browsers:

addEvent(window, ‘load’, init);

TIP: adding events using addEventListener() and
attachEvent() will not overwrite event handlers assigned

using the traditional approach.

274 ChaPter 8 event handling

ptg7799847

CreatInG a utilitY lIBrary

With this understanding of how to reliably assign event listeners, regardless of
the browser in use, it’s time to start writing more event-based code. But first, as
the addEvent() function will be used by every script throughout the rest of the
chapter, it makes sense to define it, along with a couple of functions explained in
Chapter 7, in a separate file that can be included by every HTML page. To avoid
polluting the global namespace with multiple new functions, all of the functions
will be defined as part of one global object, simply named U (short for utility). You’ll
see how to do this in the next sequence of steps, and how to use this new object
in the remaining pages.

As a reminder, you can download all of the necessary code from my Web site
at www.LarryUllman.com.

To create a utilities library:

1. Create a new JavaScript file in your text editor or IDE, to be named utilities.js.

2. Begin creating a new object named U:

var U = {

The U object will be the lone global variable created by this script.

3. Define the $() method:

$: function(id) {

 ‘use strict’;

 if (typeof id == ‘string’) {

 return document.getElementById(id);

 }

}, // End of $() function.

This function was defined and explained in Chapter 7. The function takes
the id value for the element to be retrieved and returns a reference to that
element. The only difference here is that the function is defined as a property
of the U object. To assign a value to an object’s property, use the property-
Name: value syntax, where propertyName is the name of the function and
value is the function’s definition.

creating a utility liBrary 275

www.LarryUllman.com

ptg7799847

4. Define the setText() method:

setText: function(id, message) {

 ‘use strict’;

 if ((typeof id == ‘string’)

 && (typeof message == ‘string’)) {

 var output = this.$(id);

 if (!output) return false;

 if (output.textContent !== undefined) {

 output.textContent = message;

 } else {

 output.innerText = message;

 }

 return true;

 } // End of main IF.

}, // End of setText() function.

The setText() function takes two arguments: the id value of the element to be
updated and the message itself. Both are validated as strings, and the element
is fetched using the internal $() function just defined. To invoke that func-
tion, use either this.$() or U.$(). If no corresponding element is found, the
function returns false. Otherwise, the function sets the text and returns true.

5. Define the addEvent() method:

addEvent: function(obj, type, fn) {

 ‘use strict’;

 if (obj && obj.addEventListener) {

 obj.addEventListener(type, fn, false);

 } else if (obj && obj.attachEvent) {

276 ChaPter 8 event handling

ptg7799847

 obj.attachEvent(‘on’ + type, fn);

 }

}, // End of addEvent() function.

This code has already been explained. Note that it takes an object as its first
argument, not the id value of the destination element. This is necessary in
order to add event listeners to the window or document object.

6. Define the removeEvent() method:

removeEvent: function(obj, type, fn) {

 ‘use strict’;

 if (obj && obj.removeEventListener) {

 obj.removeEventListener(type, fn, false);

 } else if (obj && obj.detachEvent) {

 obj.detachEvent(‘on’ + type, fn);

 }

} // End of removeEvent() function.

This code just replicates that in addEvent(). Also note that there’s no comma
after the function’s closing curly brace, as this function definition is the last
property in the U object.

7. Finish the declaration of U:

}; // End of U declaration.

Don’t forget the semicolon after the closing curly brace, which completes
the object declaration statement:

var U = { /* functions */ };

8. Save the file as utilities.js.

You’ll want to place the script, or a copy of it, in the same directory as all
the other JavaScript files you write in this chapter.

creating a utility liBrary 277

ptg7799847

s

With a thorough understanding of how one can create event listeners, it’s time to
go through the range of events that can occur within the Web browser. I’ve grouped
these into four categories:

J Input Device

J Keyboard

J Browser

J Form

Let’s look at these groups in order. For each group, I’ll highlight the key events,
how they’re commonly used, and what to be careful about. You won’t initially see
much in the way of code or images in the next few pages, but there will be full
example scripts to demonstrate the new information later on. Note that this chapter,
and the book, does not include a complete list of events, but presents those you’ll
commonly use and therefore need to know.

Be forewarned that not all browsers and devices support all of these event types,
let alone some of the specific events. For example, screen readers don’t have input
devices. This chapter also mentions, but doesn’t demonstrate, the touch events,
which are only supported in touch-enabled devices.

inPut deviCe events

Input device events are triggered by mice, trackpads, trackballs, graphic tablets,
and the like. Although the keyboard is clearly a device for creating input, too, the
input device group is about cursor-driven events.

input Button eventS
The click is one of the first events most programmers learn about, but it’s not actu-
ally as simple as one would think. If you move your cursor over an element and click
on it (without moving the cursor while clicking), at least three events take place:

J mousedown

J mouseup

J click

A click event is the combination of a mousedown and a mouseup on the same
element. This means that the click event is more exacting than either mousedown
or mouseup: if the user clicks on an element, but moves off of it before releasing the
button, that will not constitute a click. For this reason, you can have more reliable
results by specifically looking for mousedown events instead of click.

278 ChaPter 8 event handling

ptg7799847

Some browsers will only treat a left-button click as a click event. Further, the
act of clicking on one element and moving to another is a drag, which JavaScript
needs to be programmed to handle (prior to HTML5).

There is also the double-click event, dblclick, although it is less commonly
used. If you do choose to use dblclick, do not also create a click handler on the
same element, as that will cause quite a bit of event confusion (as a dblclick will
also trigger the click event twice).

And there is the contextmenu event, which is triggered when the user attempts
to create a contextual menu (e.g., by right-clicking on Windows or Control+clicking
on Macs). Sadly, most developers watch for the contextmenu event in order to
prevent the user from creating contextual menus, in theory stopping the user from
copying an image or some such. This is a topic I’ll return to later.

input MoveMent eventS
Events can also be triggered by the cursor simply being moved, without any button
clicks at all. The three movement-based events are:

J mouseout

J mouseover

J mousemove

Mouseout and mouseover have been around for years, and are the two most
commonly used mouse events, along with click. For example, one of the initial
popular uses of JavaScript was to perform image rollovers—changing the image
shown when the mouse moves over it, which isn’t such a bad thing.

You should only rarely use a mousemove event listener, as it can dramatically
degrade the performance of the Web page. Once you create a mousemove event
listener, the browser will constantly have to watch the cursor’s movement, call-
ing the event handler with each incremental change. When you do need to watch
the mouse’s movement, like if you’ve created a game, do so within the smallest
possible area (i.e., HTML element) you can, and remove the event listener as soon
as possible, too.

IE and Opera have the useful mouseenter and mouseleave events, which are
similar to, and arguably better than, mouseover and mouseout. But those aren’t
supported in the other major browsers. The hope is that these events, along with
other new ones such as focusin, focusout, and textinput, will be part of the next
standard: the DOM Level 3 specification.

event typeS 279

ptg7799847

To put this knowledge to the test, this next simple page will update some text
when the user mouses over it (Figures 8.1 and 8.2). Clearly, doing actual DOM
manipulation would be a more practical use of a mouseover, but as DOM manipula-
tion isn’t discussed until the next chapter, this example will suffice for now. The
HTML page is named epoch.html, and it contains just a paragraph with an id
value of output:

<p id=”output”></p>

The HMTL page includes the epoch.js JavaScript file, to be written in the sub-
sequent steps, along with utilities.js, already defined. Note that the utilities
file must be included first, as epoch.js references its U object.

To handle a mouseover event:

1. Create a new JavaScript file in your text editor or IDE, to be named epoch.js.

2. Begin defining the updateDuration() function:

function updateDuration() {

 ‘use strict’;

This function will be called when the page is first loaded and when the user
mouses over some text. In either case, this function performs a calculation
and updates some text on the page.

3. Get the current moment:

var now = new Date();

This line creates a new Date object representing the current moment.

4. Define the message for the output:

var message = ‘It has been ‘ + now.getTime();

message += ‘ seconds since the epoch. (mouseover to update)’;

The message contains some literal text, invocation of a Date method, and an
instruction to the user. Note that newer browsers can just use Date.now()
to get the number of seconds since the epoch, without having to create a
formal Date object.

fiGURe 8 .1 When the page is
first loaded, some content is
shown, along with instructions
to the user.

fiGURe 8 .2 Mousing over the
text updates its message.

280 ChaPter 8 event handling

ptg7799847

s

The advent and rise of touchscreen devices, such as iPods, tablet PCs, and
smart phones, has created additional kinks in input event handling. Such
devices do support click, dblclick, mousedown, mouseup, mouseover, mouse-
out, and mousemove events, but cannot perform any kind of event that
requires both mouse activity and a simultaneous key press (such as a contex-
tual click). There are also new events, and gestures, made possible by these
devices. For more on this subject, see a resource dedicated to JavaScript
development for mobile devices.

5. Update the page and complete the function:

 U.setText(‘output’, message);

} // End of updateDuration() function.

The page is updated by calling the U.setText() function, passing it the id
value of the element to be updated and the message itself.

As an added protection, this code could check for the existence of a U object
and a U.setText() function before attempting to invoke that function.

6. Within an anonymous function, register an event listener for a mouseover
on the paragraph:

window.onload = function() {

 ‘use strict’;

 U.addEvent(U.$(‘output’), ‘mouseover’, updateDuration);

 updateDuration();

};

An event listener cannot be added to any page element until the element
has been loaded, so that’s best done within a window.onload event handler.
The first line of code within the function invokes the U.addEvent() func-
tion to create the event listener on the output element. The first argument
to that function expects an object, so the U.$() function is called as part
of the addEvent() function call.

event typeS 281

ptg7799847

Next, to create the initial text, the updateDuration() function is also
called directly.

7. Save the file as epoch.js, in a js directory next to epoch.html, and test it
in your Web browser.

keYBoard events

The next batch of events to cover are keyboard events:

J keydown

J keyup

J keypress

These three events parallel mousedown, mouseup, and click, in that a keypress
requires both a keydown and a keyup. But just as many browsers will only treat a
left-button mouse click as a click event, many browsers also only treat the press-
ing of a character key as being a keypress event. Other buttons, such as Tab or
Shift, may not trigger keypress events. Many browsers do not call event handlers
when common OS commands are entered, such as Save (Command+S on Macs;
Control+S on Windows). Holding down a key will trigger multiple keydown events.

These events are normally watched for on specific form elements, although
you can watch for them on an entire form or the whole document:

addEvent(document, ‘keypress’, handleKeyPress);

Later in this chapter, once you learn how to handle events in more advanced
ways, you’ll see how to check exactly which key, or keys, was used in the event. For
now, though, using this new information, the text.html example from Chapter 4,
Simple Variable Types, can be updated so that it dynamically counts the number of
characters the user has entered, and dynamically limits the total to 100 (Figure 8.3).
The HTML page is named text.html, which is a slight modification from that in
Chapter 4, primarily removing the second textarea used in the original. Here’s the
relevant HTML:

<div><label for=”comments”>Comments</label><textarea name=”comments”
p id=”comments” maxlength=”100” required></textarea></div>

<div><label for=”count”>Character Count</label><input type=”text”
p name=”count” id=”count” disabled></div>

fiGURe 8 .3 The input below
the textarea now immediately
reflects the number of charac-
ters that have been typed.

282 ChaPter 8 event handling

ptg7799847

Note that the textarea includes the maxlength attribute, which effectively
imposes a limit on browsers that do support HTML5. If you want, you can remove
that when testing on a browser that recognizes this property on a textarea.

The HTML page also now includes the utilities.js file, along with the text.js
JavaScript file, to be written from scratch in the subsequent steps.

To handle keyboard events:

1. Create a new JavaScript file in your text editor or IDE, to be named text.js.

2. Begin defining the limitText() function:

function limitText() {

 ‘use strict’;

This function will be called when a keyup event occurs within a specific
textarea.

3. Get the textarea’s value, and report upon how many characters it contains:

var comments = U.$(‘comments’);

var count = comments.value.length;

U.$(‘count’).value = count;

First, a reference to the textarea is fetched for later use. Then, another vari-
able is assigned the length of that element’s value, which is the number of
characters in the string. Third, the value of the count text input is updated
to this number.

4. Cut the textarea’s value down to 100 characters:

if (count > 100) {

 comments.value = comments.value.slice(0,100);

}

If the number of characters that have been entered is greater than 100, then
the form element’s value needs to be sliced down to the first 100 characters.

5. Complete the function:

} // End of limitText() function.

event typeS 283

ptg7799847

The function does not need to return false (in fact, it shouldn’t) as previ-
ous examples have. This is because this function is called on keyup events,
not form submission events. You’ll learn more about what this means near
the end of the chapter.

6. Register an event listener within an anonymous function:

window.onload = function() {

 ‘use strict’;

 U.addEvent(U.$(‘comments’), ‘keyup’, limitText);

};

The event listener is added to the comments element, on keyup events. If
you change the particular handler to watch for the keypress or keydown
event, you’ll see the reported count will be off by one, because the count
won’t reflect the keypress that’s in progress.

7. Save the file as text.js, in a js directory next to text.html, and test it in
your Web browser (Figure 8.4).

You may notice that if you modify the value of the textarea without using
the keyboard (e.g., use the mouse to drop text in, or use the mouse to select
an Edit menu option), the event handler will never be called! You’ll see the
solution for that shortly.

BroWser events

The events discussed to this point are user-driven, but the browser itself has its
own events. You’ve already seen one: load, triggered when an element is loaded.
Thus far, event handlers have only watched for load events on the window itself,
but you can watch for loading of other resources, too, such as an external CSS file
or media (e.g., an image).

There is also the corollary unload event, triggered when a resource is being
unloaded from the browser. This will happen, for example, when the user attempts
to go to another Web page, in which case the current page will be unloaded. Annoy-
ing, this event is often used as a way to create a pop-up window, but thankfully one

fiGURe 8 .4 Text over 100
characters long get cut from
the textarea.

284 ChaPter 8 event handling

ptg7799847

can’t use unload to prevent the closing of the window, or its redirection to another
page. Most beneficially, unload events can be used in HTML5 as an occasion to save
the state of the browser. By doing so, when the user returns to the site, the page’s
settings can be replicated as they were when the user last left.

Another browser-based event is resize, triggered when the user resizes the
browser window. Similarly, when the user scrolls within the browser window, a
scroll event is triggered. This event can be triggered by other elements, too, and is
being used today to do things like zoom in and out of a map or other image.

Three more events involve a combination of the browser and the user, tied to
commands found under the Edit menu:

J copy

J cut

J paste

These events are both useful and easily misused, and are not reliably supported
outside of IE and Firefox. Some developers (or perhaps their clients) attempt to pre-
vent users from “stealing” content from a Web site, whether that content is text or
media. To thwart such actions, JavaScript can be invoked to disable this functionality
(much like attempting to disable the contextual menu). This provides a false sense of
security, though, as simply disabling JavaScript removes the protection and allows
users to take what they want. You will not see such an example in this book because:

J As just explained, it’s a foolish, unreliable pursuit.

J JavaScript should never be used to break the browser or work against the
user’s expectations.

J Web pages are, by their very nature, a way to share information. Once a user
has loaded a page, that content is literally on his or her computer already.
It’s silly to think otherwise.

Two other events— focus and blur—are technically browser ones, but as they
are most closely tied to forms, I’ll cover them next. If you have multiple browser
windows open, a focus event is triggered on a window when it is brought to the
front, and blur occurs within a window when it is sent backward.

event typeS 285

ptg7799847

ForM events

Form interactions, such as validation, are one of the key uses of JavaScript, so it’s no
surprise that many of the event handlers you’ll create as a JavaScript programmer
will be tied to forms and form elements. That being said, there are only a couple
of events that are specific to forms or form elements.

The first is reset, which is triggered when a form is reset (i.e., by clicking a reset
HTML button). Personally, I haven’t used a reset button in years: users rarely need
to formally reset an entire form, and more commonly, users will accidentally click
reset when they meant to click submit, thereby having to re-complete the form.
But if you do like using a reset button, you could use a reset event to watch for, and
prevent, accidental form resetting (Figure 8.5):

addEvent(document.getElementById(‘theForm’), ‘reset’, function() {

 return confirm(‘Are you sure you want to reset the form?’);

});

Form elements themselves can trigger change events, which occur when an
element’s value changes. Change events are an excellent trigger for form validation,
but keep in mind that when a change event occurs differs from element to element.
With checkboxes, radio buttons, and select menus, change events occur when the
element’s value changes. With text inputs and textareas, change events do not occur
until after the element loses focus, assuming its value changed.

Text input and textareas can also trigger select events, when the element’s tex-
tual content is selected. Checkboxes and radio buttons can also trigger click events.

Finally, there are the focus and blur events. While several browser elements can
trigger these, they’re mostly used with form elements. The focus event is triggered
when an element receives the user’s attention. For example, when the user presses
the Tab key to navigate to a text input, or uses the mouse to click within it, both
actions place the cursor there and give that element focus. The blur event is the
opposite, and is triggered when the user’s attention has moved elsewhere in the
browser (not actual attention, but the cursor or selection is moved).

fiGURe 8 .5 This confirmation
prompt can be used to verify a
user’s intent.

286 ChaPter 8 event handling

ptg7799847

As a quick example of this, let’s add a change event listener to the text.js
example, so that the character count is updated should the user go in and alter
the text without pressing any keys.

To handle change events:

1. Open text.js in your text editor or IDE, if it is not already.

2. Within the anonymous function that handles the load event, add an event
listener to the change event on the textarea:

U.addEvent(U.$(‘comments’), ‘change’, limitText);

This code replicates the existing line in the function (which should remain;
you can place this one either before or after it), this time registering an event
listener on the change event.

3. Save the file as text.js, in a js directory next to text.html, and test it in
your Web browser.

Now, changes made to the textarea’s value without using a key will be rec-
ognized (although you’ll need to move the focus out of the textarea in order
to trigger the change event).

event aCCeSSIBIlIty

One thing to be aware of when deciding what events to watch for is accessibility.
Creating accessible pages was once a matter of ensuring that people with screen
readers (for the visually impaired) can still successfully use a Web site. But with
the rise of mobile devices and other nonstandard browsers, one has to be even
more mindful of what events are important and what events are reliable. With any
browser that does not use an input device, the mouseover and mouseout events
are meaningless (which is to say they’ll never occur). For example, if you add a
mouseover event handler to a link:

Some Text

// JavaScript:

addEvent(document.getElementById(‘link’), ‘mouseover’,
p handleLinkMouseover);

event acceSSiBility 287

ptg7799847

That event can only be triggered via a mouse (or other input device that con-
trols a cursor).

This problem is easily mitigated, as browsers controlled only by the keyboard
can watch for a focus event, triggered when the keyboard is used to focus on the
link. Therefore, a safe way to handle an event for either user environment is to
create two event listeners:

Some Text

// JavaScript:

addEvent(document.getElementById(‘link’), ‘mouseover’, doSomething);

addEvent(document.getElementById(‘link’), ‘focus’, doSomething);

This concept is known as pairing events: using the same function to handle
comparable events on the same element. The same can be accomplished by apply-
ing both a mouseout and a blur event handler, when you need to watch for those
kinds of events.

Finally, for improved accessibility, it’s best to attach event listeners to the form’s
submission, not to the clicking of the submit button itself. The end result is the
same (i.e., both events have the same intended result), but a button can only be
clicked by an input device.

eventS and Progressive
enhanCement

The principle behind the concept of progressive enhancement, explained in Chap-
ter 2, is that JavaScript (and CSS) is used to enhance basic functionality, meaning
that no user is left behind, regardless of the device she or he is using. JavaScript
should only be required if you’re consciously willing to exclude some users. There
are situations where that’s reasonable, of course: if a Web page has a game that’s
written in JavaScript, it’s impossible to create a non-JavaScript version. But there
are many situations where requiring JavaScript is unnecessary: a form should be
submittable (and still validated on the server) with or without JavaScript.

288 ChaPter 8 event handling

ptg7799847

Applying this same thinking to event handling, one has to be careful when
adding events to elements that don’t already have a default behavior for that event.
For example, a form is intended to be submitted; when that occurs, the form’s data
is sent to the server-side script. Adding a submit event to the form to apply other
functionality makes logical sense. Or, a link is intended to be clicked, taking the
browser to the linked page. Adding a click event handler to a link in order to apply
other functionality again makes sense.

Conversely, there’s no default browser reaction when the user mouses over
some plain text. If you add an event handler that responds to the user mousing
over some text, then you’re also leaving non-JavaScript users behind, because
nothing will happen for them. Looking back at the first example in this chapter,
there is no non-JavaScript equivalent. But in that case, one can’t get the date and
time on the user’s computer without JavaScript anyway, so it’s not possible to cre-
ate a fallback alternative.

Let’s look at another example: the tree structure provides a great way to present
a lot of information in a limited amount of space. By clicking on text or images,
limbs (or nodes) of the tree can be expanded and collapsed (Figure 8.6). There is
clearly no JavaScript equivalent for this functionality, but that does not mean users
must be left out in the cold. One option is to present the tree in a fully expanded,
non-JavaScript format and then use JavaScript to make it dynamic. If you’d rather
not muddle up the page with too much information, you could instead present a
link to a separate page where the user could see the complete data structure.

As a final note, if you need to provide functionality that is only possible with
JavaScript, the recommendation is to use HTML buttons:

<input type=”button” name=”someButton” value=”Click Me!”>

The button, by definition in the W3C specification, is intended to support
scripting, and have no default behavior in itself. To use a button in a progressively
enhanced manner, one would have JavaScript dynamically add the button to the
page (using the DOM manipulation methods discussed in the next chapter). By
doing so, only those users with JavaScript enabled will be presented with a button
through which more JavaScript functionality is added.

As you’ll learn shortly, when there is a default browser action for any event, that
action will still take place, but only after the event handler is called. In a few pages,
you’ll learn how to prevent the default action using JavaScript.

fiGURe 8 .6 The dynamic tree
structure allows the user to
navigate through a complex,
nested amount of data.

eventS and progreSSive enhanceMent 289

ptg7799847

g

With the basics of event handling covered, it’s time to look at the more advanced
aspects of this important concept. Unlike with functions, where the advanced
ideas can get pretty complex, what you’ll learn over the next several pages isn’t
that complicated, except for the amount of browser disparity. These remaining
ideas, though, will make it possible to write event handlers that are more flexible
and sophisticated.

reFerenCing the event

When an event-handling function is designed for a single event on a single element,
it can easily be written to work specifically for that situation. When event handlers
might be used by the same event on multiple elements—clicking any link, perhaps,
or by multiple events on the same element—either mousing over or focusing on
an image, then the event handler must be written to allow for flexibility. To do that,
having access to the event itself becomes quite useful. How you access the event
depends upon the browser in use.

On any browser that supports the addEventListener() method, event han-
dlers will automatically receive a single argument, which represents the event that
occurred. You can write your handlers to accept this argument:

function someEventHandler(e) {

 // Use e.

}

Often the argument is abbreviated as just e or evt, short for event.
For Internet Explorer 8 and earlier, which have attachEvent() for register-

ing listeners, the most recent event is represented by the event property of the
window object:

function someEventHandler() {

 // Use window.event.

}

To reliably reference the event regardless of the browser, JavaScript program-
mers use code like this:

290 ChaPter 8 event handling

ptg7799847

function someEventHandler(e) {

 if (typeof e == ‘undefined’) e = window.event;

 // Use e.

}

(Although I almost always recommend using curly braces with conditionals,
this example is a rare exception.)

You’ll also see it written this way:

e = e || window.event;

or

if (!e) e = window.event;

Note that this works whether you establish the event handler using the DOM
approach or the traditional approach. It also works even with anonymous functions:

someElement.onclick = function(e) {

 if (!e) e = window.event;

}

The only caveat is that if you were to use inline event handlers, which you
shouldn’t, you would need to pass the event to the function overtly:

Some Link

But, of course, you should not be using inline event handlers. (Did I mention
that yet?)

event ProPerties

One benefit of having access to the event itself is that the event object, whether
it derives from a value passed to the function or comes from the window object,
provides useful information through its various properties. Unfortunately, what
properties exist depends again upon the browser in use.

The first property to be aware of is the event’s target or srcElement property;
the latter is for IE versions 8 and earlier:

var target = e.target || e.srcElement;

advanced event handling 291

ptg7799847

Both target and srcElement point to the HTML element that triggered the event.
Another useful event property is type, which fortunately does exist across all

browsers. This property stores the type of event that just occurred.
In order to learn a bit more about events, the next example is going to be a

learning tool, and a good demonstration of more advanced programming at the
same time. The HTML page is named events.html. It includes the utilities.js
file and the events.js JavaScript file, to be written in the subsequent steps. The
HTML page contains a form with several checkboxes, a submit button, and a text-
area where some output will be written (Figure 8.7). The form allows the user to
dynamically determine what events should be handled, and will then report those
events when they do occur (Figure 8.8).

To report on events:

1. Create a new JavaScript file in your text editor or IDE, to be named events.js.

2. Begin defining the reportEvent() function:

function reportEvent(e) {

 ‘use strict’;

This function will be called when selected events occur, depending upon
which of the checkboxes the user has checked. Because it will make refer-
ence to the event object, the function is set to accept one argument.

fiGURe 8 .7 The form lets the
user choose which events to
report upon.

fiGURe 8 .8 The textarea
reflects what events occurred
on what elements, based upon
the user’s selections.

292 ChaPter 8 event handling

ptg7799847

3. Get a reference to the event and the event’s target:

if (typeof e == ‘undefined’) e = window.event;

var target = e.target || e.srcElement;

This code has already been explained and is a browser-safe way to get references
to both the event itself and to the target of the event (i.e., the HTML element).

4. Update the output for this new event, and complete the function:

 var msg = target.nodeName + ‘: ‘ + e.type + ‘\n’;

 U.$(‘output’).value += msg;

} // End of reportEvent() function.

For each event, another string is concatenated onto the output textarea’s
value. The string itself is the target’s nodeName value and the event type,
followed by a newline character. The nodeName is the HTML element, in
all capital letters (see Figure 8.8).

5. Begin defining the setHandlers() function:

function setHandlers(e) {

 ‘use strict’;

 var events = [‘mouseover’, ‘mouseout’, ‘click’,
 p ‘keypress’, ‘blur’];

This function will be called whenever the form is submitted. Its purpose is
to dynamically set the event listeners based upon which checkboxes were
selected. This function will not make use of the event object, so it takes
no arguments.

Within the function, an array of strings is created, corresponding to the
five events that the example is designed to work with. Later on, you can
change the checkboxes in the HTML and change this array to alter the list
of events to watch for.

6. Loop through the events array:

for (var i = 0, count = events.length; i < count; i++) {

 var checkbox = U.$(events[i]);

advanced event handling 293

ptg7799847

For each item in the events array, an event listener must be either added or
removed. The for loop goes through the array (see Chapter 6 for its syntax).
Then, within the loop, a reference is made to the corresponding checkbox.
For example, the first time the loop is entered, i is 0, making events[i] have
a value of the string mouseover. Then the checkbox variable is assigned a
reference to the HTML element with an id value of mouseover.

7. Add or remove the event listener:

if (checkbox.checked) {

 U.addEvent(document, events[i], reportEvent);

} else {

 U.removeEvent(document, events[i], reportEvent);

}

If the checkbox is checked, then the user wants an event listener for that event.
In that case, the addEvent() method is called, passing it the document object,
the name of the event (from the array), and a reference to the reportEvent()
function. Because the event listener is added to the entire document, any
element within the document can trigger the event. Since the document is a
child of the window, window events will not be handled by this script.

If the checkbox is not checked, the removeEvent() method is called, in case
an event handler was previously created for that event. As explained earlier,
it will not cause errors attempting to remove a listener that does not exist.

8. Complete the for loop and the function:

 } // End of FOR loop.

 U.$(‘output’).value = ‘’;

 return false;

} // End of setHandlers() function.

The function also clears out the textarea so that the previous events will be
erased. The function then returns false to prevent the form’s submission.

If you wanted, you could add an alert() or some other mechanism to
inform the user that the event handlers have been updated.

294 ChaPter 8 event handling

ptg7799847

is

In Chapter 7, the special this variable was introduced, which normally repre-
sents the object on which a method was called (or the window object, if the
function call was not made directly on an object). When it comes to event
handling, the this variable may represent the HTML element that triggered
the event. That will be the case when you use the traditional approach to
create an event handler, or use addEventListener(). unfortunately, on IE8
and earlier, this within an event handler becomes a reference to the global
window, making it useless in those cases.

There is a way to make this a useful reference to the object that triggered
the event, but that code is rather complicated, well beyond what you would
be expected to know at this juncture.

9. Register an event listener within an anonymous function:

window.onload = function() {

 ‘use strict’;

 U.$(‘theForm’).onsubmit = setHandlers;

};

This line creates an event listener for submission events on the form. The
traditional approach is used here, for reasons to be explained shortly.

10. Save the file as events.js, in a js directory next to events.html, and test
it in your Web browser.

11. Practice with different events to see the results.

You’ll notice that events based upon mouse movement occur quickly, on
multiple elements. You might also find that it can be hard to trigger some
events on specific elements, such as clicking just the form (instead of a
specific form element). You can also trigger keypress events, even without
having an input within which to type.

advanced event handling 295

ptg7799847

Finding the keY Pressed

When a keyboard-based event is triggered, one can determine the specific key
pressed through the event object. Unfortunately, the subject is a bit complicated
and, of course, differs among the browsers.

The first thing to consider is the difference between a key and a character. The
key is the physical key on the keyboard, but most keys can be used to create more
than one character: the A key can create either A or a, depending upon whether
the Shift key is pressed at the same time. Both the key and the character can be
represented by Unicode values, and those values will be the same or different,
depending upon whether the Shift key is also pressed (for example, the key code
for both A and a is 65, the character code for A is 65, but the character code for a
is 97). You can find tables correlating characters to Unicode values by searching
online. Within the event object, the keyCode and which properties generally rep-
resent these two values. However…

Internet Explorer does not support the which property; JavaScript running in
that browser must use keyCode. Making this more complicated, IE actually stores
the character code in the keyCode property when a keypress event occurs, and the
key code in keyCode when the keydown and keyup events occur. Other browsers
do use which consistently to store the character pressed. Thus, to get the character
in a consistent manner, you can use this code:

var charCode = e.which || e.keyCode;

Or more precisely:

var charCode = (typeof e.which == ‘number’) ? e.which : e.keyCode;

Again, this only works reliably on keypress events. (Many browsers, but not IE,
will store the character code in the charCode property, too.)

To find the actual character associated with the character code, you can use
the String object’s fromCharCode() method (Figure 8.9):

String.fromCharCode(charCode);

With some cases, like creating games and other graphical interfaces, the char-
acter isn’t important, the key is, such as the specific arrow key that was pressed.
In these situations, you can reliably use keyCode in all browsers, so long as you are
watching for keydown and keyup events.

fiGURe 8 .9 The fromCharCode()
method of the String object
returns the character associ-
ated with a provided Unicode.

296 ChaPter 8 event handling

ptg7799847

s

The event object created by input device events has its own unique proper-
ties. On mousedown and mouseup events (but not reliably on click), the
which and button properties can be used to see which mouse button was
pressed, but specifics of the values are inconsistent. Different browsers will
use different values, with the only consistency being that a right-click has a
button value of 2. Of course, Macs don’t have a right button!

There are also properties that reflect the cursor location, but effectively using
those can be tricky, and cannot be well demonstrated at this point in the
book. One useful property is relatedTarget: on a mouseout event, it repre-
sents the element that the cursor went into after leaving the element that
triggered the event.

Three keys have their own special event properties: shiftKey, ctrlKey, and
altKey. Each property has a Boolean value indicating whether or not the key in
question was pressed (with or without another key). On Macs, which do not have
Alt keys, the altKey property’s value indicates if the Option key was pressed. Most
browsers, including IE, do not trigger keypress events when these keys are pressed
by themselves, as these special keys are only meaningful in conjunction with
another key.

Preventing deFault event Behavior

Earlier, I explained that you should try to use JavaScript events that correlate to
basic browser behavior: links are clicked, forms are submitted, and so forth. When
an event handler exists, an occurrence of the event invokes the corresponding func-
tion. After that function runs, the browser will still go ahead and do what it should
normally do when that event occurs. In many situations, because the JavaScript
is performing the necessary tasks, you don’t want the browser’s default behavior
to occur. For example, when a form is submitted, a submit event handler might
perform client-side validation. If any errors are found, the form’s actual submis-
sion to the server-side script should be prevented, allowing the user the chance
to correct the mistakes. Preventing the event’s default behavior in situations like
this is something that’s been done repeatedly throughout this book, accomplished
by returning the value false from the event handler:

advanced event handling 297

ptg7799847

function handleForm() {

 // Do whatever.

 if (errors) {

 return false;

 } else {

 return true;

 }

}

Conversely, returning anything other than false allows the default event behav-
ior to occur (in that case, the form’s submission).

The problem with returning false to prevent the default browser behavior is
that it only works reliably when the event listener was registered using the tra-
ditional approach. For example, say events.js added the form submission event
handler using the newer approach:

U.addEvent(U.$(‘theForm’), ‘submit’, setHandlers);

With that code, you would see that the form’s submission would go through,
meaning that the form itself would be reset (upon resubmission) and the event
listeners would not be present (they would have been created, but reset upon
submission).

For browsers that don’t support the addEventListener() method, an alternative
way of preventing the default event behavior is to invoke the preventDefault()
method of the event object:

e.preventDefault();

For Internet Explorer prior to version 9, one should instead set the returnValue
property of the event object to false:

e.returnValue = false;

Putting together this code, the following code just prevents the default behavior
in a cross-browser way:

298 ChaPter 8 event handling

ptg7799847

if (typeof e == ‘undefined’) e = window.event;

if (e.preventDefault) {

 e.preventDefault();

} else {

 e.returnValue = false;

}

return false;

(The code also returns false, as an extra precaution.)
Another benefit to using preventDefault() or setting the returnValue is that

you can do so early in a function, allowing the function code that follows to still
execute. Conversely, as soon as a function executes a return statement, the func-
tion terminates. Secondarily, returning false will prevent other event handlers
from also being called for that same event. Third, returning false terminates the
bubbling phase of an event (to be discussed shortly).

As an example of this, let’s rewrite the membership.js example in Chapter 5,
Using Control Structures. Originally, the membership cost was only calculated
upon submission (Figure 8.10). It’d be nice if the cost could also be recalculated
when the user changes either of the two factors: the membership type or the num-
ber of years. The HTML document only needs to be changed to include the new
utilities.js file. The original membership.js will be updated in the steps below.

fiGURe 8 .10 The results of the
membership cost calculation.

advanced event handling 299

ptg7799847

To prevent default behavior:

1. Open membership.js in your text editor or IDE.

2. Change the assignment to the window.onload property to:

window.onload = function() {

 ‘use strict’;

 U.addEvent(U.$(‘theForm’), ‘submit’, calculate);

 U.addEvent(U.$(‘type’), ‘change’, calculate);

 U.addEvent(U.$(‘years’), ‘change’, calculate);

};

First, I’ve dropped the formal creation of the init() function and just reg-
istered the event listeners within an anonymous function (although doing
so uses the traditional/DOM Level 0 approach). Second, the addEvent()
method is used to create the form-submission event listener. And, third,
change event listeners are also added to two of the form elements.

3. Change the calculate() function so that it takes an event argument:

function calculate(e) {

The function needs to take an event argument in order to prevent the default
browser behavior.

4. Within the function, get a reference to the event object:

if (typeof e == ‘undefined’) e = window.event;

5. Change all uses of document.getElementById() to just U.$():

var type = U.$(‘type’);

var years = U.$(‘years’);

U.$(‘cost’).value = ‘$’ + cost.toFixed(2);

U.$(‘cost’).value = ‘Please enter valid values.’;

Since this script now includes the utilities library, it can make use of the
$() shortcut function.

300 ChaPter 8 event handling

ptg7799847

6. Have an error be reflected only if it’s a submission event:

if (e.type == ‘submit’) {

 U.$(‘cost’).value = ‘Please enter valid values.’;

}

With event listeners being added on change events, the user will see an
error the first time she or he chooses a membership type without having
selected a number of years. That response would be unprofessional, but is
easily prevented. This conditional checks the event type, only updating the
cost element’s value if the type is submitted.

7. Before the return line, add:

if (e.preventDefault) {

 e.preventDefault();

} else {

 e.returnValue = false;

}

Now the form will be properly prevented from being submitted.

8. Save the file as membership.js, in a js directory next to membership.html,
and test it in your Web browser.

Although this is an improvement over the previous version of the script,
there is now a logical error in it. If this were a live script, there’s no way for
the user to continue on with the process of purchasing the membership!
Fortunately, there are several solutions. One would be to create separate
calculate and submit buttons, with the former performing the calculation
and the latter allowing the user to proceed. Another option would be to
use just one button, but have its value and event listeners change after a
successful first use.

advanced event handling 301

ptg7799847

event Phases

A more advanced subject that I’ve thus far ignored is that events go through two
phases: capturing and bubbling. This concept is best understood by looking at a
specific example. Here is a bit of HTML code:

<div><h1>This is a Title</h1>

 <p>This is a paragraph.

 This is a link.</p>

</div>

Next, let’s say that some JavaScript adds a mouseover event to the link:

addEvent(U.$(‘link’), ‘mouseover’, doSomething);

With that code implemented, the link is within the paragraph, which is within
the DIV, which is within the HTML body, which is within the document, which is
within the window. When the user mouses over the link, the mouseover event
will actually go through several steps to get to the target—the link—and back, in
two different phases.

The first event phase is the capturing phase, which starts with the outermost
element and works its way inward. At each step, the browser will look for a cor-
responding event handler. After the capturing phase has completed, the bubbling
phase begins, starting with the innermost element and working out to the outer-
most one (Figure 8.11).

But why is this behavior useful? As a different example, let’s say that the event
handler is on the DIV, not the link. In that case, the event won’t be triggered when
you think it might. When the cursor enters the DIV, that’s a mouseover. But the
DIV contains both a paragraph and a link. As soon as the cursor goes over either
of those, the DIV is no longer the active element, meaning it will not be the target
of the mouseover (and depending upon the layout, it may be impossible to mouse
over the DIV but not the paragraph or link). Thanks to event bubbling, the event
can still be caught: when the cursor mouses over the paragraph or the link, that
event bubbles up, eventually being caught by the DIV’s event handler.

2. Bubble

1. Capture

window

document

body

div

p

a

h1

fiGURe 8 .11 Events go through
two phases: capturing to get
to the target, and bubbling to
leave it.

302 ChaPter 8 event handling

ptg7799847

g

One way you can affect the impact of an event is to prevent the browser’s
default behavior when that event occurs, as already explained. Another
impact the event handler can have is to prevent the bubbling of the event. As
seen many times in this chapter, doing so requires two different approaches,
depending upon whether the browser supports the addEventListener()
method or not:

if (e.stopPropogation) { // W3C/addEventListener()

 e.stopPropogation();

} else { // Older IE.

 e.cancelBubble = true;

}

Having a function return the value false also prevents bubbling, but has
other side effects that you may not want. Still, it’s not often that you will
need to cancel event bubbling.

By default, all event listeners only pay attention to the bubbling phase. In fact, the
traditional method of assigning event handlers can only be used to listen for events
during the bubbling phase. Also, Internet Explorer prior to version 9 cannot be told
to watch for events during the capture phase at all (remember that its attachEvent()
method does not have an argument to indicate the phase). But to watch for events
during the capturing phase on non-IE browsers, use addEventListener(), providing
the value true for the third argument:

addEventListener(someDiv, ‘mouseover’, true);

All that being said, event capturing is not commonly used, as it will not work on
IE8 and earlier. In browsers that do support capturing, it can be used to intercept
an event or prepare the browser for an event that’s about to occur on another ele-
ment. On the other hand, taking advantage of event bubbling is quite useful, and
you’ll see an example of that in just a few paragraphs.

NOTE: the focus, blur, change, scroll, and submit events
do not have bubble phases.

advanced event handling 303

ptg7799847

Returning to an idea mentioned earlier, when taking advantage of event phases,
one can use the event’s target and srcTarget properties to pinpoint the target
of the event, which can be a different element than has the event handler. Both
properties always refer to the element that triggered the event. When defining
event handlers, you should consider whether or not the element being watched
has child elements, particularly if the event being watched is a mouseover or
mouseout. Relatively new is the relatedTarget property, available in the event
object for mouseover and mouseout events. This property stores the element that
the mouse came from (for mouseover) or went to (for mouseout). Microsoft’s solu-
tion is to create two properties for that same purpose: fromElement and toElement.

delegating event handling

With an understanding of event phases, there are now two ways you can apply
event handling. The first is what’s been used thus far: binding event listeners to
specific elements. The alternative is to perform event delegation. Event delegation
is where an event handler is attached to a parent element, catching any events that
bubble up from one of its children. Delegation can offer improved performance
and streamlined code in situations where multiple elements should have the same
event handler.

You’ve actually already seen one example of delegated event handling: in
the events.js script, where all event handlers are registered to the document.
Another example would be to apply a change event handler to the entire form in
membership.js, as opposed to doing so to the individual form elements.

304 ChaPter 8 event handling

ptg7799847

revIeW and purSue

w

J What four ways of creating event listeners are detailed in this chapter?
Which approach should you not use and why? What are the pros and cons
of the other three approaches?

J What method works in IE8 for registering event listeners? And in IE9?

J What benefits are gained by creating a utility library, defined within a single
global object?

J What three events are triggered when a user clicks on an element? Why
can it be better to listen to just the mousedown event, instead of a click?

J What are the three most important keyboard events?

J What is the focus event? What is blur?

J When is a change event triggered?

J Why is it important to pair event listeners and to be mindful of the events
being handled?

J How do you reliably access the event that occurred in all browsers?

J What properties are used to see what element triggered an event? What
property stores the type of event that occurred?

J How do you determine what key was pressed? Which events do you need
to listen for in order to reliably determine the pressed key?

J Why would you want to prevent the default event behavior? How do you
do so?

J What are the two phases that events go through and in what order? Which
phase is more important?

J How does event delegation differ from event binding?

review and purSue 305

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

ptg7799847

Pursue

J If you’re really curious, and don’t mind peeking at code that may be over your
head, search online for other variations on an addEvent() custom function.

J Reread Chapter 7’s section on global variables, and the section in Chapter 6
on objects, for more thorough explanations as to why creating the U object
is a good programming technique.

J Modify epoch.js so that a button element is clicked to update the message.

J Change events.html and events.js to practice with different event types.

J Change events.js so that it notifies the user when the form has been sub-
mitted and the event handlers have been registered.

J Learn more about mouse-related event properties by searching online.

J Modify events.js so that it uses addEvent() for the form-submission error
handler and then prevents the form’s submission using the code also added
to membership.js.

J Update membership.js so that it delegates the event handling by registering
the change event handler on the entire form.

306 ChaPter 8 event handling

ptg7799847

WraPPing up

In this chapter, you greatly expanded your knowledge of events. You learned that
there are different ways to create event listeners, and were introduced to the most
important events that will occur within the browser. You also saw time and again
how the browser in use impacts what values and methods are referenced, but
that this hurdle is easily overcome with the right conditionals. Along the way, the
importance of maintaining accessibility and implementing progressive enhance-
ment was stressed, with solutions frequently demonstrated.

Two previous examples were updated in this chapter, giving them more of a
real-world feel, and a brand-new script, events.js, was written as a tool to help
you get a feel for where and how events are triggered in the browser. At the end of
the chapter, some of the more advanced concepts were covered, although none
were that complicated.

The good news is that, with this knowledge of event handling behind you, the
examples in the rest of the book can be that much more realistic, closely emulat-
ing what you’ll do in your forthcoming Web sites. Next up, Chapter 9, JavaScript
and the Browser, looks at the interactions between JavaScript and the browser in
more detail, covering such topics as creating secondary windows, working with
CSS, and manipulating the DOM.

wrapping up 307

ptg7799847

9

JavaSCrIpt and
the BroWSer

ptg7799847

It may seem strange to have a chapter focused on

the browser, as almost every example in the book takes

place entirely within a browser. That’s what JavaScript is pri-

marily used for after all. But there are plenty of specific things

to learn about when it comes to JavaScript and the browser. The

most important subject covered in this chapter is DOM manipu-

lation, but you’ll also pick up quite a few other things, mostly

involving the window object. I should add that a couple of topics

mentioned in this chapter should not be used, or should be used

only sparingly. Odd as their inclusion may seem, I still discuss

these outdated topics as they were once common, and you may

see them in other references. Further, covering them provides an

opportunity to explain why you shouldn’t use them.

309

ptg7799847

This chapter is largely about browser windows, which can be manifested in several
forms. The first kind of windows to be discussed in this chapter are dialogs: alerts,
confirmations, and prompts. These are distinguished from standard browser windows
in a couple of ways. First of all, these dialog windows do not contain HTML and CSS,
meaning they cannot be styled the way a standard browser window can. Further,
different browsers will render them in slightly different ways (Figure 9.1 and 9.2).

Second, dialogs are modal, meaning that they prevent the user from doing
anything else within the browser window until the user addresses the dialog.

For these two reasons, and because good, alternative solutions have arisen,
dialogs aren’t really used much anymore in today’s Web sites. Still, dialogs are easy
to use, and a reasonable choice in limited situations, so it’s worth taking a page or
two to go through them.

alerts

An alert is the simplest of the dialog types, just a window with a text message and
the ability for the user to click OK to get rid of it (Figure 9.3). You create an alert
by invoking the aptly named alert() function, providing it with the string of text
to be displayed:

alert(‘You can click OK now.’);

I’ve used alert() a time or two in this book to provide feedback, as alert() is
simple and reliable, especially compared with the DOM manipulation alternatives
to be discussed later in this chapter. But alert() is truly a shortcut for avoiding
better, and more complex, solutions. I’m not saying you should never use alert(),
but please do so only sparingly.

fiGURe 9 .1 A confirmation
dialog as presented by Internet
Explorer.

fiGURe 9 .2 The same confir-
mation dialog as presented by
Chrome on a Mac.

fiGURe 9 .3 An alert dialog.

ws

310 ChaPter 9 JavaScript and the BrowSer

ptg7799847

ConFirMations

The confirmation dialog is a wee bit more involved than an alert and is generated
via the confirm() function. It, too, takes a string as its lone argument, which will
be displayed to the user (Figures 9.1 and 9.2). Unlike with an alert, the user has the
choice of two buttons to click: OK or Cancel. Clicking either closes the dialog and
returns a Boolean value (true for OK, false for Cancel):

var okay = confirm(‘Please confirm this message.’);

if (okay) {

 // User clicked OK, do whatever.

} else {

 // User clicked Cancel, do this instead.

}

One potential use of confirmation dialogs is to verify that the user wants to
leave the current page. That attempt can be caught by watching for an unload event:

window.onunload = function() {

 return confirm(‘Are you sure you want to leave this page?’);

}

Not to be redundant, but you must be judicious in your use of confirm(). Code
like the above, essentially requiring two steps to leave the page, is appropriate in
examples like a content management system (CMS), where work would be lost if
the user left the page, but is inappropriate on your average site. If anything, overuse
of this technique is more likely to ensure that the user will not return!

uSing dialog windowS 311

ptg7799847

ProMPts

The prompt is the most complicated dialog box, and, well, it’s not that complicated.
The prompt() function is used to create a dialog, again taking a string as the mes-
sage to be displayed to the user. This time, though, the dialog will present the string
message, the option to click OK or Cancel, and include an input where the user
can type a response (Figure 9.4). If the user clicks OK, the response itself will be
returned by the function call:

var response = prompt(‘What say you?’);

// Do something with response.

If the user clicks Cancel, null is returned. If the user does not enter any text
but clicks OK, an empty string is returned.

The prompt() method takes an optional second argument: another string, to
be used as the default input value. If provided, that text will be in the input when
the dialog is created, although that value can be altered by the user.

var response = prompt(‘What say you?’, ‘What about...’);

If the user does not alter the default value, then that value will be returned
when the user clicks OK (which is something you would need to watch for).

CustoMizing dialogs

As a security measure, dialogs are not customizable. By enforcing this restriction,
browsers prevent malicious hackers from attempting to impersonate another Web
site, the computer’s operating system, or anything else that looks official.

The only way you can even remotely customize the appearance of a dialog,
regardless of the type, is to use the newline character (\n) to make the message
appear over multiple lines (Figure 9.5):

alert(‘This message is\nappearing over two lines. Wow.’);

fiGURe 9 .4 A prompt, with
user input.

fiGURe 9 .5 As fancy as a
dialog gets!

312 ChaPter 9 JavaScript and the BrowSer

ptg7799847

w

Whereas dialogs are simple, modal windows, best used after very careful consid-
eration, browser windows are capable and vital, able to present a rich user inter-
face with any degree of complexity. JavaScript interacts with the browser window
through the window object. It’s time for this book to stop taking the window object
for granted, and give it its full due. Over the next several pages, the chapter presents
the key properties and methods of the window object, explains how to create new
windows, and covers common window-related tasks.

the gloBal WindoW oBJeCt

Because the window is the topmost object when using JavaScript within the Web
browser, functions defined outside of any other objects become methods of the
global window object. Similarly, the window object itself is often implied and does
not need to be explicitly referenced. For example:

function doNothing() {

}

doNothing(); // Calls the function.

window.doNothing(); // Also calls the function.

This holds true for variables defined outside of any function:

var someVar = true;

someVar; // true

window.someVar; // true

There are times where it’s conventional to explicitly use the window object, and
other times where one doesn’t. In the above code, it’d be highly unusual to refer-
ence your own variables and functions through window, and, of course, you should
minimize the creation of global variables and functions regardless. See Chapter 7,
Creating Functions, for more on global variables and scope.

worKing with the window 313

ptg7799847

Toolbar

Outer Width

Inner
Height

Statusbar

Outer
Height

Beyond the global variables and functions you create, the window object has
its own members (properties and functions). In fact, the alert(), confirm(), and
prompt() methods belong to window, as do the Math and Date objects, among oth-
ers. But there are other properties and methods to be familiar with. To understand
some of these properties, it helps to know the right terminology for the browser’s
pieces (Figure 9.6).

fiGURe 9 .6 The basic
elements of a Web browser
(the particulars vary from
browser to browser; Safari,
for example, does not show
the menubar as part of the
browser window).

314 ChaPter 9 JavaScript and the BrowSer

ptg7799847

Three properties of the window object reflect whether certain aspects of the
browser window are visible or not: menubar, statusbar, and toolbar. You can use
the corresponding property to see if the item in question is visible:

if (window.menubar.visible) { // Visible!

It is technically possible to have JavaScript change the visibility of these bars,
but doing so requires the user’s permission. And, you really ought not to attempt
to change the properties of any active window, as to do so is to impose your will
on the user’s browser.

A popular concept for a while (about a decade ago) was to change the window’s
status—the text displayed within the statusbar:

window.status = ‘Hello. I am your browser.’;

This ability has been disabled in many browsers since, for security reasons,
and many browsers don’t show a status bar by default. Moreover, you shouldn’t
change the status message anyway, as the statusbar is intended to provide the user
with useful information.

Speaking of window properties that used to be abused and are largely ignored
in modern JavaScript, there’s window.navigator. This property has multiple sub-
properties that store information about the browser itself. This property was often
used to perform browser sniffing, via window.navigator.userAgent. Once again,
browser sniffing—writing conditional code based upon the browser type and ver-
sion in use—shouldn’t be done any more, as object detection is a better alternative.

ManiPulating the WindoW’s size and Position

As with many things in JavaScript, there was a time where it was the “in thing” for a
Web page to resize and/or move the user’s Web browser. In theory this was done to
optimize the user’s experience for the design of the page, but I think it was mostly
done because it could be. Personally, I’m against a Web page changing the size or
location of my Web browser window, but perhaps that’s just me.

worKing with the window 315

ptg7799847

0, 0 200, 100

In any case, to find out where the current window is on the screen, use the
screenX and screenY properties of the window object. These properties reflect the
position of the top-left corner of the browser window relative to the top-left corner
of the user’s screen (Figure 9.7). This is true for most browsers; IE uses screenLeft
and screenTop, respectively. Except for in Firefox, you cannot change the position
of the window using them, but they can inform you as to whether a move is called
for, when absolutely necessary.

The innerHeight and innerWidth properties reflect the size of the content
within the window, including scroll bars, when present. The outerHeight and
outerWidth properties reflect the size of the entire browser window (see Figure 9.6).
For older versions of IE, which only started supporting these properties in version
9, you need to use document.body.clientHeight and document.body.clientWidth.
You cannot change the size of the window using any of these properties (except in
Firefox), but they can be used as the basis for dynamically changing your layout, if
need be. For example, if a window dimension is particularly small, you could have
JavaScript use smaller images. If a window’s width is narrow, perhaps JavaScript
disables a sidebar.

If, for some very, very, very good reason you need to move the browser win-
dow, you would call the moveTo() method of the window object. It takes X and Y
pixel values for its arguments, where 0,0 is the top-left corner of the screen (see
Figure 9.7). The following code moves the window to place its top-left corner posi-
tioned 100 pixels to the right of the left side of the screen and 200 pixels down
from the top of the screen:

window.moveTo(100,200);

fiGURe 9 .7 How windows
are positioned relative to the
entire screen.

316 ChaPter 9 JavaScript and the BrowSer

ptg7799847

Whereas moveTo() moves the window to a specific location, moveBy() moves
a window relative to its current location. It, too, takes X and Y values, in terms of
the number of pixels to move the window:

window.moveBy(25, 50);

Positive numbers move the window to the right and down; negative numbers
move the window up and to the left. That code moves the window 25 pixels to
the right and 50 pixels down from its current location. Note that you will not be
allowed to move the window beyond the confines of the screen.

sCreen ProPerties

Using JavaScript and the window.screen property, you can find out information
about the user’s physical screen (the one in which the browser is being viewed):

J window.screen.height returns the height of the screen in pixels.

J window.screen.width returns the width of the screen in pixels.

J window.screen.availHeight returns the number of usable pixels, minus
any OS features like the Taskbar.

J window.screen.colorDepth returns the color depth of the screen (e.g.,
16 for 16-bit).

You can use this information to customize the browser window and the user’s
experience, such as changing the style sheet in use based upon the color support.
For example, early versions of the Kindle used 4-bit grayscale for its display, so on
such devices, you could have JavaScript use a style sheet that is better tailored to a
black-and-white interface. However, more current browsers support such changes
using CSS media queries.

TIP: remember that you can use your browser’s console to
practice with random bits of Javascript, such as moving a window
or finding the value of a property.

worKing with the window 317

ptg7799847

Creating neW WindoWs

Moving on to more valuable information, and better uses of JavaScript, let’s look
at how you make new windows using the language. Unlike the dialogs already
covered, here I’m talking about true browser windows, with HTML, CSS, and all the
functionality and behavior of the original browser window. These new windows are
also not modal, meaning they allow the user to switch back to the original window
as needed. To be fair, fewer and fewer sites are creating separate, new windows,
but when done correctly, they can be a positive addition. (The more common
way to create window-like behavior these days is to use CSS and JavaScript, to be
explained later in the chapter.)

To create a new window, invoke the open() method of the window object, pro-
viding it with the URL to open:

var popup = window.open(‘somefile.html’);

The URL can be either relative or absolute (see Chapter 2, JavaScript in Action,
for more on relative versus absolute paths).

By assigning the result of the method invocation to a variable, the script can
later reference the other window. In fact, some browsers will have problems if you
don’t assign the result of a window.open() call to a variable.

Because JavaScript’s ability to create new windows was, for years, used to cre-
ate pop-up advertisements, modern browsers now have built-in pop-up-blocking
ability. In those cases, the variable created by the window.open() call will often
have a null value:

if (popup === null) { // Did not work!

Depending upon the particulars of your situation, you may want to, if that
conditional is TRUE, redirect the entire browser window to the page that the pop-
up was intended to display. You’ll see how to do that shortly.

TIP: Make sure you do not have window blocking enabled in
your browser when you’re practicing creating windows!

318 ChaPter 9 JavaScript and the BrowSer

ptg7799847

To close a window created by JavaScript, invoke the close() method of the
associated window variable:

popup.close();

Note that the close() method should only be invoked on windows created
using window.open(). JavaScript is restricted when it comes to closing windows
that weren’t opened by JavaScript, which is appropriate (Figure 9.8).

To confirm that a window created by JavaScript has not yet been closed, check
its closed property:

if ((popup !== null) && !popup.closed) { // Still open.

CustoMizing PoP-uPs

The vast majority of the ways you can customize the newly created window comes
from the HTML and CSS of the document loaded in the window itself. But there
are a few ways you can customize the look and behavior of a pop-up window
when it’s created.

The open() method takes a second argument, which is a name for the window.
You should give the window a meaningful name, but this value isn’t that critical
(just be certain not to use spaces in the window’s name).

fiGURe 9 .8 IE9 prompts the user
when JavaScript is attempting to close
the window; other browsers may just
ignore the request, if JavaScript didn’t
open the window in the first place.

worKing with the window 319

ptg7799847

The third argument to open(), however, is where you can provide a string
of properties that the new window should have (Table 9.1). The syntax is
property=value, with multiple properties separated by commas. Some properties
take numeric values, and the others take yes/no values (not true/false):

var popup = window.open(‘somepage.html’, ‘DefinitionsWindows’,
p ‘height=200,width=200,location=no,resizable=yes,scrollbars=yes’);

As you can see in that syntax, you cannot use any spaces or returns within the
property string. Also note that you cannot change these settings after the window
is opened.

TabLe 9 .1 New Window Properties

y notes

height For the content area; defaults to the height of the parent or recently
created window on most browsers; must be at least 100 pixels

left Defaults to about 20 pixels right of the left side of the parent window

location Whether the location bar should be visible

menubar Cannot be hidden on Mac OS X

outerHeight Whole window height; must be at least 100 pixels

outerWidth Whole window width; must be at least 100 pixels

resizable Should always be set to yes; may always be resizable on some
browsers regardless

scrollbars Should always be set to yes

status Is always shown on some browsers

toolbar Whether or not the toolbar should be visible

top Defaults to about 20 pixels below the top of the parent window

width Content area; defaults to the width of the parent or recently
created window on most browsers; must be at least 100 pixels

320 ChaPter 9 JavaScript and the BrowSer

ptg7799847

Note that if you set any property using the third argument, every other property
that takes a yes/no value gets set to no, except for titlebar and close (neither
of which is listed in Table 9.1), which default to yes. Many of the properties are
restricted by one browser or another, and there are a few other properties that
lack unified browser support, require special privileges, or just shouldn’t be used.
You also cannot position windows off of the screen.

Generally speaking, you’ll mostly just want to customize the window’s size, pos-
sibly its location on the screen, and whether or not the toolbar (with the window’s
address bar) is visible. Remember that you can use values already mentioned, such
as those in window.screen, to dynamically calculate and set the size and location
of the new window.

Changing FoCus

When you have more than one window open, the focus and blur events, intro-
duced in Chapter 8, Event Handling, come into play. The focus event is triggered
on a window when it becomes the active window. The blur event is triggered on a
window when another window is made active.

To make a newly created window active, call the focus() method on the asso-
ciated variable:

popup.focus();

You can check that the window exists prior to doing this:

if ((popup !== null) && !popup.closed) {

 popup.focus();

}

Of course, you should only focus on another window if it’s clear that’s what the
user would want. This concept, and using windows prudently, are discussed next.

worKing with the window 321

ptg7799847

an aCCessiBle solution

Now that you know how to create a new window, let’s talk about doing so respon-
sibly. Because these secondary windows are being created using JavaScript, there
is no accessible alternative. Further, search engines won’t see the content in the
secondary window when they’re opened using JavaScript, which may or may not
be a problem for the site in question. Finally, there’s the issue of whether the user
actually wants a new window to be created, which the user may be actively prevent-
ing with pop-up-blocking software (built into the browser or otherwise). Taking all
of this into account, you should always start by providing access to the secondary
window using the standard approach, a link:

p Keyword definitions can be seen on this page.

A pedestrian way to create a new window, rather than having the new page
open within the same window, is to add the target attribute to a link, with a value
of _blank:

p Keyword definitions can be seen on this page.

Or you can use a window name here, as you would in window.open():

<a href=”definitions.html” id=”definitionsLink”
p target=”DefinitionsWindow”>Keyword definitions can be
p seen on this page.

When you set the target attribute to have the document open in another
window, you should notify the user of that intent:

<a href=”definitions.html” id=”definitionsLink”
p target=”DefinitionsWindow”>Keyword definitions can be
p seen on this page. (Will open in a new window.)

TIP: as a reminder, you can download all of the book’s code
from www.LarryUllman.com.

322 ChaPter 9 JavaScript and the BrowSer

www.LarryUllman.com

ptg7799847

Now that basic functionality has been established, you can progressively
enhance it. Let’s do that in the following example. The first page is named popupA.html
and it contains just a link with an id value of link (Figure 9.9). That link goes to
popupB.html, with just a paragraph of text. The popupA.html page includes the
popup.js JavaScript file, to be written in the subsequent steps. If JavaScript is
enabled and pop-ups are not blocked, a smaller, custom pop-up window will be
created (Figure 9.10). If JavaScript is not enabled, or if the pop-up is blocked, the
user will see the same page opened in a full, noncustom window (Figure 9.11).

To create an accessible pop-up:

1. Create a new JavaScript file in your text editor or IDE, to be named popup.js.

2. Begin defining the createPopup() function:

function createPopup() {

 ‘use strict’;

This function will be called when the link is clicked.

3. Create the pop-up window:

var popup = window.open(‘popupB.html’, ‘PopUp’,
p ‘height=100,width=100,top=100,left=100,location=no,
p resizable=yes,scrollbars=yes’);

The pop-up window will open the page popupB.html, in a window named
PopUp. Some of the new window’s properties are customized, in part to
distinguish the pop-up created by the JavaScript (Figure 9.10) from the same
document opened by the link click (Figure 9.11).

4. If the window is open, give it focus and return false:

if ((popup !== null) && !popup.closed) {

 popup.focus();

 return false;

fiGURe 9 .9 An extremely
basic HTML page, with one link.

fiGURe 9 .10 The custom
pop-up window, created by
JavaScript.

fiGURe 9 .11 The standard
pop-up window, without
JavaScript’s influence (note the
presence of the toolbar).

worKing with the window 323

ptg7799847

This conditional was already explained and is used to confirm that the win-
dow just created is open. If so, then focus is given to that window (in case
it doesn’t already have focus). Next, the function returns false, to prevent
the browser’s default behavior (in this case, pursuing that link). See Chapter
8 for more on how to prevent default browser behaviors.

5. Complete the conditional begun in Step 4 and the function:

 }

} // End of createPopup() function.

If the pop-up is not created, the function will not return false, which means
that the default browser behavior of following the link will be allowed.

6. Within an anonymous function, register an event listener for a click on
the link:

window.onload = function() {

 ‘use strict’;

 document.getElementById(‘link’).onclick = createPopup;

};

I’m specifically using the DOM Level 0 method of creating an event han-
dler, which will work on all browsers. This approach also lets the handling
function prevent the default browser behavior by simply returning false.
Again, see Chapter 8 for a refresher on all this.

Later in the chapter you’ll learn how you can write this function to work
with any link dynamically.

7. Save the file as popup.js, in a js directory next to popupA.html, and test it
in your Web browser.

8. Disable JavaScript in your browser, reload the page, and click the link again.

TIP: it’s an excellent learning tool to run your pages, and others,
with Javascript disabled in your browser.

324 ChaPter 9 JavaScript and the BrowSer

ptg7799847

CoMMuniCating BetWeen WindoWs

When you have more than one window open as part of the same site, there’s some-
times a need for the windows to communicate with each other (which is to say, for
the JavaScript in one window to interact with the JavaScript in the other). This is
actually easier than you might think, once you know how to do it. Let’s say window
A opens window B, using this line:

var windowB = window.open(‘windowB.html’, ‘WindowB’);

Let’s say that the JavaScript file included by window B contains this code:

var something = 23;

function addToSomething(what) {

 something += what;

}

Now, as you also know, any variable or function declared outside of an object
or function becomes part of the global window object. This means that in window
B, window.something has a value of 23 and window.addToSomething() is a func-
tion that takes one argument and adds it to the something variable (technically the
function should confirm that what is a number so that addition, not concatenation,
takes places, but this is just a demonstration).

You know that in window A, windowB is a reference to the newly opened window.
What isn’t obvious—but makes sense when you think about it—is that this means
you can access the window B’s window object through windowB.window. Further, this
means you can reference window B’s something variable through windowB.window.
something and call the addToSomething() function using:

// JavaScript in window A:

windowB.window.addToSomething(12);

windowB.window.something; // 35

worKing with the window 325

ptg7799847

Pretty cool, eh? This is a trivial example, but demonstrates how easy it would
be to pass, say, the value entered by a user in a form input in window A to a vari-
able or function in window B:

// JavaScript in window A

document.getElementById(‘theForm’).onsubmit = function() {

 var thing = document.getElementById(‘someElement’).value;

 windowB.window.useFormData(thing);

}

Working this process from the other side, the opener property of the window
object returns a reference to the parent of the current window. Hence, if you place
this line in the JavaScript of windowB.html—

var windowA = window.opener;

—then window B can reference window A’s global variables and functions through
windowA.window.propertyName and windowA.window.functionName().

(The opener property will have a null value if no other window opened the
current one.)

Naturally this only works for two windows on the same domain, due to the
same domain policy (see the sidebar), and the one window has to have created the
other in order to have the open window-opener relationship.

Working With the BroWser’s historY

Another useful property found within the window object is history, which provides
access to the current window’s viewing history. This object has three useful methods:

J back(), which is the same as if the user clicked the Back button

J forward(), which is the same as if the user clicked the Forward button

J go(), to go to a specific spot in the history

TIP: htMl5 adds new methods for manipulating the
browser’s history.

326 ChaPter 9 JavaScript and the BrowSer

ptg7799847

the Same origin polICy

Instituted in browsers is a security measure known as the “same
origin policy.” The policy restricts what can be done based upon the origin
of the resources involved. For example, two pages both found on
http://www.example.com have the same origin, even if they are in different
subdirectories (http://www.example.com/pageA.html and http://www.example.
com/dir/pageB.html). But two pages have different origins if one is on
http://www.example.com and the other is on any of the following:

J https://www.example.com (note: HTTPS)

J http://shop.example.com (note: shop subdomain)

J http://www.larryullman.com (completely different domain)

(There’s also a port number consideration, but that issue is less common and
more advanced.)

In terms of JavaScript, code in one window or frame can only access JavaScript
in another window or frame if both have the same origin. More stringently,
the browser may complain (i.e., throw an error or notify the user) when a
resource on another domain is even loaded, depending upon the browser in
use. In every case, though, JavaScript will be prevented from communicating
with a resource loaded from another domain.

The same domain policy also comes into play in Chapter 11, Ajax.

The go() method takes a number as its lone argument. The number should be
relative to the current position in the browser’s history, which is indexed at 0. Hence,
go(-1) is equivalent to back(), go(1) is equivalent to forward(), and go(-2) is
equivalent to invoking back() twice. Hence, a common use of JavaScript is to present
a link as part of an instruction for the user to go to the previous page:

// JavaScript:

document.getElementById(‘backLink’).onclick = function() {

 window.history.back();

}

<!-- HTML: -->

Please go back to
p the previous window and do what needs to be done.

worKing with the window 327

http://www.larryullman.com

ptg7799847

There is one less-than-ideal issue with that code: when the user clicks the Back
button, the browser will return to the previous page, cached in the browser. When
the user clicks a link to go to a page, it may look for and load the cached version, if
one exists, or the browser may re-request the page from the server. In this minor
regard, this example isn’t truly progressively enhanced.

s

Traditional frames have been deprecated (meaning you shouldn’t use them) in HTML for some time, but the
inline frame, or iframe, continues to have some usefulness. In particular, iframes are commonly used today
to incorporate ads and third-party scripts within the constructs of a whole page.

In terms of JavaScript, the relationship between a primary HTML document and its included iframe is simi-
lar to that between one browser window and another that it opens. The iframe page can access the parent
document’s global variables and methods through the parent object (or more formally, window.parent). If
the document is not embedded within an iframe, its window.parent property will match window.self (the
latter is a way for a window to recognize itself):

if (window.parent != window.self) { // This is a child!

In the parent document, the window.frames property is an array representing every frame (and iframe) in
the document (and window.length stores the number of frames found). Hence, window.frames[0] is the first
frame and window.frames[‘someName’] references the frame with a name value—not id—of someName. Or
you can use document.getElementById() to get a reference to the iframe element.

Once you have a reference, you can access that frame’s global properties and functions through the conten-
tWindow or contentDocument property, depending upon the browser:

var frame = document.getElementById(‘theFrame’);

var frameWindow = frame.contentWindow || frame.contentDocument;

// Access frameWindow.property and frameWindow.function()

If you’re using HTML5 and using iframes, you should also look into the new attributes added to the speci-
fication: the sandbox and srcdoc offer additional security customizations, and the seamless property better
integrates the iframe into the rest of the HTML document.

328 ChaPter 9 JavaScript and the BrowSer

ptg7799847

redireCting the BroWser

There are many situations where the browser needs to be redirected to another
page. Normally, it’s best to redirect the browser using the Web server application
(e.g., Apache). For example, if you change the URL of a page, you’d want the Web
server to redirect browsers to the new destination, rather than have the browser
load the wrong page and then be redirected. Still, there are other occasions when
you either cannot use the Web server (e.g., you don’t have access to its configura-
tion) or using JavaScript makes more sense anyway.

When you need to redirect the browser using JavaScript, turn to the window.
location property, which reflects the current page being viewed in the browser. By
changing this property’s value, you can effectively redirect the browser to another
page. There are several variants for doing this, with different implications. The
layman’s approach is to replace the entire location value:

window.location = ‘http://www.example.com/otherpage.html’;

To be more precise, you can change the location.href property:

window.location.href = ‘http://www.example.com/otherpage.html’;

In either case, it’s important to know that the net effect of this approach is as if the
user had clicked on a link to take the browser to the other page. This means that the
previous page—the one with the redirection code—will still appear in the browser’s
history and can be accessed using the Back button. If there’s really no need for the
user to view that previous page again, there’s another option. Instead of assigning
a new location or location.href value, you can invoke the location.replace()
method to replace the current location with the new location:

window.location.replace(‘http://www.example.com/otherpage.html’);

By using replace(), the previous page (the one executing the above code) will
not appear in the browser’s history or be an option via the Back button. If you’re
redirecting the browser, this behavior may be more in keeping with the intention.

TIP: You can redirect the browser to the user’s home page
by invoking window.home().

worKing with the window 329

ptg7799847

The window.location property has a couple more properties that are some-
times useful:

J search represents the part of the browsers’ URL from ? on, as if a value such
as search terms had been passed to the page in the URL

J hash represents the part of the browser’s URL from # on, as if the user had
been taken to a specific anchor or ID on the page

For a practical use of search, think about how dynamically driven Web sites
commonly use standard templates and present different content based upon a
value passed along in the URL, such as http://www.example.com/page.php?id=x.
In that situation, JavaScript can also be used to access the value passed to the page
(in the id variable) by referencing window.location.search, which would have a
value of ?id=x. You can slice off the question mark, and then break the string into
its components:

var search = window.location.search;

search = search.slice(1); // Now ‘id=x’

search = search.split(‘=’); // An array: [‘id’, ‘x’]

// Use search[0] and search[1]

If multiple values are passed using this method, they’ll be separated by amper-
sands, as in http://www.example.com/page.php?s=10&np=7&sort=name. In that
case, window.location.search would have a value of ?s=10&np=7&sort=name,
which would then need to have the question mark removed, be split on the amper-
sands (to access the individual name=value pairs), and then each individual value
would be split on the equals sign.

For a hash example, URLs can point browsers to specific elements within
the Web page using either anchors or just ID values. The URL fragment page.
html#something could point to either of the following, among other possibilities:

<h2 id=”something”>Some Title</h2>

Primarily, these hashes have been used to create a link or bookmark to a spe-
cific area of a Web page, but they can be used in more advanced ways thanks to
JavaScript, as explained next.

330 ChaPter 9 JavaScript and the BrowSer

ptg7799847

Creating rePresentative urls

One interesting development in the rise of dynamic JavaScript-driven Web sites is
that the browser itself is unprepared in some ways to cope with this new method
of dynamic presentation. For example, pages may have JavaScript update or alter
what the user sees (using techniques explained over the rest of the chapter). One
common approach is to present content within several tabs (Figure 9.12).

When the user loads a page like that shown in the figure, the first tab will
automatically be shown. The user clicks on tab 2 to view that content, which is
shown immediately (i.e., without requesting another page), thanks to JavaScript.
When an action like this occurs, the page is described as being in a new “state.”
However, as it stands, the user cannot bookmark that version of the page—tab 2
being viewed—because state changes are not represented by the URL. When the
user returns to the URL, he or she has to click on the tab again to get back to the
desired state. If that user wants to share the specific tab information (i.e., browser
state) with another person, extra instructions are required. By using the window.
location.hash property, there is a clever fix for this situation, known as deep linking.

As just explained, the window.location.hash property represents the part of
the URL starting with #. Each unique URL represents a unique page and can be
individually bookmarked in the browser, including the hash part. Hence, page.
html#something and page.html#anything can be treated as two different book-
marks. JavaScript can use this behavior to create different hashes to represent
different states of the page. Going back to the example, page.html#1 could mean
that the first tab of content is to be shown and page.html#2 means that the second
tab of content should be displayed. When the page is loaded, JavaScript can parse
the hash and update the page accordingly:

var hash = window.location.hash; // Includes the #

var content = hash.charAt(1); // Get the second character

switch (content) {

 case 2:

 // Show tab 2.

 break;

 case 3:

 // Show tab 3.

fiGURe 9 .12 Three tabs are
used to show individual blocks
of content.

worKing with the window 331

ptg7799847

 break;

 case 1:

 default:

 // Show tab 1.

 break;

}

The actual specifics for how you change the content will be explained later in
the chapter.

For this to work, the JavaScript also has to update the URL when the page’s
state changes. Say the setTab() function is called when the user clicks on a tab
and it takes the event as an argument:

function setTab(e) {

 if (typeof e == ‘undefined’) var e = window.event;

}

Using the event’s target or srcElement property (depending upon the browser;
see Chapter 8), the function would know which tab to show. If the function gets
that information and stores it in the tab variable, the JavaScript can then dynami-
cally change the URL accordingly:

window.location.hash = ‘#’ + tab;

And that’s all there is to it (in theory). The user can bookmark the page and
return to it in the same state as it was when the user left. Even if the user were to
refresh the page, the state would remain the same.

The one problem with this system is that the Back and Forward buttons would
navigate the various URLs as the browser would navigate any URL in its history.
But using those buttons does not force a page load, meaning JavaScript would not
be called to update the state when the URL (or, more specifically, the hash part)
changes. The solution there is to create a timer that checks for hash (which is to
say state) changes. This exact concept will be covered near the end of the chapter.
HTML5 mitigates this problem by introducing new state management tools.

332 ChaPter 9 JavaScript and the BrowSer

ptg7799847

Print this Page

The window.print() method invokes the browser’s print option, as if the user had
selected File > Print (or used the associated keyboard shortcut).

// JavaScript:

document.getElementById(‘printLink’).onclick = function() {

 window.print();

}

<!-- HTML: -->

Print this page.

Naturally, this isn’t possible on many mobile and other nondesktop devices
(and, of course, it assumes JavaScript is enabled). You can check for printing support
using object detection, confirming that the window object has a print() function:

if (typeof window.print == ‘function’) {

If that condition is TRUE, instead of hardcoding that link, you can have JavaScript
create a button for invoking the print() function, which you’ll learn how to do
momentarily. Then you associate the clicking of that button with the calling of
the print() function:

document.getElementById(‘printButton’).onclick = function() {

 window.print();

}

the doCuMent oBJeCt

To wrap up this section of the chapter, let’s look at one of the most important window
properties: document, which represents the HTML loaded in the window. The document
object has several critical methods, such as the ubiquitous getElementById(), used
to quickly reference elements within the page. The document object also has some
methods that should no longer be used, such as write() and writeln().

worKing with the window 333

ptg7799847

When I first learned JavaScript, document.write() and document.writeln()
were used extensively. Both methods write data to the document, the latter writing
a line of data, equivalent to adding \n to the end of the data being written. You’ll
still see either method used in some resources, but there are reasons why you
should not use them yourself:

J They won’t work in XHTML documents.

J If used after the page has loaded, the data being written can overwrite the
existing content.

J Using write() and writeln() can mess up the DOM representation of the page.

J The DOM manipulation methods discussed later in the chapter are far better.

Still, there is one appropriate situation for write() or writeln(): to dynamically
include extra resources under certain conditions. For example, ads and third-party
scripts frequently use these methods to dynamically insert the code into the page
if JavaScript is supported (often using iframes, too).

Moving on, later in this chapter I’ll specifically discuss the document.cookie
property, along with the DOM manipulation properties and methods, but there
are two more document properties to introduce here: title and compatMode. The
title property of the document object stores the browser window’s title for the
current page. It can also be used to dynamically change the title:

document.title = ‘New Title’;

You might do this to change the browser’s title when you also change the URL.
As the title is used for the name of the corresponding bookmark, this allows you
to create unique URLs with unique titles.

(As a reminder, the window object is implied, so you can use just document with-
out referencing window.)

Finally, Chapter 2 walked through the issue of an HTML page’s DOCTYPE and how
that impacts the browser mode: Quirks or Standard. The operating mode is stored
in document.compatMode. It will have the value BackCompat (short for “backward
compatible”) to represent Quirks mode and CSS1Compat for Standard mode. If
you know of particular issues when the browser is in Quirks mode, you could use
JavaScript to correct those problems. Or, you could use this as a debugging tool:
making sure your page always runs in Standard mode.

334 ChaPter 9 JavaScript and the BrowSer

ptg7799847

DOM

HTML

BODYHEAD

META TITLE DIV

P

DIV

P

A

SCRIPT
charset=”utf-8” src=”js/dom.js”id=”one” id=”two”

class=”popup”

href=”#”

lang=”en”

The Document Object Model (DOM), first standardized by the World Wide Web
Consortium (W3C) in 1998, is simply a way to represent and work with XML, XHMTL,
and HTML data. By tapping into the DOM, it’s relatively easy in JavaScript to find,
access, and manipulate HTML elements, thereby dynamically altering the contents
and presentation of an HTML page. Let’s look at what the DOM is, in detail, how
you can access page elements, how to manipulate elements, and how to dynami-
cally alter the contents of the DOM itself.

doM FundaMentals

The DOM represents data as a tree, starting with a single trunk, known as the root.
In an HTML page, that starting point is the HTML tag. From the root there are limbs,
each of which is another element of the HTML page, so that every HTML element,
and its properties and values, are represented by the DOM. Figure 9.13 shows a
simple visual representation of the following HTML:

fiGURe 9 .13 The relationship
among elements within an
HTML page can be represented
as a tree.

Manipulating the doM 335

ptg7799847

<!doctype html>

<html lang=”en”>

<head>

 <meta charset=”utf-8”>

 <title>This Is The Title</title>

</head>

<body>

 <div id=”one”><p>This is a paragraph.</p></div>

 <div id=”two”><p>This is a paragraph with
 p a link.</p></div>

 <script src=”js/text.js”></script>

</body>

</html>

The elements represented in the DOM are called nodes. These nodes can have
their own offshoots, which are also nodes. This structure is often described in
familial ways: with parents having child nodes, nodes having siblings, and so forth.
The root node, document in a Web page, has no parent and only one child: html.

Each node in the DOM is represented as an object. These objects have spe-
cial properties that reflect the relationship each node has to its immediate family
members. For example, the parentNode property points to the parent of the current
object and childNodes is an array of objects pointing to the children of the current
object. Looking at Figure 9.13, the parentNode of BODY is the HTML node, and BODY
has three child nodes: DIV, DIV, and SCRIPT.

There are the firstChild and lastChild properties, as well as previousSib-
ling and nextSibling. The firstChild of HEAD is the META node, which is also the
previousSibling of the TITLE node.

Figure 9.13 only shows the HTML elements, but there are also text nodes. For
example, TITLE has a child that is a text node that contains the string This Is The
Title. The paragraph within the second DIV has both an A child node and a text child
node (and the A has its own text child node). The children property represents the
child nodes that are HTML elements, which excludes the text nodes that would be
returned, along with the HTML nodes, by the childNodes property.

336 ChaPter 9 JavaScript and the BrowSer

ptg7799847

Each node has properties providing information about the node itself:

J nodeName

J nodeValue

J nodeType

For HTML elements, the nodeName is the HTML tag in all capital letters. For text
nodes, the nodeName is #text. For the document node, the nodeName is #document.

The nodeType property will be a number:

J 1 for an HTML element

J 2 for text

J 8 for comments

J 9 for the document

J 10 for the HTML element

In theory, you can access individual DOM elements using combinations of
these various properties. With the above HTML, in JavaScript, you would begin
with document.documentElement, which returns the root element (here, HTML).
This means that document.documentElement.lastChild references the BODY and
document.documentElement.lastChild.children[0] references the first DIV.

You can continue on in this manner to navigate the entire DOM, but it quickly
becomes tedious. Also, the presence of white space within the HTML will cause
unexpected problems, as it gets represented in the DOM as a text node with an
empty string value. Thus, document.documentElement.lastChild.children[0]
references the first DIV, but document.documentElement.lastChild.childNodes[0]
actually references an empty text node (because the children property only returns
HTML elements but childNodes returns them all).

Fortunately, there are many easier alternatives for navigating the DOM.

doM shortCuts

There are a handful of properties in the document object that act as shortcuts to
important DOM elements:

J document.body refers to the HTML body

J document.forms is an array of every form in the page

Manipulating the doM 337

ptg7799847

J document.images is an array of every image in the page

J document.links is an array of every link in the page (loosely stated)

For example, the first form in the page can be referenced using document.forms[0].
You can also use an element’s name instead of a numeric index, which is normally more
appropriate: document.images[‘someImageName’] or document.forms[‘theForm’].

using doM ManiPulation

Earlier in the chapter, I explained how to create accessible pop-up windows, but
the code only worked for a specific link. Let’s apply this new information to make
a system that will automatically work on all links (later in the chapter you’ll learn
what you need to know so that you can specify which links should or should not be
opened in new windows). The new HTML page (Figure 9.14) is an updated version
of popupA.html, now called popups.html. It contains this code:

<p>B Link
p (Will open in a new window.)</p>

<p>A Link
p (Will open in a new window.)</p>

 The HTML page will include popups.js , an update of popup.js, using the
following sequence of steps.

To create a dynamic, accessible pop-up:

1. Open popup.js in your text editor or IDE, if it is not already.

2. Within the onload anonymous function, replace the call to document.
getElementById() with a for loop:

for (var i = 0, count = document.links.length; i < count; i++) {

} // End of for loop.

This for loop will be used to access every link in the page. That number
can be found by referring to the length property of document.links (since
document.links is an array, it has a length property). This value is assigned
to another variable, and the loop’s condition will be TRUE so long as the
counter variable, i, is less than the count.

fiGURe 9 .14 The updated
HTML page now has two links,
although both are to the same
page.

338 ChaPter 9 JavaScript and the BrowSer

ptg7799847

3. Within the loop, add a click handler to the link:

document.links[i].onclick = createPopup;

Upon each iteration of the loop, document.links[i] will refer to the next
link. Within the loop, an event handler is added to the link by assigning the
createPopup() function to the link’s onclick property.

4. Change the createPopup() function so that it takes the event as an argument:

function createPopup(e) {

In order to be able to handle multiple links dynamically—opening the
appropriate HTML document for each, a reference to the target of the event
is required. In other words, this function needs to be able to see which link
triggered the event.

5. Within the createPopup() function, before the new window is opened, add:

if (typeof e == ‘undefined’) var e = window.event;

var target = e.target || e.srcElement;

This code, explained in Chapter 8, provides a reliable, cross-browser way
to get both the event itself and the HTML element that triggered the event.

6. Change the creation of the pop-up window to:

var popup = window.open(target.href, ‘PopUp’,
p ‘height=100,width=100,top=100,left=100,location=no,
p resizable=yes,scrollbars=yes’);

The only change is the first argument, which is no longer hardcoded. Instead,
with target representing the HTML element that triggered the event (i.e.,
the link that was clicked), its href property represents the HTML page that
is the destination of that link.

Note that because the same window name is used for all links, only one
popup window will ever be created, and each link will reuse it.

7. Save the file as popups.js, in a js directory next to popups.html, and test
it in your Web browser.

Manipulating the doM 339

ptg7799847

doM Methods

Using the various document properties can be a fine way to find some page elements,
but built into the document object are two excellent methods that are more com-
monly used. To find a specific element, call the getElementById() method. This
method was first introduced in Chapter 2. It has been supported by every major
browser for years, so it’s reliable, and rather fast, too. As long as there’s a single
element with the provided id value, this method will work. The getElementById()
method returns null if no corresponding element can be found.

To find every element of a specific type, use getElementsByTagName(). It returns
an array-like list of chosen elements (note the plural Elements in the method’s
name). Unlike getElementById(), getElementsByTagName() can be invoked on any
element, so you can use a specific starting point to limit the scope of the search.
For example, the next bit of code only retrieves the links found within the header:

var header = document.getElementById(‘header’);

var hLinks = header.getElementsByTagName(‘a’);

Or, written as one line:

var hLinks = document.getElementById(‘header’).
p getElementsByTagName(‘a’);

Because the variable returned by getElementsByTagName() can be treated like
an array, you can use array syntax to reference individual elements. For example,
this next bit of code points to the first link within the header:

document.getElementById(‘header’).getElementsByTagName(‘a’)[0];

That single line of code is the kind of thing that can be confusing to those new
to JavaScript, but it’s just a collapsing of multiple lines of code into one.

A newer method is getElementsByClassName(), which returns an array-like
list of every element of any type that has the provided class name. The means that
you could take popups.html, add a popup class value to links you want to appear
in a new window, and then assign event handlers using:

340 ChaPter 9 JavaScript and the BrowSer

ptg7799847

var popupLinks = document.getElementsByClassName(‘popup’);

for (var i = 0, count = popupLinks.length; i < count; i++) {

 popupLinks[i].onclick = createPopup;

} // End of for loop.

This function does not exist on versions of IE before 9, though, so you’d have
to check for support for this method prior to trying to use it. Online you can find
libraries for finding elements by class name that will work across all browsers.

Css seleCtors

A relatively new way to find page elements in JavaScript is to use CSS selectors.
CSS selectors refers to the syntax CSS has for identifying page elements, such as
by HTML tag, id value, or class.

These can be combined in various ways:

J #header a (all links within the header)

J p.description (all paragraphs with a class of description)

J p.description > a (all links within all paragraphs that have a class of
description)

With each new CSS standard (there are currently three), more and more selec-
tor possibilities are created.

s

A much faster and more advanced alternative to CSS selectors are XPath
expressions. Just as the DOM is a representation of an XML document (includ-
ing HTML), XPath is a way to navigate an XML document. XPath allows you to
look for elements by tag, class, relationships to other elements, and so forth.
On the browsers that do support XPath, its performance can be exceptional.

On the other hand, browser support for XPath is inconsistent: the current
versions of the major browsers support XPath 1.0, but newer XPath standards
are less supported. And learning the XPath syntax is not for the faint of heart.

Manipulating the doM 341

ptg7799847

To use CSS selectors in JavaScript, you turn to either the querySelector()
method or querySelectorAll(). The former returns only at most a single element
(the first found that matches the criteria); the latter returns as many elements as
meet the criteria. Both methods can be invoked on either the document object, or
on a specific element. If you go the latter route, then the CSS selectors will only
apply to elements that are children of that element:

// Returns all images with a class of thumbnail:

document.querySelectorAll(‘img.thumbnail’);

// Returns the first link in the nav element with a class of selected:

document.getElementById(‘nav’).querySelector(‘a.selected’);

Browser support for these methods is pretty good, with only Internet Explorer
versions prior to 8 not supporting them (and IE8 only supporting CSS2.1 selectors).

Changing eleMents

Once you have a reference to an HTML element, one way you can manipulate
the DOM is to change the properties of that element. Many of the properties to
be changed are just the attributes of the HTML element itself. For example, the
popups.js code retreived a reference to a link through an event handler and then
made use of the link’s href attribute. This means you could dynamically change
an href value, too:

document.getElementById(‘someLink’).href =’newpage.html’;

Or, as a more practical example, after a form is submitted, it’s sometimes best
to disable the submit button to prevent a secondary submission (such as with
an e-commerce site). To do that, just set the submit button’s disabled property:

document.getElementById(‘submitButton’).disabled = ‘disabled’;

There are a couple of properties that must be referenced in special ways:
class and for (as in the label’s for property). Both properties are also keywords
in JavaScript, so you cannot do this:

NOTE: You should be wary of changing an element’s id value, as other
code may rely upon that value being both constant and unique.

342 ChaPter 9 JavaScript and the BrowSer

ptg7799847

document.getElementById(‘someDiv’).class =’newClass’; // NO!

document.getElementById(‘someLabel’).for =’someElem’; // NO!

Instead, use className and htmlFor:

document.getElementById(‘someDiv’).className =’newClass’; // Yes!

document.getElementById(‘someLabel’).htmlFor =’someElem’; // Yes!

You can also change HTML elements using special properties that are not actual
HTML element attributes. You’ve already seen two: innerText and textContent.
Both can be used to get or set the text value of an element, like the text found
within a paragraph or a DIV. The textContent property is the W3C standard and
works on multiple browsers, but is not supported on Internet Explorer; innerText
works on most browsers, but not Firefox. Both properties can only return or set
text: you cannot fetch or assign HTML using them. If you need to do that, use the
innerHTML property:

document.getElementById(‘someP’).innerHtml =
p ‘link’;

The innerHTML property is reliable across all modern browsers except when it
comes to updating HTML tables, so don’t use it for that purpose. But you can also
use the innerHTML property to fetch the HTML found within an element:

var original = document.getElementById(‘someDiv’).innerHtml;

When using innerText, textContent, or innerHtml, understand that assigning
a value to these properties completely replaces the existing text or HTML content.
If you just need to add text or HTML, you can use concatenation:

document.getElementById(‘someP’).innerHtml +=
p ‘link’;

Also, you should only use innerHtml if you actually need to fetch or set HTML;
otherwise, use innerText and textContent.

As a practical example of this, let’s return to the idea of linking some text to
the browser’s Back button, via the window.history.back() method. To do that in
a simple, progressively enhanced way, you would start by creating the message
as just text:

Manipulating the doM 343

ptg7799847

Please go back to the previous window
p and do what needs to be done.

Within the JavaScript, logically in a window load event handler, you could
update the span, creating a click handler for that text:

window.onload = function() {

 if (typeof window.print == ‘function’) {

 var backSpan = document.getElementById(‘backSpan’);

 backSpan.onclick = function() {

 window.print();

 }

 }

};

A more elaborate way to create elements and manipulate the DOM will be
explained next. I will say here that using the innerHTML property is much faster
than what you’re about to learn, and should be preferred whenever possible.

Creating eleMents

The final approach for manipulating the DOM is to actually manufacture, or just
remove, HTML elements. Again, this route of creating elements and adding them
to the DOM is slower than using innerHTML, but is sometimes required.

First, you can use the document.createElement() method to create an element
of a given HTML type, assigning the result to a variable:

var p = document.createElement(‘p’);

At this point, there is a new HTML paragraph element, but it is currently empty,
with its default properties, and, most importantly, it’s not part of the DOM, mean-
ing it’s not visible to the end user.

Next, you can set the various HTML and other properties to customize the element:

p.innerText = ‘This is some text.’;

p.className = ‘enhanced’;

(Remember to reference element classes using className, not class.)

344 ChaPter 9 JavaScript and the BrowSer

ptg7799847

Finally, you add the element to the DOM using one of several possible methods—
insertBefore(), appendChild(), or replaceChild(), depending upon the desired
end result. In any case, you’ll at least need a reference to the element within which
the new element will be placed. Let’s say this new paragraph is going within a
certain DIV:

var div = document.getElementById(‘someDiv’);

To just add the paragraph to the DIV, use appendChild(), calling it on the des-
tination element, providing the element to be appended as an argument:

div.appendChild(p);

That line formally adds the new paragraph element to the end of the DIV.
If the destination element already has other elements (i.e., children), and you

do not want to add the new element at the end of the DIV (i.e., after all of the other
children), use the insertBefore() method. Again, this is called on the destination
element and its first argument is the element being added, but it takes a second
argument, which is the element before which the new element should be placed:

div.insertBefore(p, document.getElementById(‘someP’));

A third option is to replace an existing element with another kind of element, using
the replaceChild() method. It is called upon the destination element, and takes
the new element as its first argument and the element to be replaced as its second:

div.insertBefore(p, document.getElementById(‘someImg’));

Note that you would likely not want to use this method if you’re replacing one
element with another element of the same kind, as it would just be easier and
faster to replace the element’s contents or attributes.

If you just need to add some text to a page, without creating a whole element,
you can use the createTextNode() method:

var t = document.createTextNode(‘This is some text.’);

Then you can add this text to the DOM where appropriate by using it as the first
argument to appendChild(), insertBefore(), and replaceChild(). You would
need to go this route when you’re adding text to an element that has other children
(because just using innerText and textContent would eradicate that other content).

Manipulating the doM 345

ptg7799847

You can also create new elements by copying existing ones, using the
cloneNode() method:

var newDiv = document.getElementById(‘someDiv’).cloneNode();

// Now manipulate newDiv.

This means that an alternative way of updating the page is to clone an element,
update its properties and content (i.e., children), and then replace the original ele-
ment with the modified clone. If you have a lot of changes to make, this approach
only forces the browser to redraw the page (i.e., update the visually represented
DOM) once. Note that cloning a node does not clone any event handlers that the
original node might have.

Another way you can manipulate the DOM is to remove elements from the page
by calling the removeChild() method on the parent element, providing the child
to be removed as the argument:

div.removeChild(p);

Note that both objects used are references to the HTML elements, such as
the value returned by getElementById(). You cannot just provide the id value of
either element.

As a reminder, if you know the element to be removed but are unsure of its
parent, use its parentNode property to find it:

var p = document.getElementById(‘someP’);

var parent = p.parentNode;

parent.removeChild(p);

This can be simplified to just:

var p = document.getElementById(‘someP’);

p.parentNode.removeChild(p);

With this new information in mind, let’s implement a reliable “print this page”
option. The HTML page is named print.html, and it contains some text within a
DIV that has an id value of main (Figure 9.15). The HTML page includes the print.
js JavaScript file, to be written in the subsequent steps. If JavaScript is enabled and
printing is an option, a print button will be added (Figure 9.16).

346 ChaPter 9 JavaScript and the BrowSer

ptg7799847

To create a print button:

1. Create a new JavaScript file in your text editor or IDE, to be named print.js.

2. Begin defining a function to be executed when the window loads:

window.onload = function() {

 ‘use strict’;

3. Check for print capability:

if (typeof window.print == ‘function’) {

If the window object has a print property that is of type function, then a
print button can be created.

4. Create a button element:

var printButton = document.createElement(‘button’);

This line creates a new element of type button, assigning the result to the
printButton variable.

5. Give the button some visible text:

if (printButton.textContent != ‘undefined’) {

 printButton.textContent = ‘Print’;

} else {

 printButton.innerText = ‘Print’;

}

fiGURe 9 .15 The HTML page,
without the influence of
JavaScript.

fiGURe 9 .16 The dynamically
added print button.

Manipulating the doM 347

ptg7799847

The text written on a button actually goes between the HTML tags, as in:

<button>Print</button>

For this reason, the button’s textContent or innerText property, depend-
ing upon the browser, must be assigned the visual text. If you’d rather, you
could create an input of type button, with a value of Print.

6. Add a click event handler:

printButton.onclick = function() {

 window.print();

};

This anonymous function will be called when the click event occurs on the
button. The contents of the function are just a call to the window.print()
method.

7. Add the print button to the document:

document.body.insertBefore(printButton,
p document.getElementById(‘main’));

The button is being added to the body, before the main DIV.

8. Complete the conditional begun in Step 3 and complete the function:

 } // End of IF.

}; // End of onload anonymous function.

9. Save the file as print.js, in a js directory next to print.html, and test it
in your Web browser.

10. If possible, load the page on a device without print capability.

Barring that, just run it without JavaScript enabled to see the same result.

348 ChaPter 9 JavaScript and the BrowSer

ptg7799847

JavaSCrIpt and CSS

The definitions of both “modern browsers” and “progressive enhancement” involve
three components: JavaScript, DOM manipulation, and CSS. Although JavaScript
and CSS are two distinct technologies with different roles within the Web browser,
the two can be used together to improve the user’s experience.

Before getting into the particulars of CSS manipulations, I want to point out that
you already saw a great way to change an element’s styling: by altering its className
attribute. In an ideal world, your style sheets define all the styling required by the
page after any modifications, so just changing the classes as needed will suffice.
If not, there are these other techniques.

And I have two caveats in advance. First, in the following pages, you’ll learn
how to use JavaScript and CSS together, but due to my poor visual design skills,
you won’t see gorgeous CSS. Second, this book in no way covers CSS in any detail;
see a good CSS resource for more particulars.

reFerenCing individual stYles

Once you have a reference to a browser element, you can get the element’s current
CSS styling through its style property:

var elem = document.getElementById(‘someElement’);

// Use elem.style

The style property has its own properties for the various styles: height, width,
backgroundColor, and so forth. To change any of the element’s styling, assign a
new value to the specific style:

elem.style.specificStyle = value;

One thing to watch for here is that you must use camelCase for all properties,
even for those that would ordinarily have a hyphen:

elem.style.fontSize = ‘10em’;

Second, when setting sizes in JavaScript, you must always specify the size unit
(e.g., px, em, etc.).

The style property assigns the new value as an inline style, meaning that it
will take precedence over any style rules defined elsewhere. This also means that
when you read in the value of the style property, it only reflects inline styles, not
all of the applicable styles.

JavaScript and cSS 349

ptg7799847

To find all the applicable styles, you’ll need to use different approaches for
different browsers. As a change of pace, in this area, IE has the simplest solution:
the currentStyle property:

var info = currentStyle.specificStyle;

For browsers that don’t support currentStyle, there’s the getComputedStyle()
method of the window object:

var elementStyle = window.getComputedStyle(elem);

This method takes a reference to the element as its argument. The returned
value can be treated as either an associative array or an object:

elementStyle[‘display’]; // inline

elementStyle.display; // inline

Note that you can only read styles using this approach; they cannot be changed
this way. Also, all sizes are returned with the size units: 10em, not just 10 (Figure 9.17).

hiding and shoWing eleMents

There are two CSS properties that can be manipulated to hide and show HTML
elements: display and visibility. The difference between the two is in how the
layout is affected. The visibility property does not affect the flow of elements
before and after the element affected. Its two values are visible and hidden:

elem.style.visibility = ‘hidden’;

elem.style.visibility = ‘visible’;

Again, changing the visibility of an element will not impact the page’s layout;
there will just be an empty space where the element was.

fiGURe 9 .17 Here, JavaScript is
used to return the computed
font-size value of an element.

350 ChaPter 9 JavaScript and the BrowSer

ptg7799847

Conversely, the display property will impact the layout, but exactly how
depends upon the value it has. The possible values include inline, block, inline-
block, and none:

elem.style.display = ‘inline’;

elem.style.display = ‘none’;

See a good CSS reference for descriptions of what these values mean.
You can also change the visibility of an element by altering its opacity. You’ll

see an example of that next.

Creating Modal WindoWs

One great use of JavaScript and CSS together is to create a new type of modal
window, which you’ve probably seen many times over by now (Figure 9.18). These
are modal windows, in that their appearance blocks the user from doing other
things on the page, but unlike the dialogs first explained, these modal windows
can be styled, and unlike creating a new browser window, these windows cannot
be blocked using conventional window blocking. These modal windows do require
CSS and JavaScript support, however. I’ll explain how to create a modal window in
the following sequence of steps. Unlike in most other examples, I’ll walk through
the HTML and CSS, too, as both are integral to the success of the system.

To create a modal window:

1. Create a new HTML file in your text editor or IDE, to be named modal.html:

<!doctype html>

<html lang=”en”>

<head>

 <meta charset=”utf-8”>

 <title>A Modal Window</title>

fiGURe 9 .18 The modal window
contains HTML, styled by CSS, and
appears within the browser window,
but above the existing content.

JavaScript and cSS 351

ptg7799847

 <!--[if lt IE 9]>

 <script src=”http://html5shiv.googlecode.com/svn/trunk/
 p html5.js”></script>

 <![endif]-->

 <link rel=”stylesheet” href=”css/modal.css” id=”css”>

</head>

<body>

</body>

</html>

I’m using the basic HTML5 template, but you can use whatever HTML
you want.

2. Create some static content:

<div><p>Lorem ipsum dolor sit amet...</p></div>

<div><p>Lorem ipsum dolor sit amet...</p></div>

The static content in the script are two DIVs, containing the Latin boiler-
plate. You can change your content to something meaningful, if you’d prefer.

3. Create a DIV with an id value of modal:

<div id=”modal”></div>

This DIV will be used to wrap all of the modal content. It will initially be
hidden. You can place this DIV wherever you want; I’ve chosen to place it
between the two existing DIVs.

4. Within the new DIV, add a DIV to be used to mask out the rest of the page:

<div id=”modalMask”></div>

When the modal window is shown, the rest of the page needs to be “dis-
abled,” to give the modal window priority. This will be accomplished using
an empty DIV that covers the entire window. This DIV must be placed within
the modal DIV, so that it is also initially hidden.

352 ChaPter 9 JavaScript and the BrowSer

ptg7799847

5. After the mask, add a DIV to be used as the modal content:

<div id=”modalContent”><p>This is modal content.</p>
p <input type=”button” id=”closeModal” value=”Close”></div>

This example uses a very simple bit of content. Do make sure that the modal
window includes a button or link to close the window. Here, that input is
given an id of closeModal.

6. Outside of the modal DIV, add a button to open the modal window:

<input type=”button” value=”Show Window” id=”openModal”>

Don’t place this within the modal DIV, or else the user will never be able
to open the window!

7. Make sure the HTML page includes a CSS file and a JavaScript file:

<link rel=”stylesheet” href=”css/modal.css”>

<script src=”js/modal.js”></script>

These will be written next.

8. Save the file as modal.html.

9. Create a new CSS file in your text editor or IDE, to be named modal.css.

10. Add the rules for the modal element:

#modal {

 display: none;

 position: absolute;

 left: 0px;

 top: 0px;

 width:100%;

 height:100%;

}

This is the DIV that wraps the entire modal content. It’s initially not displayed
but is positioned to use the entire browser window.

JavaScript and cSS 353

ptg7799847

11. Add the rules for the modalMask element:

#modalMask {

 position: absolute;

 left: 0px;

 top: 0px;

 width:100%;

 height:100%;

 background-color: #eee;

 z-index: 1000;

 opacity: 0.9;

 filter:alpha(opacity=90);

 -moz-opacity: 0.9;

}

This DIV will also take up the entire browser window, but its opacity is set
to 90% (using three different CSS properties, to work in all browsers) and
its color is gray. Most importantly, it has a z-index value of 1000, which
should place it on top of all the other page content. Look online if you’re
unfamiliar with the concept of a z-index.

12. Add the rules for the modalContent element:

#modalContent {

 position: relative;

 width:300px;

 margin: 15px auto;

 padding:15px;

 background-color: #fff;

 border:1px solid #000;

 text-align:center;

 z-index: 9999;

}

354 ChaPter 9 JavaScript and the BrowSer

ptg7799847

Finally, these rules style the actual modal window. The only critical value
here is the z-index, which is set higher than any other element, including
the mask.

13. Save the file as modal.css, within a css directory.

14. Create a new JavaScript file in your text editor or IDE, to be named modal.js.

15. Define the openModal() function:

function openModal() {

 ‘use strict’;

 document.getElementById(‘closeModal’).onclick =
 p closeModal;

 document.getElementById(‘modal’).style.display =
 p ‘inline-block’;

 document.getElementById(‘openModal’).onclick = null;

} // End of openModal() function.

The only step this function has to take is to set the display property of the
modal DIV to inline-block. Doing so will reveal the entire DIV, including the
mask layer and the modal content.
As an extra step, the event listeners on the two buttons—one for closing the
window, the other for opening it—will be added and removed as needed.
When the modal window is open, there becomes a need to listen for click
events on the closeModal button, but there is no longer a need to listen
for click events on the openModal button, so that listener can be removed.

16. Define the closeModal() function:

function closeModal() {

 ‘use strict’;

 document.getElementById(‘openModal’).onclick = openModal;

 document.getElementById(‘modal’).style.display = ‘none’;

 document.getElementById(‘closeModal’).onclick = null;

} // End of closeModal() function.

This code is the inverse of that in openModal().

JavaScript and cSS 355

ptg7799847

17. Establish functionality when the window loads:

window.onload = function() {

 ‘use strict’;

 document.getElementById(‘openModal’).onclick = openModal;

};

This function just needs to add the click handler to the openModal button.

18. Save the file as modal.js, within a js directory, and test it in your Web
browser (Figure 9.19).

reFerenCing stYle sheets

Rather than manipulating individual styles, an alternative is to manipulate the
whole page’s style sheets. The document.styleSheets property stores a list of every
style sheet in use by a page, including external CSS files and internally defined styles.
If your style HTML elements use id attributes, you can also reference individual
style sheets using document.getElementById():

<!-- HTML -->

<link rel=”stylesheet” id=”mainStyleSheet” href=”css/style.css”>

// JavaScript:

var mainCSS = document.getElementById(‘mainStyleSheet’);

Once you have a reference to the style sheet, you can find its associated external
file name (for external style sheets only) using its src attribute:

mainCSS.src; // ‘css/style.css’

Most of the style sheet’s properties are read-only, meaning they can’t be modi-
fied, although you can disable an entire style sheet on the fly by setting its disabled
property to disabled or true:

mainCSS.disabled = ‘disabled’

Just by dynamically enabling and disabling style sheets, you can have a great
impact on what the user sees. For example, you could enable a black-and-white

fiGURe 9 .19 The content
without the modal window
being shown.

356 ChaPter 9 JavaScript and the BrowSer

ptg7799847

style sheet for users accessing the site on grayscale devices, or a style sheet with
just a few colors for other, more primitive devices. Later in this chapter, you’ll see
how to switch style sheets to let a user select the page’s theme.

With a reference to a style sheet, you can create new rules using the insertRule()
method. Its first argument is the new rule and its second is an index value, which is
to say where in the style sheet the new rule is inserted:

mainCSS.insertRule(‘.hide: {visibility: none;}’, 50);

As CSS rules apply differently based upon their order, the index position is
significant.

To remove a style sheet rule, use deleteRule(), providing the index position
of the rule to be removed:

mainCSS.deleteRule(5);

The insertRule() and deleteRule() methods work on most browsers but not
on IE. IE instead uses addRule() and removeRule(). The addRule() method takes
three arguments: the selector, the rule, and the index:

mainCSS.addRule(‘.hide’, ‘{visibility: none;}’, 50);

Generally speaking, I would recommend that CSS rules be permanent and
hardcoded, but it’s reasonable for high-end, CSS-driven sites to perform rule
manipulation using JavaScript.

Finally, as a progressive enhancement example, you could have a page with a
disabled style sheet by default, only to have it enabled if JavaScript is supported.
Or, in that case, you can dynamically create a new set of style rules by using
createElement(), creating an element of type style:

var s = document.createElement(‘style’);

You would then need to establish its contents:

s.innerText = ‘body {font-size: 90%;font-family: arial,sans-serif;}’;

And finally, you can add the style sheet to the page by making it a child of the body:

document.body.appendChild(s);

JavaScript and cSS 357

ptg7799847

s

Cookies, another technology invented at Netscape, has been integral to the progres-
sion of dynamic Web sites. HyperText Transfer Protocol (HTTP), the technology
normally used for a Web browser to request a Web page, is a stateless protocol,
meaning that when you go from page A on a site to page B on the same site, the
server is unable to track that it’s the same person—you—accessing both pages.
This is a problem, as without a vehicle for maintaining state, there can be no user
management (i.e., the ability to log in and log out), custom presentation of content,
and only a limited sense of e-commerce. Fortunately, there are two ways of main-
taining state: using sessions or cookies. Sessions can only be accomplished using
a server-side technology, as sessions store the data itself on the server. Cookies,
though, can be managed using a server-side technology or using JavaScript within
the browser.

In layman’s terms, cookies are just a Post-It note of information, stored in the
user’s browser, and associated with a particular Web site. When a visitor goes to a
site, the site’s server can send a cookie to the user’s browser. After a cookie has been
stored in the user’s browser, it will be passed back to the server with subsequent page
visits. It’s important to know that cookies are only sent back to the same server from
which they were originally received. A cookie sent from www.LarryUllman.com cannot
read in a cookie sent to the same browser from www.example.com. This restriction
has both a security and a performance benefit.

The cookie contains several discrete pieces of information:

J Its name

J Its value

J An expiration date and time

J A path where it is valid (defaults to the current path)

J Its domain (defaults to the current host)

The expiration date and time needs to be formatted as a UTC string (see Chap-
ter 6, Complex Data Types). The path is the directory or directories on the server
where the cookie is valid. For example, if your site is at www.example.com, a path of /
makes the cookies available within the root directory and any subdirectories. If the
path is set to /forums, then the cookie is only readable by the server when the user
is visiting a page within www.example.com/forums, including any subdirectories.

With that information in mind, let’s look at how to set, read, and remove cookies.

358 ChaPter 9 JavaScript and the BrowSer

www.LarryUllman.com
www.example.com

ptg7799847

s

Cookies, whether used in JavaScript or a server-side technology, can be a wonderful convenience, but they
do have their limitations. For starters, cookies are easily visible on the user’s computer, so they should never
be used to store sensitive information. Second, cookies can easily be manipulated by the end user, so the
server side—the Web site—should always validate the cookie values, and use those values cautiously. Third,
there is a limit as to how much information a single cookie can store (approximately 4 KB each), and as to
how many cookies a single server can send to a single user. Finally, users can block cookies from being sent,
either universally or individually.

With all of this in mind, I recommend that you treat cookies in JavaScript the same way you should treat
JavaScript itself: as a way to provide enhanced functionality to the user. Applications where security is an
issue should always use sessions, implemented using a server-side technology.

Creating Cookies

Cookies in JavaScript are addressed through the cookie property of the document
object. Creating a cookie is done using:

document.cookie = value;

The value needs to be of a specific syntax, starting with cookieName=cookieValue.
For example, this next cookie could be used to save the user’s preferred font size:

document.cookie = ‘fontSize=14’;

That sends a cookie using the default values for the expiration, path, and domain.
To change any of those, add a semicolon, followed by other cookie property names
and values: expires, path, and domain:

document.cookie = ‘fontSize=14;expires=’ + someDate.toGMTString() +
p ‘;path=/subdirectory;domain=*.example.com’;

You can set multiple cookies, assigning each to the same document.cookie
property, so long as you use different cookie names:

document.cookie = ‘fontSize=14’;

document.cookie = ‘color=3C9’;

worKing with cooKieS 359

ptg7799847

This is possible because document.cookie is a special kind of property, with each
additional assignment adding to the list of cookies, not replacing the previous ones.

The window.navigator.cookieEnabled property reflects whether cookies are
enabled in the browser or not.

reading Cookies

Once you’ve set a cookie in JavaScript, you can read it in. Unfortunately, this is
easier said than done in JavaScript. Whether you set one cookie or 12, the document.
cookie property will represent every available cookie (Figure 9.20).

As you can see in the figure, multiple cookies are separated by semicolons, in
name=value pairs. Thus, to read in every cookie, you must first break this string
into its pieces:

var cookies = document.cookie.split(‘;’);

Then you can loop through the cookies with a for loop:

for (var i = 0, count = cookies.length; i < count; i++) {

 // cookies[i] will be name=value

}

Within the for loop, you must break the individual cookie value—one
name=value combination—into its pieces by splitting it on the equals sign. In a
moment, you’ll put this code to the test. Note that you cannot access the individual
cookie properties—the expiration, path, and domain, as just access to the cookie
itself validates that the cookie has not expired, and is available to the page in the
current path and domain.

fiGURe 9 .20 The value of
the document.cookie property
reflects both sent cookies.

TIP: unlike with cookies sent from a PhP script, which cannot be
accessed until another page is loaded (or the same page reloaded),

Javascript cookies can be immediately retrieved.

360 ChaPter 9 JavaScript and the BrowSer

ptg7799847

deleting Cookies

Deleting cookies in JavaScript is simply a matter of setting a cookie with the same
name as the cookie you want to delete, but with no value and an expiration in the
past, such as on the epoch:

document.cookie = ‘fontSize=;expires=Thu, 01-Jan-1970 00:00:01 GMT’;

For optimum reliability, the path and domain values should be the same as
used when the cookie was created.

Creating a Cookie liBrarY

Because the syntax for creating and retrieving cookies is delicate, it’s a good oppor-
tunity to make a library explicitly for this purpose. The following code will be
similar in some ways to the utilities.js script created in Chapter 8. A subsequent
example will make use of this library.

To create a cookie library:

1. Create a new JavaScript file in your text editor or IDE, to be named cookies.js.

2. Begin creating a new object named COOKIE:

var COOKIE = {

The COOKIE object will be the lone global variable created by this script.

3. Define the setCookie() method:

setCookie: function(name, value, expire) {

 ‘use strict’;

 var str = encodeURIComponent(name) + ‘=’ +
 p encodeURIComponent(value);

 str += ‘;expires=’ + expire.toGMTString();

 document.cookie = str;

}, // End of setCookie() function.

This function takes three arguments: the cookie’s name, its value, and its
expiration. The function then creates a string for the complete value, and
assigns this to document.cookie. Note that I’ve skipped validation here,

worKing with cooKieS 361

ptg7799847

to keep the script shorter, but you should add that in the real world, includ-
ing validating that the expire value is a Date object.

There’s one new addition here: to ensure that the name and value are safe to
store in the cookie, both are run through the encodeURIComponent() func-
tion. This function escapes potentially problematic characters to prevent
server problems.

4. Start defining the getCookie() method:

getCookie: function(name) {

 ‘use strict’;

 var len = name.length;

The getCookie() function will be the most complicated and important in
this library. It takes one argument: the name of the cookie whose value
should be returned. Within the function, the number of characters in the
name is assigned to a variable, as it will be useful to know that information
later in the function.

5. Split the cookie value on the semicolon:

var cookies = document.cookie.split(‘;’);

The document.cookie property could store a single cookie, or a dozen, sepa-
rated by semicolons. If only one cookie exists, split() will return an array
of one element. If three cookies exist, then cookies will have three elements.

6. Begin looping through the cookies:

for (var i = 0, count = cookies.length; i < count; i++) {

 var value = (cookies[i].slice(0,1) == ‘ ‘) ?
 p cookies[i].slice(1) : cookies[i];

The loop itself was already explained. What was not explained is that some
browsers add a space in between the cookie values in document.cookie.
This first line then assigns to the value variable either cookies[i], with the
initial character sliced off (if that character is a space), or just cookies[i].
Written out, this is the same as:

362 ChaPter 9 JavaScript and the BrowSer

ptg7799847

if (cookies[i].slice(0,1) == ‘ ‘) {

 var value = cookies[i].slice(1);

} else {

 var value = cookies[i];

}

7. Decode the value:

value = decodeURIComponent(value);

The value variable at this point will be name=value. However, both pieces
will have been encoded when sent, so they must be decoded now, using the
corresponding decodeURIComponent() function.

8. Return the value if this is the right cookie:

if (value.slice(0,len) == name) {

 return cookies[i].split(‘=’)[1];

} // End of IF.

The next step in the loop is to see if the current cookie value matches the
name of the cookie the script is looking for. There are many ways of doing
this: here I’m comparing a slice from the value, starting at 0 and going for
len characters, to the name. If this conditional is TRUE, then the value
should be returned by the function (which will also terminate the loop).

To find and return the value, I’ve used just one cryptic line of code. That
is equivalent to:

var v = cookies[i].split(‘=’);

return v[1];

The first line splits the name=value string into its two parts. The second
line returns the second part.

9. Complete the for loop:

} // End of FOR loop.

worKing with cooKieS 363

ptg7799847

10. Complete the getCookie() function:

 return false;

}, // End of getCookie() function.

The function always returns false if it gets to this point, which means that
a matching cookie was not found.

11. Define the deleteCookie() function:

deleteCookie: function(name) {

 ‘use strict’;

 document.cookie = encodeURIComponent(name) +
 p ‘=;expires=Thu, 01-Jan-1970 00:00:01 GMT’;

} // End of deleteCookie() function.

This function just takes a single argument: the name of the cookie being deleted.

12. Complete the COOKIE() definition:

}; // End of COOKIE declaration.

13. Save the file as cookies.js.

You’ll want to place the script, or a copy of it, in the same directory as all
the other JavaScript files you write in this chapter.

using the Cookie liBrarY

As an example of using the new cookie library, let’s tie into the information learned
about CSS and create a system that allows the user to select the page’s theme. The
actual example will just change the colors and fonts, but CSS can make major sty-
listic changes of the same content. The page will not use any CSS when the user
first arrives (Figure 9.21). Two links will let the user change the theme. When the
user clicks on a link, not only is the theme set for the current viewing of the page
(Figure 9.22), but a cookie will be sent as well, so that the same CSS is used upon

fiGURe 9 .21 The plain content,
without any CSS formatting.

fiGURe 9 .22 The same con-
tent, using one of the selected

“themes.”

364 ChaPter 9 JavaScript and the BrowSer

ptg7799847

subsequent visits. The end result is about 60 lines of JavaScript that combines event
handling, default browser behavior prevention, cookies, and DOM manipulation!

The HTML page, to be named theme.html, has two links:

<p>Choose a theme:
p A Theme ||
p B Theme</p>

The HTML page will also include two JavaScript files: cookies.js, just written,
and theme.js, to be explained in the next series of steps. You can download the
requisite CSS files from the book’s corresponding Web site (www.LarryUllman.com).

To use cookies and custom CSS:

1. Create a new JavaScript file in your text editor or IDE, to be named theme.js.

2. Begin defining the setTheme() function:

function setTheme(theme) {

 ‘use strict’;

 var css = null;

The setTheme() function takes one argument, which will be the user’s
chosen theme (aka stylesheet). The function will use DOM manipulation
to make the chosen theme active. Within the function, the css variable will
represent the DOM element, which will end up being:

<link rel=”stylesheet” href=”css/someTheme.css” id=”cssTheme”>

3. If the link element already exists, update it:

if (document.getElementById(‘cssTheme’)) {

 css = document.getElementById(‘cssTheme’);

 css.href = ‘css/’ + theme + ‘.css’;

It’s possible that the link element already exists on the page; that would
be the case if the user is switching themes. If so, then the JavaScript only
needs to change the href property of the element. The href value needs
to be css/—because all style sheets are in the css folder—plus the value
of theme, plus .css.

worKing with cooKieS 365

www.LarryUllman.com

ptg7799847

4. If no link element exists, create it:

} else {

 css = document.createElement(‘link’);

 css.rel = ‘stylesheet’;

 css.href = ‘css/’ + theme + ‘.css’;

 css.id = ‘cssTheme’;

 document.head.appendChild(css);

}

The first line within the block creates a new element of type link. The second
assigns stylesheet to the element’s rel property. The third assigns the href
value. And the fourth creates the id value, so that the code in Step 3 can
reference this new element when the user switches themes. Finally, the
element is added to the DOM, specifically within the HTML head.

Alternatively, you could hardcode the link in the HTML, with an empty or
simple CSS file, then just always update it, without creating a new link element.

5. Complete the function:

} // End of setTheme() function.

6. Begin defining the setThemeCookie() function:

function setThemeCookie(e) {

 ‘use strict’;

 if (typeof e == ‘undefined’) e = window.event;

 if (e.preventDefault) {

 e.preventDefault();

 } else {

 e.returnValue = false;

 }

 var target = e.target || e.srcElement;

366 ChaPter 9 JavaScript and the BrowSer

ptg7799847

This function will be called when the user clicks a link. The function needs to
store the selected theme in a cookie and then have the page be updated to use
the new theme. To know which link was clicked, a reference to the event and
the event target are required. This function also needs to prevent the default
browser behavior, which would be the page following the actual link (to, for
example, somepage.php?theme=a). All of this code is explained in Chapter 8.

7. Set the cookie:

var expire = new Date(); // Today!

expire.setDate(expire.getDate() + 7); // One week!

COOKIE.setCookie(‘theme’, target.id, expire);

The cookie is created using the COOKIE.setCookie() function. The name
of the cookie will be theme and its value will be the id value of the target:
aTheme or bTheme. The cookie is set to expire in a week.

8. Update the theme and complete the function:

 setTheme(target.id);

 return false;

} // End of setThemeCookie() function.

To update the page for the new theme, the setTheme() function needs to
be called, passing to it the new theme’s identifier.

9. Create a function to handle the window’s load event:

window.onload = function() {

 ‘use strict’;

This function will need to add click handlers to the two links. It will also
need to check the user’s cookies to see if the user had previously selected
a theme, which should be used now.

10. Add the click handlers:

document.getElementById(‘aTheme’).onclick = setThemeCookie;

document.getElementById(‘bTheme’).onclick = setThemeCookie;

worKing with cooKieS 367

ptg7799847

When either link is clicked, the setThemeCookie() function will be called. If
the user does not have JavaScript enabled, then the browser will be taken to, for
example, somepage.php?theme=a. That PHP script could set the cookie instead.

11. Retrieve the cookie and set the theme, if appropriate:

var theme = COOKIE.getCookie(‘theme’);

if (theme) {

 setThemeCookie(theme);

}

The first line uses the COOKIE.getCookie() function to get the value of the
theme cookie. If that function returns a non-false value, then a theme was
previously stored, and the page needs to be updated for the chosen theme.
That could be done by just calling setTheme(), passing it the theme value.
However, as written, the theme cookie will expire in a week. By calling the
setThemeCookie() function here, the cookie will be renewed for another
week (from today), and the page will be updated. This keeps the user’s pref-
erences retained so long as it hasn’t been more than a week since the user
accessed the page.

12. Complete the anonymous function:

};

13. Save the file as theme.js, within a js directory, and test it in your Web
browser.

14. Click a link to switch themes (Figure 9.23).

15. Close your browser window, or even quit the browser, and then reopen the
page to see your theme selection retained.

fiGURe 9 .23 The same con-
tent, using the other theme.

368 ChaPter 9 JavaScript and the BrowSer

ptg7799847

s

One more area of functionality provided by the browser is the ability to create
timers. I’m not talking about a timer in the sense of timing how long a process
takes: for that, you can use the Date object and Date arithmetic, as explained in
Chapter 6. No, here I’m speaking of a timer in the sense of a countdown timer,
where you can tell JavaScript to execute some code after a certain period. To do
that, call the setTimeout() function, providing a function to be called as the first
argument and a number of milliseconds as the second:

setTimeout(function() {

 alert(‘It has been 2000 milliseconds!’);

}, 2000);

(As you can see in this code, this is a good place to use anonymous functions,
although you certainly don’t have to.)

A variation on setTimeout() is setInterval(). It takes the same arguments
but invokes the function repeatedly at every indicated interval:

// You will regret this:

setInterval(function() {

 alert(‘It has been 2000 milliseconds!’);

}, 2000);

In short, the setTimeout() function creates a one-time timer; setInterval()
creates a recurring timer.

To be clear, that is code you never want to execute, as it will continually cre-
ate the alert every 2 seconds until…well, until you close the browser window. For
this reason, whenever you use setInterval(), you should have some code in
place that will eventually stop the timer. To do that, first assign the result of the
setInterval() call to a variable:

var interval = setInterval(doThis, 10000);

Then, when appropriate, call the clearInterval() function, providing to it
the timer identifier:

uSing tiMerS 369

ptg7799847

var n = 1;

function doThis() {

 alert(‘This is alert #’ + n);

 n++;

 if (n == 5) clearInterval(interval);

}

With that function definition, the alert dialog will be created five times, approxi-
mately 10 seconds apart.

Timers created using setTimeout() can also be stopped by assigning its call
to a variable and then providing that variable to the clearTimeout() function.

There is one gotcha when it comes to setting timers: the function is not guaranteed
to be executed precisely upon the interval. The reason for this is that JavaScript runs
using a single thread, meaning that JavaScript can only do one thing at a time. While
time is elapsing for the timers, the user or browser might be triggering events that
must also be handled by other JavaScript code. If the interval is up while JavaScript is
busy handling another event, JavaScript will need to wait until a free moment to call
the interval’s associated function. In neither case will the function be called before
the interval is up, but it may not be called immediately when the interval passes.
(I’m simplifying this process a bit, but that’s the general idea: events, including timer
events, get queued up and are handled as soon as possible.)

There are a lot of good uses for timers, for a wide range of purposes. For example,
animations and effects require timers (although complex animations should not
be done with timers). This next bit of code will fade a DIV by decreasing its opacity
incrementally from 100% to 0%:

var div = document.getElementById(‘someDiv’);

var opacity = 1;

var fader = setInterval(function() {

 opacity -= .1; // Decrease the opacity.

 if (opacity >= 0) { // Stop at negative numbers.

370 ChaPter 9 JavaScript and the BrowSer

ptg7799847

 if (typeof div.style.opacity == ‘string’) { // Most browsers.

 div.style.opacity = opacity;

 } else { // IE

 div.style.filters = ‘alpha(opacity=’ + (opacity * 100) +
 p ‘)’;

 }

 } else { // Stop the timer!

 clearInterval(fader);

 }

}, 100); // Every 100 milliseconds.

(not) uSInG eval()

Another top-level (i.e., window) function with which you ought to be familiar is eval(). The eval() function
takes a string as its lone argument and executes that as if it were JavaScript code. The following two lines
have the same result:

alert(‘This is an alert.’);

eval(“alert(‘This is an alert.’)”);

To be clear, you would never use eval() on a literal string of text like that, as it’d be more efficient to just
execute that JavaScript directly. The eval() function is actually used to evaluate a string of code that is
unknown when the script is written:

eval(someVar);

Here, then, is why you shouldn’t use eval(): it’s terribly dangerous to blindly execute code that is unknown.
Doing so leaves your scripts vulnerable to injection attacks: where a malicious user knowingly provides bad
data in the hopes of learning something or causing harm. Code run through eval() has historically per-
formed poorly, too, and is much harder to debug.

There are some legitimate uses of eval(), though. One traditional use was for converting the data returned
by an Ajax request into a JavaScript object (to be explained in Chapter 11). But in today’s JavaScript, there’s
almost always a better solution than using eval(), and you should be suspicious of code that invokes it.

uSing tiMerS 371

ptg7799847

That code is only a little bit tricky because of the two ways required to change
the opacity; other than that, it’s effectively a loop from 1 to 0, counting down by .1.

Another use of timers is to automatically update content, such as the current
time, the weather, or a stock quote (i.e., a timer could be used to fetch a stock quote
regularly). In Chapter 6, I discussed how the Date object can be used to show how
much time is left in an online auction. Using a timer, you could regularly update the
amount of time remaining. (In fact, the example in Chapter 15, PHP and JavaScript
Together, will do exactly that.)

As another example, earlier in this chapter, I discussed using the URL hash value
to mark a page’s state, noting one problem: use of the Back and Forward buttons
changes the URL, but doesn’t trigger the JavaScript to execute again. The solution
is to use a timer that watches for changes in the hash value:

var hash = window.location.hash;

var hashWatcher = setInterval(function() {

 if (window.location.hash != hash) { // Changed!

 updatePage();

 }

}, 1000); // Every second.

revIeW and purSue

w

J What three kinds of dialogs were discussed in this chapter?

J How do you create a new browser window?

J How do you change the browser’s focus to another window? How do you
take the focus off of the current window?

372 ChaPter 9 JavaScript and the BrowSer

www.LarryUllman.com/forums/

ptg7799847

J How can you provide new windows in a progressively enhanced manner?

J What is the same origin policy?

J Through what object and property can you access the browser’s history?

J How do you redirect the browser using JavaScript? How do you redirect the
browser without leaving the previous page in the user’s history?

J What is the significance of the window.location.hash property? How about
window.location.search?

J How do you trigger the browser’s print functionality? What should you be
mindful of when it comes to offering this?

J In what property can you access the browser’s window title?

J In what property can you see what mode—Quirks or Standard—the browser
is running in?

J What is the DOM?

J What are some of the easiest ways to obtain a reference to HTML elements?

J What are CSS selectors? How do you use them?

J What are some of the ways that you can change existing HTML elements?

J How do you create new elements and add them to the DOM?

J What ways exist for manipulating CSS?

J How do you create and read cookies using JavaScript?

J What two functions are used to create timers and how do they differ? How
do you stop a timer?

Pursue

J There’s a lot of content presented in this chapter (a lot!), so practice some
of the ideas using your browser’s console interface. In particular, check out
some of the properties named in the window and document objects, and try
dynamically manipulating the DOM.

review and purSue 373

ptg7799847

J If you’ve relied upon one of the dialog types in a project, rewrite that site’s
code to use a different, better window type instead.

J If you want, create a script that uses various window properties to report
upon what JavaScript can know about the user’s browser and screen.

J If you think you might have the need to communicate between two windows
using JavaScript, use the information covered in this chapter to practice
that. Or try it with iframes.

J Write a simple script that redirects the browser to another page, just to
confirm that you know how to make that happen.

J Create a function that, on the window’s load, checks the browser’s compat-
ibility mode and reports that.

J Research more about the DOM and DOM manipulation.

J Modify popups.js and popups.html so that only links with a specific class
value trigger the createPopup() function.

J Rewrite popups.js using the getElementsByClassName() method if sup-
ported, and a fallback approach if not.

J If you are really comfortable with CSS, research more about CSS selectors.

J If you are adventurous and generally conversant with XML, investigate
XPath expressions.

J Complete the “go back” link functionality so that it’s accomplished in a
progressively enhanced manner, similar to how the print functionality
was created.

J Learn more about CSS, if you feel that’s a weakness of yours. (Personally, I
understand the concepts involved, but lack the design skills to use CSS well.)

J Update the cookies.js script to add the necessary validation.

J Update the cookies.js script so that the path and domain values can be
passed to the setCookie() and deleteCookie() functions.

374 ChaPter 9 JavaScript and the BrowSer

ptg7799847

J Change theme.html so that a simple, or blank CSS file is always present, and
then change theme.js to just update it.

J Implement your own timer example, such as the seconds since the epoch
script from Chapter 8.

WraPPing up

First, congratulations for getting through a long chapter, with tons of new informa-
tion presented in it! There was a lot to cover because the browser is so important to
JavaScript (which goes without saying). As you probably experienced, the examples
that you can create have become more fully formed, making use of events, DOM
manipulation, CSS, and so forth.

The most important things covered by this chapter were:

J Key members of the window and window.document objects

J Several ways to create new windows, from dialogs to actual browser win-
dows to CSS layers

J How to navigate and manipulate the DOM

J How to interact with CSS

J The basics of timers

You also encountered a number of specific issues, such as accessing the browser
history, connecting with the browser’s print functionality, and creating cookies.
Many of the examples were extremely practical, and occasionally advanced, putting
together the right combination of HTML, CSS, and JavaScript. Progressive enhance-
ment—improving the user’s experience without leaving others behind—continues
to be endorsed and demonstrated.

There really was a lot to this chapter, and hopefully you weren’t overwhelmed.
From here on out, the chapters become more focused on smaller topics and indi-
vidual applications of JavaScript, starting in the next chapter, which goes into
JavaScript and forms in greater detail, with lots of specific examples that you’ll
use every day.

wrapping up 375

ptg7799847

s

ptg7799847

Forms are integral to the usefulness of the Web as

they provide the primary interface for user interaction.

In this book, forms have been used heavily ever since Chapter 2,

JavaScript in Action, but this chapter is going to complete the

coverage of the subject. To start, there are some more general

form issues, but the meat of the chapter goes through aspects of

using the various form element types. That section of the chapter

will be more like a recipe book, with explicit code for performing

specific tasks. The chapter concludes with a discussion of regu-

lar expressions. Although they aren’t exclusive to forms, regular

expressions are often used to validate textual form data, and you’ll

see exactly how.

377

ptg7799847

Although the basics of forms have been well covered by now, I want to quickly
reiterate a few key points, and perhaps introduce one or two new things.

First, as already explained, the best way to handle a form’s submission is to add
a submit handler to the form itself. Such an event is triggered when the user clicks
on the submit button or when the user presses Enter/Return, which submits a
form on some browsers. Thus, watching for a submit event is the most reliable and
accessible approach. In very limited situations, you may want to perform validation
when certain form elements change, but you should be careful when doing so, as
change events can occur more often than may be appropriate for broad validation.

Historically, developers have sometimes created forms without a submit but-
ton: instead, the form would be submitted when a form element’s value changes
(such as by the selection of a drop-down menu). Understand that if you do this,
then users without JavaScript cannot submit your form.

Speaking of accessibility, forms should always have a valid action attribute
value, allowing the form data to go through to a real resource when JavaScript is not
enabled. Of course, most of the examples in this book did not use a valid action
attribute, but that’s only because the focus was on the idea being introduced, and
no actual page was being written to handle the form’s submission anyway. On live
sites, you must always create a fallback page that will handle the form’s submission
should the user not have JavaScript enabled.

You can change the action value dynamically using JavaScript:

document.getElementById(‘theForm’).action = ‘otherPage.php’;

By doing so, you can have JavaScript-enabled users head to a different location
than the non-JavaScript users upon the form’s submission.

As a reminder, to prevent the form’s submission to the server-side script, you
can use the standard techniques for preventing any default event behavior (this
would go within the form submission handler):

if (e.preventDefault) {

 e.preventDefault();

} else {

 e.returnValue = false;

}

return false;

s

ms

ptg7799847

Returning false only works when the event handler was created using the
DOM Level 0 approach; the other methods work with DOM Level 2 event handlers,
on browsers that can use addEventListener() and those that can’t (i.e., older IE),
respectively.

You can, using JavaScript, actually force a form submission yourself, by calling
the submit() method on the form element:

document.getElementById(‘theForm’).submit();

Be aware that doing this does not actually trigger a submit event.

Lastly, as a reminder, HTML5, when supported by the browser, will perform
validation based upon the input type and the properties assigned. This validation
nicely includes visual error messages (Figure 10.1). If you’re not using HTML5, or if
the user’s browser does not support HTML5, then you need to use DOM manipula-
tion and CSS (i.e., the information taught in Chapter 9, JavaScript and the Browser)
to provide attractive inline error messages (Figure 10.2). Let’s create a function
toward that end.

Creating error Messages

In order to do everything required, the function needs to take two arguments: the
id value of the form element to which the error message is being applied and the
error message itself. The function should then create a span containing the message
and append the span after the target element. The function also needs to give this
new span an id value, so that the function itself can check for its existence upon
repeat calls (no need to create it if it’s already there), and so that another function

fiGURe 10 .1 An error message created by
HTML5’s built-in validation.

fiGURe 10 .2 The error message created
by a custom JavaScript function.

TIP: to place the browser focus on a form element, call the
focus() method on that element when the page has loaded.

general ForM conSiderationS 379

ptg7799847

can remove that error message when appropriate. The function will also add the
error class to the form element’s label (see Figure 10.2).

To add and remove error messages:

1. Create a new JavaScript file in your text editor or IDE, to be named
errorMessages.js.

2. Begin defining the addErrorMessage() function:

function addErrorMessage(id, msg) {

 ‘use strict’;

The function needs to take the aforementioned two arguments.

3. Get a reference to the form element, and check for the existence of the span:

var elem = document.getElementById(id);

var newId = id + ‘Error’;

var span = document.getElementById(newId);

if (span) {

 span.firstChild.value = msg;

The problematic form element is the focus of the function, so a reference to
that must first be garnered. Then the script starts looking at the error span.
Its id value will be the id of the corresponding form element, plus the text
Error (e.g., firstNameError). Next, the script checks if this element already
exists. This allows for the possibility that the initial error message might
say, for example, Please enter your desired username., but a follow-up error
message—using the same span—might say That username is already taken.

If the span already exists, then its first child’s value is updated to the mes-
sage. As you’ll see in Step 4, the span’s first—and only—child will be a text
node. Alternatively, you could update the span’s innerText or textContent
attribute, depending upon the browser.

NOTE: all of the code for the book is available to be downloaded
from www.LarryUllman.com.

ms

www.LarryUllman.com

ptg7799847

4. If the span does not exist, create one:

} else {

 span = document.createElement(‘span’);

 span.id = newId;

 span.className = ‘error’

 span.appendChild(document.createTextNode(msg));

The first line within the clause creates a new element (see Chapter 9 for
more on this, if needed). The second line assigns to the element a proper
id value. And the third line applies the error class to this span. Finally, a
child node is added to this element. The child node is a text node, whose
content will be the message. Again, you could set the span’s innerText or
textContent attribute, if you’d rather.

5. Add the span to the DOM:

elem.parentNode.appendChild(span);

elem.previousSibling.className = ‘error’;

The error message, stored in the span, shouldn’t be added to the form ele-
ment, but rather made a new sibling of the form element. To do that, append
this new span to the form element’s parent. This will work so long as each
form element is within its own DIV or paragraph, as in:

<div><label for=”firstName”>First Name</label><input type=
p ”text” name=”firstName” id=”firstName” required></div>

With that HTML, elem.parentNode refers to the DIV, so appending a new
child results in:

<div><label for=”firstName” class=”error”>First Name</label>
p <input type=”text” name=”firstName” id=”firstName”
p required>MESSAGE</div>

The second line in the code assigns the error class to the element’s label
(i.e., the element’s previous sibling), as also shown in the HTML.

general ForM conSiderationS 381

ptg7799847

A simpler alternative would be to add the error class to the element’s parent
(e.g., a DIV), but that would only work if each form element has a unique
parent and if that parent doesn’t already have its own meaningful class.

6. Complete the main if-else and the function:

 } // End of main IF-ELSE.

} // End of addErrorMessage() function.

7. Begin defining the removeErrorMessage() function:

function removeErrorMessage(id) {

 ‘use strict’;

This function takes the form element id as its lone argument. It needs to
remove the span and remove the error class from the corresponding label.
As you’ll see in the following steps, this function will not directly reference
the form element, but as the addErrorMessage() function takes the form
element’s id as its first argument, it’s best to be consistent.

8. Get a reference to the span and check for its existence:

var span = document.getElementById(id + ‘Error’);

 if (span) {

There’s no point in attempting to remove the element if it doesn’t exist!

9. Remove the class from the label:

span.previousSibling.previousSibling.className = null;

This is similar to the code in Step 5, but this time the className property
is being assigned the value null.

A possible problem with this system is that it assumes that the element’s
label does not have another class, as the addErrorMessage() function
replaces the entire className value, and this function empties that value.
At the end of the chapter, you’ll see hints for how you can change this code
to fix this potential issue.

ms

ptg7799847

10. Remove the span:

span.parentNode.removeChild(span);

The first two parts of the code—span.parentNode—obtain a reference
to the span’s parent. Then the removeChild() method can be called on it,
providing the element to be removed—the span—as its argument.

11. Complete the function:

 } // End of IF.

} // End of removeErrorMessage() function.

12. Save the file as errorMessage.js, in a js directory.

At the end of the chapter, you’ll see how to use these two functions, if it’s
not already clear.

Creating tooltiPs

In order to minimize user errors, it’s best to communicate expectations to the
user while the form is being completed. If your design allows for it, you could add
notes beside the form elements, but that approach can make the page look busy.
An alternative is to use tooltips (Figure 10.3). Tooltips appear and disappear as
needed, so that only one tooltip—for the element currently being addressed—
is ever shown at a time.

From a design and programming perspective, a tooltip is a lot like a modal
window (see Chapter 9) that does not block out the rest of the page. You would
start by creating the tooltip as hardcoded HTML:

<div><label for=”username”>Username
p Usernames can only contain letters and numbers and must be
p at least 4 characters long.</label><input type=”text”
p name=”username” id=”username” required></div>

fiGURe 10 .3 The tooltip dynamically
appears beside the form element
when it receives the user’s focus.

general ForM conSiderationS 383

ptg7799847

For accessibility purposes, it’s best to put the tooltip itself within the corre-
sponding element label, but the span will be hidden on browsers that support that
CSS, so placing the HTML there won’t be as intrusive as it might originally look.
Notice that the span has a class of tooltip, which will be used by both the CSS and
the JavaScript:

label { position: relative; }

.tooltip {

 display: block;

 visibility: hidden;

 position: absolute;

 left: 30em; top: 0; padding: 0.5em; width: 10em;

 border:solid 2px #425955;

 background-color: #BFBD9F;

}

When the tooltip is to be shown, the CSS for the tooltip will move it to the right
of the form element itself, which is more natural and less impactful on the layout
of the form. For that to work, the label itself must have a position value of relative
(I’m far from a CSS expert, but that much I do know).

The CSS also hides all of the tooltips by setting the visibility property to
hidden. If you want to make this system work for devices without JavaScript, you
would have the tooltips be displayed by default, and then use JavaScript to hide
them when the window is loaded.

The JavaScript now just needs to change the tooltip’s visibility when the
corresponding form element is moused over, or gains focus:

document.getElementById(‘someFormElement’).onmouseover = showTooltip;

document.getElementById(‘someFormElement’).onfocus = showTooltip;

By watching for both events, the script recognizes both input device and key-
board-based events.

The tooltip should be hidden when the same element loses focus or the mouse
leaves it:

ms

ptg7799847

document.getElementById(‘someFormElement’).onmouseout = hideTooltip;

document.getElementById(‘someFormElement’).onblur = hideTooltip;

Since there are four event listeners to be added to each element, it’d be easier
if you create a function that does all this:

function addTooltipHandlers(elem) {

 elem.onmouseover = showTooltip;

 elem.onmouseout = hideTooltip;

 elem.onfocus = showTooltip;

 elem.onblur = hideTooltip;

}

All that remains are the showTooltip() and hideTooltip() functions. Each
would take an event as an argument, and would use that event to dynamically
change the element’s visibility accordingly:

function showToolTip(e) {

 if (typeof e == ‘undefined’) e = window.event;

 var target = e.target || e.srcElement;

 target.previousSibling.lastChild.style.visibility = ‘visible’;

}

function hideToolTip(e) {

 if (typeof e == ‘undefined’) e = window.event;

 var target = e.target || e.srcElement;

 target.previousSibling.lastChild.style.visibility = ‘hidden’;

}

The trick to these two functions is that the form element triggers the events,
but the span within the label needs to be changed. To get from the form element
to the span, refer to previousSibling, which will be the label, then lastChild.

general ForM conSiderationS 385

ptg7799847

disaBling the suBMit Button

Chapter 9 included a quick bit of code that demonstrated how to disable a submit
button, but it’s a common enough need that it’s worth repeating. Most frequently,
the submit button is disabled to prevent accidental multiple submissions, espe-
cially when the act of submitting the form begins the payment processing step in
an e-commerce site.

Disabling of the submit button is accomplished by setting the button’s disabled
property to disabled, or the Boolean true:

document.getElementById(‘submitButton’).disabled = true;

document.getElementById(‘submitButton’).disabled = ‘disabled’;

In situations like this, where a Boolean value is expected, that fact is that any
value will count as TRUE, so both the string disabled and Boolean true have the
same effect.

As an added feature, when disabling the submit button it’d be best to visually
indicate the change and status to the user. This could be done by applying a CSS
class to the button itself, by adding an element with a message beside the button,
by changing the text printed on the button, or some combination of these. The
second idea—adding a message—was just demonstrated, as it’s the same tech-
nique used to create error messages for form elements. The other three ideas were
demonstrated in Chapter 9, just not specific to a submit button. In fact, you could
use a CSS-based modal window, as explained in that chapter, to create a new layer
with a message, and also gray out the rest of the page, simultaneously blocking
the user from clicking the button again and informing them of what’s happening.

ms

ptg7799847

s

Moving on, let’s look at some specific form elements, what meaningful properties
they have, and implement some common uses of them, when it comes to JavaScript.
To start, there’s the text input and the textarea.

text inPut and textarea BasiCs

You can retrieve what the user entered into a text input or textarea by checking
its value attribute:

var data = document.getElementById(‘comments’).value;

The value attribute represents any text present in the element, whether it
was entered by the user or preset. The value property also works for hidden and
password inputs.

You can change the contents of a text input or textarea by assigning a new
string to the element’s value:

document.getElementById(‘someInput’).value = ‘new value’;

You’ve already seen this in Chapter 8, Event Handling, in which the user was
limited as to how much data could be typed in a textarea. In HTML5, you can finally
use the maxlength property for textareas, too, although you should indicate to the
user that a restriction is in place.

When it comes to validating text inputs and textareas, you can use string meth-
ods to check for a minimum length, or you can use regular expressions, when
appropriate, which are covered at the end of the chapter.

If you have a preset (i.e., default) value for a text input or textarea, the valida-
tion routines have to take that into account, only passing the validation if the text
input or textarea has a value that’s not the original. There’s a neat little trick for
doing this: using the element’s defaultValue property. I’ll explain…

TIP: htMl5 will automatically validate against the default
(i.e., placeholder) value.

teXt inputS and teXtareaS 387

ptg7799847

If you inspect an HTML element in your browser’s console window (Figure 10.4),
you’ll see many more properties than commonly used. One of these is defaultValue.
This property represents the value assigned to the value attribute, as in:

<input type=”text” name=”radius” id=”radius” value=”1” required>

With this in place, you can validate against the default value during the valida-
tion process:

if (elem.value == elem.defaultValue) {

 addErrorMessage(elem.id, ‘Please enter a value’);

}

iMPleMenting autoCoMPlete

A common, dynamic use of JavaScript and text inputs is to provide suggestions
as the user types, a feature known as autocomplete. I remember first seeing this
implemented as Google Suggest (Figure 10.5) back when it was in Google Labs, and
was absolutely blown away. Autocomplete enhances the user experience in many
ways. First, it saves the user from typing, which means it also saves the user from
making a mistake. Second, depending upon how the autocomplete is implemented,
it either puts forth the available results or the results that are most likely useful.
For example, a human resources tool for finding an employee’s record may only
offer up actual employee names, whereas Google’s autosuggest provides the most
common search terms, based upon what you’ve typed.

There are three hurdles to overcome with respect to autocomplete functionality.
The first is the searching algorithm. If you’re performing a browse, that’s not too

fiGURe 10 .4 Just a few of the
properties that exist for the
text input.

fiGURe 10 .5 Google’s Suggest
feature, updated as the user
types.

ms

ptg7799847

hard or too slow (e.g., when the user types ac, ace and active would come up, but
not didactic). If you want a true search, where the letters could be found within the
results, that takes a bit more effort (e.g., ac would apply to didactic). The second
hurdle is where the data comes from. If there’s a relatively small data set to be
searched, then it would make sense to create that set as a JavaScript array, stored
within the browser. If there’s a large data set, then you’d want to fetch the data on
the fly, using Ajax (see Chapter 11, Ajax). The third hurdle is more minor: displaying
the suggestions in a reliable, cross-browser way.

Taking these three hurdles together, a good autocomplete is complicated enough
that you may want to use a framework or library for this purpose. You’ll see multiple
examples of this in Chapter 13, Frameworks.

s

The select menu is like the text input, textarea, password, and hidden input in that
the value selected by a user is available through the value attribute:

var data = document.getElementById(‘selectMenu’).value;

But unlike with those other elements, you cannot change the select menu’s
value by assigning something new to this attribute. Instead, you must change the
menu’s selectedIndex attribute to alter the selected value. This property reflects
which item in the list, indexed beginning at 0, is selected. The following code
changes the selection to the second item:

document.getElementById(‘selectMenu’).selectedIndex = 1;

As an added complication, select menus can be set to allow for multiple selec-
tions (Figure 10.6):

<select name=”categories” id=”categories” multiple>

When multiple options are selected, the value attribute will only represent the
first selected value, as will selectedIndex. To retrieve every selected value, you
must loop through all of the options and find the ones that were selected. To access
every option, refer to the select menu’s options property. The options property is
an array, meaning it has a length attribute, usable in a for loop:

fiGURe 10 .6 A select menu
with multiple options selected.

Select MenuS 389

ptg7799847

for (var i = 0, count = elem.options.length; i < count; i++) {

 // Use elem.options[i].

}

For each option, there are selected, value, and text properties. For example,
to pull out every selected value, you would use this code:

var selected = [];

for (var i = 0, count = elem.options.length; i < count; i++) {

 if (elem.options[i].selected) {

 selected.push(elem.options[i].value);

 }

}

validating seleCt Menus

To validate that a select menu was changed by the user, just confirm that the ele-
ment’s selectedIndex property does not equal -1. This works whether the menu
allows for only a single selection or for multiple selections. If the select menu
allows for multiple selections, you can use the previous code to retrieve all the
values, and then get the length of the selected array to see how many selections
were made. If the select menu has an initial option used as a prompt (in which case
it probably doesn’t allow for multiple selections), you would want to make sure
that the selectedIndex is not 0.

Creating dYnaMiC seleCt Boxes

A common, dynamic use of select menus that requires JavaScript are linked select
menus, where the selection of an option in the first changes the possible options in
the second. For example, the first might list car makes and the linked, car models.

TIP: the data for the second select menu could be fetched from
the server using ajax, thereby minimizing the amount of data that

must first be transmitted to the client.

ms

ptg7799847

Pulling this off requires a change event on the first select menu. In the event
handler, change the options of the second menu based upon the selected value in
the first. There are a couple of ways of doing just that. In theory, a simple solution is
to assign the options as HTML to the select menu’s innerHTML property. This should
work because a select menu is an element that can contain HTML (specifically,
option elements). Unfortunately, this has been a bug in Internet Explorer since
the beginning of time (well, Web development time), and as it’s still not working
in IE9, a more involved approach is required, as you’ll see in the following steps.

For the specific example, the user will select an operating system. In the default
presentation, without use of JavaScript, the user will see one longer select menu,
with the options grouped by general type (Figure 10.7). For users with JavaScript
enabled, the menus will be progressively enhanced by spreading the options over
two menus (Figure 10.8). The second menu’s options will always be based upon
the selection in the first menu.

The important initial HTML is:

<div><label for=”os”>Operating System</label><select name=”os” id=”os”>

 <option>Choose</option>

 <optgroup label=”Windows”>

 <option value=”7 Home Basic”>7 Home Basic</option>

 <option value=”7 Home Premium”>7 Home Premium</option>

 <option value=”7 Professional”>7 Professional</option>

 <option value=”7 Ultimate”>7 Ultimate</option>

 <option value=”Vista”>Vista</option>

 <option value=”XP”>XP</option>

fiGURe 10 .7 The select menu
as it appears for users without
JavaScript.

fiGURe 10 .8 The options in the
second menu will change based
upon the value selected in the first.

Select MenuS 391

ptg7799847

 </optgroup>

 <optgroup label=”Mac OS X”>

 <option value=”10.7 Lion”>10.7 Lion</option>

 <option value=”10.6 Snow Leopard”>10.7 Snow Leopard</option>

 <option value=”10.5 Leopard”>Leopard</option>

 <option value=”10.4 Tiger”>Tiger</option>

 </optgroup>

<select></div>

You can find this code in the os.html file in the downloadable code. This page
also includes the os.js file, to be written in the following steps.

To create linked select menus:

1. Create a new JavaScript file in your text editor or IDE, to be named os.js.

2. Begin defining the updateMenu() function:

function updateMenu() {

 ‘use strict’;

This function does not need to take any arguments as it’s already known
exactly what HTML elements will be used within this function.

3. Get references to the two select menus:

var os = document.getElementById(‘os’);

var os2 = document.getElementById(‘os2’);

The second menu will be dynamically created in the initializing function.

4. Create an empty variable:

var options = null;

This variable will be used to store the second menu’s options, based upon
the selection in the first menu. The variable is initially assigned a null value,
so that it can be used as an indicator later in the script.

ms

ptg7799847

5. Empty the second menu:

while (os2.firstChild) {

 os2.removeChild(os2.firstChild);

}

Because the second menu could be used multiple times—for example, a user
first selects Windows, then changes the first menu to Mac OS X, this function
must first make sure there are no options in the second menu, prior to dynami-
cally adding the appropriate ones. To clear out all the options, use a loop. The
while loop will continue to execute so long as the element (os2) has a child
element (and, if it has at least one child, then it has a firstChild). Within
the while loop the first child is removed. Once the element is empty—has
no children—the condition will be FALSE.

6. Assign the proper options for the second menu based upon the selected
value of the first:

if (os.value == ‘Windows’) {

 options = [‘7 Home Basic’, ‘7 Home Premium’,
 p ‘7 Professional’, ‘7 Ultimate’, ‘Vista’, ‘XP’];

} else if (os.value == ‘Mac OS X’) {

 options = [‘10.7 Lion’, ‘10.6 Snow Leopard’,
 p ‘10.5 Leopard’, ‘10.4 Tiger’];

}

The first condition checks if the value of the first select menu equals Win-
dows. If this is TRUE, then options is assigned a new array of values. If the
first menu’s value equals Mac OS X, then options is assigned a different
array of values.

TIP: this while loop construct can be used to clear the children
from any element type.

Select MenuS 393

ptg7799847

7. If there are options, enable the second menu:

if (options) {

 os2.disabled = false;

If the options variable now has a TRUE value, then the second menu needs
to be enabled (because it’s initially disabled, as you’ll soon see).

8. Add the new options to the menu:

for (var i = 0, count = options.length; i < count; i++) {

 var opt = document.createElement(‘option’);

 opt.text = opt.value = options[i];

 os2.appendChild(opt);

}

To add each new option to the select menu, loop through the options array.
Within the loop, a new element is created, of type option. Then the element’s
text and value properties are assigned the current array value (e.g., 7 Home
Basic). This one line is just a shortcut for:

opt.text = options[i];

opt.value = options[i];

This shortcut works because assignment works from right to left: The value
on the far right—options[i]—will be assigned to the variable on its imme-
diate left—opt.value, which will then be assigned to the variable on its
immediate left—opt.text.

Finally, the new element is added to the menu.

9. Complete the options if-else if and the function:

 } else {

 os2.disabled = true;

 }

} // End of updateMenu() function.

ms

ptg7799847

If the user, for whatever reason, goes back and selects the first option from the
first menu, which is Choose, then the second menu needs to be disabled and
show no values. The values will have already been cleared out by this function,
and since options was not assigned a new array of values if the user didn’t
select Windows or Mac OS X, the only thing left to do is disable the menu.

10. Begin defining the initializing function:

window.onload = function() {

 ‘use strict’;

11. Clear out the first menu’s options:

var os = document.getElementById(‘os’);

while (os.firstChild) {

 os.removeChild(os.firstChild);

}

If JavaScript is enabled, then the original menu will be replaced with a more
specific one, once the window has loaded. First, though, the original values
have to be removed, using the code already explained.

12. Add the new options:

var options = [‘Choose’, ‘Windows’, ‘Mac OS X’];

for (var i = 0, count = options.length; i < count; i++) {

 var opt = document.createElement(‘option’);

 opt.text = opt.value = options[i];

 os.appendChild(opt);

}

This is the same code as that in the updateMenu() function, just using dif-
ferent values.

13. Add a change event handler to the menu:

os.onchange = updateMenu;

Select MenuS 395

ptg7799847

14. Create the second menu:

var os2 = document.createElement(‘select’);

os2.id = ‘os2’;

os2.disabled = true;

os.parentNode.appendChild(os2);

To create the second menu, first an element of type select is created. It is
then assigned a unique id value, and initially disabled. It should be placed
next to the original select menu, so it’s appended to that menu’s parent.

15. Complete the function:

};

16. Save the file as os.js, in a js directory, and test it in your Web browser
(Figure 10.9).

s

Checkboxes have not been given much attention in this book thus far. Unlike the
text inputs and textareas, users do not enter data through a checkbox but just
toggle its state: checked or not checked. The state of any checkbox can be found
by looking at its checked property, which will be either true or false:

var which = document.getElementById(‘someCheckbox’).checked;

You can programmatically check a box by assigning true (or the string checked)
to that property:

which.checked = true;

You can fetch the checkbox’s value through the value property:

if (which.checked) {

 var value = document.getElementById(‘someCheckbox’).value;

}

fiGURe 10 .9 The options in the
second menu when Mac OS X
is selected in the first.

ms

ptg7799847

One use of checkboxes and JavaScript is to have JavaScript take some action
when a given checkbox is checked. For example, some sites will disable the submit
button—prevent the submission of the form—until the user has actively indicated
agreement to some terms (that, without a doubt, the user never read) by clicking
a checkbox:

window.onload = function() {

 var termsBox = document.getElementById(‘termsCheckbox’);

 termsBox.onclick = function() {

 document.getElementById(‘submit’).disabled = false;

 };

};

That’s the quick and dirty version, which wouldn’t re-disable the submit but-
ton if the user, for whatever reason, unchecked the box. If you want to be more
formal, you would set a change event handler for the checkbox, and then enable
or disable the submit button based upon the checkbox’s checked value. You’ll see
an example of this at the end of the chapter.

A checkbox is also often used on e-commerce sites to provide a quick way of
equating the shipping address with the billing address. That code would be along
the lines of:

window.onload = function() {

 document.getElementById(‘sameAsBilling’).onclick = copyBilling;

};

function copyBilling() {

 document.getElementById(‘shippingStreet1’).value =
 p document.getElementById(‘billingStreet1’).value;

 // Repeat for all elements!

}

That code will work easily for the text inputs (although, again, you could more
specifically watch for change events and then look at the checked property). For
a select menu, you can use the following, so long as both menus have the same
options in the same order:

checKBoXeS 397

ptg7799847

document.getElementById(‘shippingState’).selectedIndex =
p document.getElementById(‘billingState’).selectedIndex;

One last common use of checkboxes (as far as something that needs to be
scripted) is to have a checkbox act as a master to a number of other checkboxes
(Figure 10.10). This has never been that hard, but by tapping into CSS selectors
(see Chapter 9), it’s even easier now. The relevant HTML is:

<input type=”checkbox” name=”toggle” id=”toggle” value=”toggle”>
p All/None

<p><input type=”checkbox” name=”ham” id=”ham” value=”ham”>
p Ham <input type=”checkbox” name=”mushrooms” id=”mushrooms”
value=”mushrooms”> Mushrooms <input type=”checkbox” name=”onions”
p id=”onions” value=”onions”> Onions <input type=”checkbox”
p name=”sausage” id=”sausage” value=”sausage”> Sausage
p <input type=”checkbox” name=”greenPeppers” id=”greenPeppers”
p value=”greenPeppers”> Green Peppers </p>

You can find this code in the pizza.html file in the downloadable code. This
page also includes the pizza.js file, to be written in the following steps.

To create a master checkbox:

1. Create a new JavaScript file in your text editor or IDE, to be named pizza.js.

2. Begin defining the toggleCheckboxes() function:

function toggleCheckboxes () {

 ‘use strict’;

3. Get the master checkbox’s checked value:

var status = document.getElementById(‘toggle’).checked;

The value of all the other checkboxes will match that of the master, so this
value is fetched and assigned to a variable for repeated use later.

fiGURe 10 .10 The master
checkbox will toggle all the
other checkboxes.

ms

ptg7799847

4. Get all the checkboxes:

var boxes = document.querySelectorAll(‘input[type=”checkbox”]’);

Historically, finding all the checkboxes on a page could be cumbersome,
as you couldn’t use getElementById(), which requires unique id values
(or, you’d have to know all the individual id values in advance and get
each one separately). One solution is to use CSS selectors, introduced in
Chapter 9. The specific selector, which comes from CSS 2.1, selects every
input element whose type attribute equals checkbox. This selector, and
the querySelectorAll() method, will work on all modern browsers. The
alternative would be to invoke getElementsByTagName(), selecting all
the inputs, and then check the each input’s type within the loop (Step 5).

5. Loop through almost every checkbox and update its checked property:

for (var i = 1, count = boxes.length; i < count; i++) {
p boxes[i].checked = status;

} // End of FOR loop.

The querySelectorAll() method will return the matching elements in the
order they appear in the browser. Since the master checkbox appears first,
and there’s no need to touch its checked property, the loop starts with the
second checkbox, by initializing i at 1. Within the loop, the current check-
box’s checked property is assigned the value of status.

6. Complete the function:

} // End of toggleCheckboxes() function.

7. Create the event handler once the window has loaded:

window.onload = function() {

 ‘use strict’;

 document.getElementById(‘toggle’).onchange =
 p toggleCheckboxes;

};

8. Save the file as pizza.js, in a js directory, and test it in your Web browser.

checKBoXeS 399

ptg7799847

s

Radio buttons are quite similar in functionality to checkboxes, but the user is
restricted to only selecting one radio button in each group. As with checkboxes, the
checked property has a Boolean value indicating if the given element is checked.
Unlike checkboxes, you cannot just grab a reference to a specific radio button
and look at its checked property, but rather you have to loop through all the radio
buttons in a group to find the checked one (much as you would loop through
every option in a select menu when multiple options might be checked). This is
complicated because a group of radio buttons must have the same name attribute
value—to allow only one to be checked—but id values, by definition, must be
unique within a page. A solution is to use the getElementsByName() method, which
is like getElementsByTagName():

<!-- HTML: -->

<input type=”radio” name=”gender” value=”Male”> Male
p <input type=”radio” name=”gender” value=”Female”> Female

// JavaScript:

var radios = document.getElementsByName(‘gender’);

for (var i = 0, count = radios.length; i < count; i++) {

 // Do something with radios[i].

}

When a radio button is checked, you can use its value property to get the value
of the particular user selection. To validate that the user did select at least one
radio button, use a flag variable:

var radios = document.getElementsByName(‘gender’);

var selected;

for (var i = 0, count = radios.length; i < count; i++) {

 if (radios[i].checked) {

 selected = radios[i].value;

 break;

 }

}

if (selected) { // OK!

ms

ptg7799847

By the end of that code, the selected variable will still be null if no radio but-
ton was selected, or have the value of the actual selection.

In terms of dynamic effects with radio buttons, much of what you’d do could
parallel that done with checkboxes. The most interesting modern use of radio
buttons, in my opinion, is as a star rating system as many sites have (Figure 10.11).
Because users can only select one in a group of radio buttons, it makes a good
choice for a rating system (you could also use a select menu). By adding some
JavaScript and CSS, you can turn the boring buttons into visual stars, providing
excellent feedback to the user as he or she rates whatever is being rated. And
because the basic functionality is in the radio buttons, it degrades nicely across
all browsers. There’s too much CSS to make such an example useful for this book,
but look online for tutorials if you’re curious (the JavaScript itself shouldn’t be too
hard for you by this point).

s

The last form element type to discuss is the file input, which provides a way for
the user to upload a file from his or her computer to the server (Figure 10.12).
This discussion will be short, though, as using traditional HTML (as opposed to
HTML5) offers little that can be done with file inputs. (More dynamic file-related
functionality can be accomplished using a Flash or Java plug-in, or an iframe.)

What you can do in JavaScript is access the standard HTML properties of the
file input, such as its class (i.e., className). You can also access the input’s value
property, which will be populated once the user has selected a file to be uploaded.
However, as a security measure, the value will be something like C:\fakepath\
actualFileName.ext. For example, when using Safari on a Mac, which doesn’t
even have a C:\ directory, if the somefile.txt file is selected, then the input’s value
will be C:\fakepath\somefile.txt. This is a good thing, as it prevents JavaScript
from learning anything about the user’s file system. Still, you can use JavaScript
to validate that a file was at least selected. You cannot set the value of a file input,
which is illogical considering the lack of access to the file system.

File inputs are styled, and even behave, to a lesser degree, differently from
one browser and operating system to the next. You can use CSS and JavaScript to
standardize this, although that’s not terribly interesting in JavaScript terms.

fiGURe 10 .11 This star rating
system (at Amazon) is created
by applying CSS and JavaScript
to radio buttons.

fiGURe 10 .12 A file input on IE,
with a bit of styling.

handling File uploadS 401

ptg7799847

The events that the file input triggers—that you may want to watch for—are:
change, focus, and blur. You would think that the file input would trigger a click
event, but it doesn’t. Oddly, you can call the click() method on the element:

document.getElementById(‘fileInput’).click();

On all browsers but Firefox, doing this will open the file selection dialog, as
if the user had clicked on the input manually (Figure 10.13). Firefox does not do
this, and there’s a strong argument that you shouldn’t even attempt this unless it’s
clearly the user’s intent to select a file on her or his computer—which, of course,
the user can indicate by just clicking on the file input him or herself.

HTML5 makes it possible for a user to upload multiple files through a single
file input and has other file uploading features. With some fancy JavaScript, you
can replicate multiple-file capability by dynamically creating a new file input each
time the user selects a file to be uploaded.

fiGURe 10 .13 The IE prompt
to select a file to be uploaded
from my computer.

ms

ptg7799847

s

Regular expressions are an amazingly powerful (but tedious) tool available in
most of today’s programming languages and even in many applications. Think of
regular expressions as an elaborate system of matching patterns. You first write
the pattern and then use one of JavaScript’s built-in functions to apply the pattern
to a value (regular expressions are applied to strings, even if that means a string
with a numeric value). Whereas a string function could see if the name John is in
some text, a regular expression could just as easily find John, Jon, and Jonathon.
Regular expressions are available in most languages and technologies: learn how
to use them once and you can use them almost anywhere!

Because the regular expression syntax is so complex, while the functions that
use them are simple, the focus over these pages will be on mastering the syntax
in little bites. There are different kinds of regular expressions; JavaScript supports
Perl-Compatible Regular Expressions (PCRE), the most common type.

What are regular exPressions?

Regular expressions are merely the application of a pattern to a value. In JavaScript,
the pattern itself is represented as a RegExp object. Through different methods of
the RegExp and String objects, you can apply that pattern to any value you need,
whether it’s user data or that coming from another server.

As an example of why a regular expression is useful, let’s think about a valid email
address, a surprisingly hard value to validate. There’s no point in getting into the full
technical details, but an email address is generally of the syntax: name@domain.
Looking at that, three things are already known: there has to be exactly one @; it
cannot be the first character; and it cannot be the last character. You could use the
indexOf() method to confirm these three qualities, but email addresses are more
demanding than that.

The name part can contain any letters, case-insensitive, plus numbers, a dash,
and a period. But the name cannot contain a space and certain other characters. So
validating the name part has just become much harder. The domain can also contain
those same characters and must contain at least one period (as in example.com).
Moreover, only 2 to 6 letters can come after the final period, from .tr for Turkey
or .museum. In theory, you might be able to validate all of these conditions using
the String methods, but the code would be both laborious and slow. A regular
expression can validate all of those conditions in one pattern.

regular eXpreSSionS 403

ptg7799847

For a more pedestrian example, think about the format of the United States zip
code: it can be either exactly five digits (12345) or five+four (12345-6789). Either is
valid, and the same regular expression can immediately validate both.

Creating a regular exPression

Unlike in other languages, a regular expression in JavaScript is a specific type, just
like Number, String, or Date. As with most value types in JavaScript, there are two
ways to create a regular expression value. The first, and preferred, approach is to
create a literal regular expression, accomplished by placing the regular expression
pattern between forward slashes:

var regexp = /pattern/;

Understand up front that the pattern is not to be quoted. For example, the
pattern for matching a U.S. zip code is:

var zip = /^\d{5}(-\d{4})?$/;

That code may seem like madness to you (and this is a relatively easy regular
expression), but you’ll understand it shortly.

After the closing slash you can place flags that impact how the regular expression
behaves. The easiest to understand is i, which makes the pattern case-insensitive.
Thus, each of these three patterns match a letter, case-insensitive:

var letter = /[A-Za-z]/;

var letter = /[A-Z]/i;

var letter = /[a-z]/i;

The second way to create a regular expression is to create a new object of type
RegExp. Just as you should never create a String by formally making a String
object, you’ll rarely want to create a RegExp object—and doing so brings up other
syntactical issues, so you won’t see that approach in this book.

ms

ptg7799847

regular exPression FunCtions

Once you have a regular expression object, you can use it to compare that pattern
to a string. There are four methods used for this purpose:

J test(), available to RegExp objects

J exec(), available to RegExp objects

J search(), available to String objects

J match(), available to String objects

Assuming you’ve created the regular expression as the variable r, and you’re
testing the string value s, these functions would be used like so:

r.test(s);

r.exec(s);

s.search(r);

s.match(r);

As you can see, it’s largely a matter of either calling a RegExp method and pro-
viding the string as the argument, or calling a String method and providing the
regular expression as the argument.

The test() method is perhaps the most commonly used method for testing
regular expressions. It’s also the fastest. This method returns a Boolean value
indicating if a match was made or not.

The search() method of the String object can be used similarly, as it behaves
like indexOf(). If part or all of the string matches the regular expression, search()
returns the first indexed position where the match begins. It returns -1 if no match
was made. Unlike indexOf(), you cannot indicate a position to start the search
(i.e., the search will always start at the beginning).

The exec() method is slower than test() as it returns the match that was found
(in more complicated regular expressions, there are multiple matches). If you only
need to confirm if a match was made, which is normally the case with a regular
expression for validation purposes, you should use test() instead of exec(). If
no match was made, exec() returns null.

regular eXpreSSionS 405

ptg7799847

The match() method is like exec() for basic usage, but differs when using
groupings, a more advanced subject not being discussed here.

Also, the split() method of the String object can take a regular expression as
the argument for the separator. This allows you to, say, split some text based upon
HTML elements found within it. The replace() method of the String object can
take a regular expression to find the data to be replaced.

For the purposes of the rest of this chapter, while learning regular expressions, I’d
recommend that you use the console interface of your browser, as you’ll see in several
of the images. In that environment, you don’t have to create actual variables, but doing
so allows you to easily reuse the regular expressions or the strings (Figure 10.14).

deFining siMPle Patterns

Using one of JavaScript’s regular expression functions is easy; defining patterns to
use is hard. There are lots of rules for creating a pattern. You can use these rules
separately or in combination, making your pattern simple or complex. To start, then,
you’ll see what characters are used to define a simple pattern. I’ll define patterns
in bold and will indicate what the pattern matches in italics. You can test any of
these using your browser’s console window, as in Figure 10.14.

The first type of character you will use for defining patterns is a literal. A lit-
eral is a value that is written exactly as it is interpreted. For example, the pattern
a will match the letter a, ab will match ab, and so forth. Therefore, assuming a
case-insensitive search is performed, rom will match any of the following strings,
since they all contain rom:

J CD-ROM

J Rommel crossed the desert.

J I’m writing a bildungsroman.

Along with literals, your patterns will use meta-characters. These are special
symbols that have a meaning beyond their literal value (Table 10.1). While a sim-
ply means a, the period (.) will match any single character except for a newline
(. matches a, b, c, the underscore, a space, etc., just not \n). To match any meta-
character, you will need to escape it, much as you escape a quotation mark to print
it. Hence \. will match the period itself. So 1.99 matches 1.99 or 1B99 or 1299 (a 1
followed by any character followed by 99) but 1\.99 only matches 1.99.

fiGURe 10 .14 Creating and
testing a regular expression
within IE.

ms

ptg7799847

TabLe 10 .1 Meta-Characters

CharaCter Meaning

\ Escape character

 ̂ Indicates the beginning of a string

$ Indicates the end of a string

. Any single character except newline

| Alternatives (or)

[Start of a class

] End of a class

(Start of a subpattern

) End of a subpattern

{ Start of a quantifier

} End of a quantifier

Two meta-characters specify where certain characters must be found. There is
the caret (^), which marks the beginning of a string. There is also the dollar sign ($),
which marks the conclusion of a string. Accordingly, ̂ a will match any string begin-
ning with an a, while a$ will correspond to any string ending with an a. Therefore,

^a$ will only match a (a string that both begins and ends with a), equivalent to:

if (str == ‘a’) {

These two meta-characters—the caret and the dollar sign—are crucial to vali-
dation, as validation normally requires checking the value of an entire string, not
just the presence of one string in another. For example, using an email- matching
pattern without those two characters will match any string containing an email
address. Using an email-matching pattern that begins with a caret and ends with
a dollar sign will match a string that contains only a valid email address.

Regular expressions also make use of the pipe (|) as the equivalent of or: a|b
will match strings containing either a or b. (Using the pipe within patterns is called
alternation or branching.) So yes|no accepts either of those two words in their
entirety (the alternation is not just between the two letters surrounding it: s and n).

regular eXpreSSionS 407

ptg7799847

Once you comprehend the basic symbols, then you can begin to use parenthe-
ses to group characters into more involved patterns. Grouping works as you might
expect: (abc) will match abc, (trout) will match trout. Think of parentheses as
being used to establish a new literal of a larger size. Because of precedence rules
in Perl-Compatible Regular Expressions, yes|no and (yes)|(no) are equivalent. But
(even|heavy\-) handed will match either evenhanded or heavy-handed.

To use simple patterns:

1. Load a console in your Web browser, if it is not already.

2. Check if a string contains the letters cat.

To do so, use the literal cat as the pattern and any number of strings as the
subject. Any of the following would be a match: catalog, catastrophe, my cat
left, etc. For the time being, use all lowercase letters, as cat will not match Cat.

Remember to use delimiters around the pattern as well (see the figures).

3. Check if a string starts with cat.

To have a pattern apply to the start of a string, use the caret as the first
character (^cat). The sentence my cat left will not be a match now.

4. Check if a string contains the word color or colour (Figure 10.15).

The pattern to look for the American or British spelling of this word is
col(o|ou)r. The first three letters—col—must be present. This needs to be
followed by either an o or ou. Finally, an r is required.

fiGURe 10 .15 Three different
simple regular expressions,
tested in the browser.

TIP: if you are looking to match an exact string, without any
flexibility, you should always use the indexOf() method, or an

equality comparison, which are much faster.

ms

ptg7799847

using quantiFiers

You’ve just seen and practiced with a couple of the meta-characters, the most
important of which are the caret and the dollar sign. Next, there are three meta-
characters that allow for multiple occurrences: a* will match zero or more a’s (no
a’s, a, aa, aaa, etc.); a+ matches one or more a’s (a, aa, aaa, etc., but there must
be at least one); and a? will match up to one a (a or no a’s match). These meta-
characters all act as quantifiers in your patterns, as do the curly braces. Table 10.2
lists all of the quantifiers.

TabLe 10 .2 Quantifiers

CharaCter Meaning

? 0 or 1

* 0 or more

+ 1 or more

{x} Exactly x occurrences

{x,y} Between x and y (inclusive)

{x,} At least x occurrences

To match a certain quantity of a thing, put the quantity between curly braces
({}), stating a specific number, just a minimum, or both a minimum and a maximum.
Thus, a{3} will match aaa; a{3,} will match aaa, aaaa, etc. (three or more a’s);
and a{3,5} will match just aaa, aaaa, and aaaaa (between three and five). When
using curly braces to specify a number of characters, you must always include
the minimum number. The maximum is optional: a{3} and a{3,} are acceptable,
but a{,3} is not.

Note that quantifiers apply to the thing that came before it, so a? matches zero or
one a’s, ab? matches an a followed by zero or one b’s, but (ab)? matches zero or one
ab’s. Therefore, to match color or colour, you could also use colou?r as the pattern.

regular eXpreSSionS 409

ptg7799847

To use simple patterns:

1. Load a console in your Web browser, if it is not already.

2. Check if a string contains the letters c and t, with one or more letters in
between.

To do so, use c.+t as the pattern and any number of strings as the subject.
Remember that the period matches any character (except for the newline).
Each of the following would be a match: cat, count, coefficient, etc. The
word doctor would not match, as there are no letters between the c and
the t (although doctor would match c.*t).

3. Check if a string matches either cat or cats (Figure 10.16).

To start, if you want to make an exact match, use both the caret and the
dollar sign. Then you’d have the literal text cat, followed by an s, followed
by a question mark (representing 0 or 1 s’s). The final pattern—^cats?$—
matches cat or cats but not my cat left or I like cats.

4. Check if a string ends with .33, .333, or .3333.

To find a period, escape it with a backslash: \.. To find a three, use a literal
3. To find a range of 3’s, use the curly braces ({}). Putting this together, the
pattern is \.3{2,4}. Because the string should end with this (nothing else
can follow), conclude the pattern with a dollar sign: \.3{2,4}$.

Admittedly, this is kind of a stupid example (not sure when you’d need to
do exactly this), but it does demonstrate several things. This pattern will
match lots of things—12.333, varmit.3333, .33, look .33—but not 12.3 or 12.334.

5. Match a five-digit number.

A number can be any one of the numbers 0 through 9, so the heart of the
pattern is (0|1|2|3|4|5|6|7|8|9). Plainly said, this means: a number is a 0 or
a 1 or a 2 or a 3…. To make it a five-digit number, follow this with a quanti-
fier: (0|1|2|3|4|5|6|7|8|9){5}. Finally, to match this exactly (as opposed to
matching a five-digit number within a string), use the caret and the dollar
sign: ^(0|1|2|3|4|5|6|7|8|9){5}$.

This, of course, is one way to match a United States zip code as five digits.

fiGURe 10 .16 Two more com-
plicated and flexible regular
expressions.

ms

ptg7799847

s

Because the rules for creating regular expressions are so complex, I’ve done
my best to simplify the topic here, with an emphasis on the most important
bits. When just using regular expressions for form validation, this information
will suffice, providing better security and data integrity without making your
brain hurt (hopefully). In time, there are other things to learn when it comes to
regular expressions. Just the patterns themselves can be expanded, using back
references and look-aheads and look-behinds and all sorts of crazy things. You
can also, in the JavaScript code, find specific matches. For example, a regular
expression can match a zip code and simultaneously break that code into its
five digits and its “plus four.” You can also use regular expressions in replace-
ments: swapping out a matched pattern with some other text. That idea is
useful, for example, to dynamically turn valid uRLs into active HTML links.

Once you feel comfortable with the basics of regular expressions, you can
start looking into these other topics.

using CharaCter Classes

As the last example demonstrated, relying solely upon literals in a pattern can be
tiresome. Having to write out all those digits to match any number is silly. Imagine
if you wanted to match any four-letter word: ^(a|b|c|d…){4}$ (and that doesn’t
even take into account uppercase letters)! To make these common references easier,
you can use character classes.

Classes are created by placing characters within square brackets ([]). For example,
you can match any one vowel with [aeiou]. This is equivalent to (a|e|i|o|u). Or you
can use the hyphen to indicate a range of characters: [a-z] is any single lowercase
letter and [A-Z] is any uppercase, [A-Za-z] is any letter in general, and [0-9] matches
any digit. As an example, [a-z]{3} would match abc, def, oiw, etc.

Within classes, most of the meta-characters are treated literally, except for four.
The backslash is still the escape, but the caret (^) is a negation operator when used
as the first character in the class. So [^aeiou] will match any non-vowel. The only
other meta-character within a class is the dash, which indicates a range. (If the
dash is used as the last character in a class, it’s a literal dash.) And, of course, the
closing bracket (]) still has meaning as the terminator of the class.

regular eXpreSSionS 411

ptg7799847

s

Regular expressions are amazing and powerful, but they are expensive in
terms of code execution. To minimize the impact on your script’s perfor-
mance, only use a regular expression if you absolutely must. There are many
times where a string method will do the trick, or where simply checking the
length of a string is good enough for client-side validation.

When you do use regular expressions, assign the pattern to a variable (i.e.,
create a regular expression object) when that regular expression might be
tested multiple times by the same script. This way the browser can optimize
the performance.

Smart regular expression patterns are also written to “fail fast.” This is to say that
invalid values will be ruled out quickly, such as a uRL not beginning with http.

Finally, alternation (using the pipe) can adversely affect performance, too. If
you can, use a character class instead. When you do have to use alternation,
try to keep it to as few characters as possible, so that JavaScript does not have
to consider quite so many possibilities when analyzing the validity of a string.

Naturally, a class can have both ranges and literal characters. A person’s first
name, which can contain letters, spaces, apostrophes, and periods, could be rep-
resented by [A-z ‘\.] The period doesn’t need to be escaped within the class, as it
loses its meta-meaning there, but I generally err on the side of escaping potentially
problematic characters just to be safe.

Along with creating your own classes, there are six predefined classes that have
their own shortcuts (Table 10.3). The digit and space classes are easy to understand.
The word character class doesn’t mean “word” in the language sense but rather as
in a string unbroken by spaces or punctuation. You should be aware that the word
class is only meaningful when using non-accented Latin characters (A through Z).
Other languages, which don’t use or aren’t limited to that letter range, can have

“words” using other character combinations.

ms

ptg7799847

TabLe 10 .3 Character Classes

Class shortCut Meaning

[0-9] \d Any digit

[\f\r\t\n\v] \s Any white space

[A-Za-z0-9_] \w Any word character

[^0-9] \D Not a digit

[^\f\r\t\n\v] \S Not white space

[^A-Za-z0-9_] \W Not a word character

Using this information, the five-digit number (aka, zip code) pattern could
more easily be written as ^[0-9]{5}$ or ^\d{5}$. As another example, can\s?not
will match both can not and cannot (the word can, followed by zero or one space
characters, followed by not).

To use character classes:

1. Load a console in your Web browser, if it is not already.

2. Check if a string is formatted as a valid United States zip code (see Figure 10.14).
A United States zip code always starts with five digits (^\d{5}). But a valid
zip code could also have a dash followed by another four digits (-\d{4}$). To
make this last part optional, use the question mark (the 0 or 1 quantifier).
This complete pattern is then ^(\d{5})(-\d{4})?$. To make it all clearer, the
first part of the pattern (matching the five digits) is also grouped in paren-
theses, although this isn’t required in this case.

3. Check if a string contains no spaces.

The \S character class shortcut will match non-white space characters. To
make sure that the entire string contains no spaces, use the caret and the
dollar sign: ^\S$. If you don’t use those, then all the pattern is confirming
is that the subject contains at least one non-space character.

regular eXpreSSionS 413

ptg7799847

4. Validate an email address (Figure 10.17).

The pattern ̂ [\w.-]+@[\w.-]+\.[A-Za-z]{2,6}$ provides for reasonably good
email validation. It’s wrapped in the caret and the dollar sign, so the string
must be a valid email address and nothing more. An email address starts
with letters, numbers, and the underscore (represented by \w), plus a period
(.) and a dash. This first block will match larryullman, larry77, larry.ullman,
larry-ullman, and so on. Next, all email addresses include one and only
one @. After that, there can be any number of letters, numbers, periods,
and dashes. This is the domain name: larryullman, smith-jones, amazon.
co (as in amazon.co.uk), etc. Finally, all email addresses conclude with one
period and between two and six letters. This accounts for .com, .edu, .info,

.travel, etc. This email address validation pattern is pretty good, although
not perfect. It will allow some invalid addresses to pass through (like ones
starting with a period or containing multiple periods together). However, a
100 percent foolproof validation pattern is ridiculously long, and frequently
using regular expressions is really a matter of trying to exclude the bulk of
invalid entries without inadvertently excluding any valid ones.

s

Boundaries are shortcuts for helping to find, um, boundaries. In a way, you’ve
already seen this: using the caret and the dollar sign to match the beginning
or end of a value. But what if you wanted to match boundaries within a value?

The clearest boundary is between a word and a non-word. A “word” in this
case is not cat, month, or zeitgeist, but in the \w shortcut sense: the letters
A through Z (both upper- and lowercase), plus the numbers 0 through 9,
and the underscore. To use words as boundaries, there’s the \b shortcut. To
use non-word characters as boundaries, there’s \B. So the pattern \bfor\b
matches they’ve come for you but doesn’t match force or forebode. Therefore
\bfor\B would match force but not they’ve come for you or informal.

fiGURe 10 .17 This more
strict pattern is a pretty good,
although not perfect, valida-
tion tool for an email address.

ms

ptg7799847

puttInG It all toGether

A fitting conclusion to this chapter is to take all the form information, the ability
to create error messages, and the newfound knowledge of regular expressions
to create one complete example. The specific example will be a registration page
(Figure 10.18). JavaScript will then be layered on top to:

J Disable the submit button until the user agrees to the terms (by checking
that box).

J Provide a tooltip for the format of the phone number (Figure 10.19).

J Validate the form, partially using regular expressions.

J Report errors inline (Figure 10.20).

J Just a snippet of the HTML form is:

<div class=”two”><label for=”firstName”>First Name
p </label><input type=”text” name=”firstName” id=”firstName”
p required></div>

<div class=”two”><label for=”lastName”>Last Name</label>
p <input type=”text” name=”lastName” id=”lastName”
p required></div>

<div class=”two”><label for=”email”>Email Address
p </label><input type=”email” name=”email” id=”email”
p required></div>

fiGURe 10 .18 The registration form.

fiGURe 10 .19 A tooltip indicates to the user the
allowed formats for the phone number.

fiGURe 10 .20 Error messages appear beside each
invalid form element.

putting it all together 415

ptg7799847

<div class=”two”><label for=”phone”>Phone Number
p In the format XXX XXX XXXX or
p XXX-XXX-XXXX or XXXXXXXXXX.</label>
p <input type=”text” name=”phone” id=”phone” required></div>

<div class=”two”><label for=”city”>City</label>
p <input type=”text” name=”city” id=”city” required></div>

<div class=”two”><label for=”state”>State</label>
p <select name=”state” id=”state”>

 <option value=””>Select a State</option>

 <option value=”AL”>Alabama</option>

You can download the complete HTML page, along with the requisite CSS, from
www.LarryUllman.com.

For the JavaScript, the example is going to use the utilities.js script from
Chapter 8 to help with the event listener registration. Within it, three function
definitions will be added: enableTooltips(), showTooltip(), and hideTooltip().
You can see the utilities.js script in the downloads (within the Ch10/js folder)
for specifics, if you don’t know how to define those yourself. You could also define
the addErrorMessage() and removeErrorMessage() functions there, too. (And, at
that point, those functions could be written to use the U.$() shortcut.)

Therefore, the HTML page needs to include these three JavaScript files, in this order:

J utilites.js

J errorMessages.js

J register.js

The last one will be written in the following steps.
To create a fully formed form:

1. Create a new JavaScript file in your text editor or IDE, to be named register.js.

2. Begin defining the validateForm() function:

function validateForm(e) {

 ‘use strict’;

 if (typeof e == ‘undefined’) e = window.event;

ms

www.LarryUllman.com

ptg7799847

The function does need to take the event as an argument, in order to prevent
the default browser behavior—the submission of the form to the server—
should an error occur.

3. Get the form element references:

var firstName = U.$(‘firstName’);

var lastName = U.$(‘lastName’);

var email = U.$(‘email’);

var phone = U.$(‘phone’);

var city = U.$(‘city’);

var state = U.$(‘state’);

var zip = U.$(‘zip’);

var terms = U.$(‘terms’);

I’m getting references to every form element, although they won’t all be
validated within this function (to save space in the book). Instead of using
document.getElementById(), U.$() is being used, which is a shortcut
defined in the utilities.js script. For each, the variable’s value is the
element itself, not just its value. A couple of the elements will be validated
based on a property other than value and it’s best to be consistent.

4. Create a flag variable:

var error = false;

This variable will be used to confirm whether or not the form was completed
properly. It’s initially set to false, indicating that no errors have occurred.

5. Validate the first name:

if (/^[A-Z \.\-’]{2,20}$/i.test(firstName.value)) {

 removeErrorMessage(‘firstName’);

} else {

 addErrorMessage(‘firstName’, ‘Please enter your first
 p name.’);

 error = true;

}

putting it all together 417

ptg7799847

The first name is being validated using a regular expression. The specific
expression allows for any letter, case-insensitive, plus a space, a period,
and a hyphen. The value must be between 2 and 20 characters long. If the
result returned by test() is true, this condition will be TRUE, and the
removeErrorMessage() function is called in case an error was previously
added. If the value does not pass the test, then the addErrorMessage()
function is called and the error variable is assigned the value true.

6. Validate the email address:

if (/^[\w.-]+@[\w.-]+\.[A-Za-z]{2,6}$/.test(email.value)) {

 removeErrorMessage(‘email’);

} else {

 addErrorMessage(‘email’, ‘Please enter your email
 p address.’);

 error = true;

}

The email address pattern has already been explained, and while not flaw-
less, is sufficiently strict.

7. Validate the phone number:

if (/\d{3}[\-\.]?\d{3}[\-\.]?\d{4}/.test(phone.value)) {

 removeErrorMessage(‘phone’);

} else {

 addErrorMessage(‘phone’, ‘Please enter your phone
 p number.’);

 error = true;

}

The phone number pattern requires three digits, three digits, and then four
digits. To allow for some flexibility, between those groupings one space,
hyphen, or period is allowed, but is not required.

ms

ptg7799847

8. Validate the state:

if (state.selectedIndex != 0) {

 removeErrorMessage(‘state’);

} else {

 addErrorMessage(‘state’, ‘Please select your state.’);

 error = true;

}

The state element is a select menu, so it can be validated by checking that
its selectedIndex property is not 0 (i.e., an option other than the first one
has been selected).

9. Validate the zip code:

if (/^\d{5}(-\d{4})?$/.test(zip.value)) {

 removeErrorMessage(‘zip’);

} else {

 addErrorMessage(‘zip’, ‘Please enter your zip code.’);

 error = true;

}

This pattern was also explained earlier.

10. If an error occurred, prevent the default behavior:

if (error) {

 if (e.preventDefault) {

 e.preventDefault();

 } else {

 e.returnValue = false;

 }

 return false;

}

putting it all together 419

ptg7799847

11. Define the toggleSubmit() function:

function toggleSubmit() {

 ‘use strict’;

 var submit = U.$(‘submit’);

 if (U.$(‘terms’).checked) {

 submit.disabled = false;

 } else {

 submit.disabled = true;

 }

} // End of toggleSubmit() function.

This is the more proper implementation of code explained earlier. If the
terms checked value is true, then the submit button is enabled. Otherwise,
the submit button is disabled.

12. Establish the initial functionality:

window.onload = function() {

 ‘use strict’;

 U.addEvent(U.$(‘theForm’), ‘submit’, validateForm);

 U.$(‘submit’).disabled = true;

 U.addEvent(U.$(‘terms’), ‘change’, toggleSubmit);

 U.enableTooltips(‘phone’);

};

Several things need to be done when the window has loaded. First, an event
handler has to be registered on the form’s submission. Second, the submit
button should be initially disabled. Third, a change event handler has to
be registered on the terms checkbox (which will enable the submit button).
And, fourth, the tooltips need to be activated on the phone number.

13. Save the file as register.js, in a js directory, and test it in your Web browser.

ms

ptg7799847

revIeW and purSue

w

J What event should you almost always use to handle form submissions
and why?

J Why should you always use a submit button (or image)?

J What property do you use to fetch or set the value of a text input or textarea?
On what other elements does that same property work for retrieving and
setting values?

J How do you create linked select menus?

J How do you confirm that a checkbox was checked?

J What code is required to find out which radio button was checked?

J What JavaScript functions can be used to test a regular expression?

J How do you match a literal character or string of characters?

J What are meta-characters? How do you escape a meta-character?

J What meta-character do you use to bind a pattern to the beginning of a
string? To the end?

J How do you create subpatterns (aka groupings)?

J What are the quantifiers? How do you require 0 or 1 of a character or string?
0 or more? 1 or more? Precisely X occurrences? A range of occurrences? A
minimum of occurrences?

J What are character classes?

J What meta-characters still have meaning within character classes?

J What shortcut represents the “any digit” character class? The “any white
space” class? “Any word”? What shortcuts represent the opposite of these?

review and purSue 421

www.LarryUllman.com/forums/

ptg7799847

Pursue

J Update an older example in the book to use the errorMessages.js script.

J Update errorMessages.js so that it allows for the form element’s label
to have more than one class. HINT: Use concatenation to add the error
class, and remove the error class by slicing off the text after the last space
in the className value (because multiple classes are represented as
class=”someClass error”).

J Change the addTooltipHandlers() function so that it also applies appropri-
ate event listeners to the form’s label. HINT: Start by changing the function
so that it takes the element’s id value as its argument, then either give each
label an id value of id + ‘Label’, or use the previousSibling reference,
as in the showTooltip() and hideTooltip() functions.

J Create some code for disabling the submit button while simultaneously
implementing some of the suggested additions: changing the button’s class
or text, adding a message button beside it, or creating a modal window.

J Change the addTooltipHandlers() function so that it uses addEventLis-
tener(), attachEvent(), and the corollary remove event functions instead
of the DOM Level 0 approach.

J Modify os.js so that one function actually updates the menu. The function
would need the menu’s id as one argument, and the array of options as the
second. The function would then clear out all the existing options and add
the new ones. The initializing and updateMenu() functions could then both
call this new function, providing those two values.

J Create another pair of linked select menus. Or, for a bigger challenge, create
three linked menus.

J Fully implement the example where clicking a checkbox copies the infor-
mation from one form to another form.

J Research how you can use CSS and JavaScript to customize the look, and
to a lesser degree, the behavior, of file inputs.

J Apply regular expressions to some of the examples from previous chapters.

ms

ptg7799847

J Search online for a PCRE “cheat sheet” (JavaScript or otherwise) that lists
all the meaningful characters and classes. Print out the cheat sheet and
keep it beside your computer.

J Practice, practice, practice with regular expressions!

J Complete the register.js validateForm() function to validate the other
form elements.

WraPPing up

Even though forms have been used ever since Chapter 2, there was still plenty to
be covered in this chapter. You learned a few more things about specific form ele-
ments, and picked up lots of useful, real-world code…

J Creating inline error messages

J Unobtrusive tooltips

J Manipulating the submit button

J Scripting linked select menus

J Making a master checkbox

These examples involved a combination of the material covered to this point:
event handling, DOM manipulation, interacting with CSS, and more.

The chapter also covered regular expressions, a more advanced but highly
useful topic. At the end of the chapter, regular expressions, and the other topics,
were all put together to professionally and reliably validate a registration form.
Hopefully, by now you should feel fairly comfortable with using modern JavaScript
for many of today’s uses.

The next two chapters round out the coverage of what I’d call standard JavaScript.
Next, Chapter 11 takes things in a slightly different direction: interacting with the
server using Ajax.

wrapping up 423

ptg7799847

x

ptg7799847

As suggested in Chapter 1, (Re-)Introducing JavaScript,

Ajax is one of the most important developments in the

history of both JavaScript and Web development. Simply put,

Ajax is the process of having JavaScript in the browser make a

behind-the-scenes request of the server, in order to retrieve addi-

tional information or cause a server-side reaction. For example,

the request may retrieve a set of data to be displayed, see if a user-

name is available, or update a record in the database. While this

is happening, the user could be unaware of the transaction, still

using the page that was originally loaded. Grasping the concept,

and benefits, of Ajax can sometimes be hard, and Ajax creates

additional debugging challenges, but mastering Ajax pays off, and

in this chapter you’ll learn everything you need to know, while

simultaneously picking up plenty of usable code.

425

ptg7799847

With just a few lines of the right code, Ajax is not difficult to implement, so the
chapter begins with the fundamentals. After this initial section, you’ll turn to the
server side of things, and then practice Ajax with a multitude of real-world examples.

understanding aJax

Chapter 1 provided a detailed description of what Ajax is. If you’re still unsure,
then return to that chapter, or search online for some live demos (undoubtedly,
you’ve witnessed dozens, if not hundreds, of Ajax-enabled sites by now, although
you may not have known it).

In terms of actual JavaScript code, performing an Ajax request begins with
these three steps:

J Creating an Ajax object

J Making the request

J Handling the server response

The next few pages will cover these basics, and then you’ll learn how to:

J Include data with the request

J Debug Ajax transactions

J Handle different types of server responses

There also needs to be the actual server-side resource that JavaScript will
communicate with. As PHP is my preferred server-side language, you’ll see many
PHP-based examples, especially toward the end of the chapter. But for the sake
of demonstrating the initial ideas, a simple text file on the server can represent
the server-side resource, and its contents will end up being the server response.

Creating an aJax oBJeCt

The Ajax process begins with an object through which the communications can
occur. I’ll refer to this as an “Ajax” object, although you’ll also see it called an “XHR”
object, short for XML HTTP Request, or just some variation on those key words.
These terms reflect that JavaScript is being used to make a request of another
resource using the HyperText Transfer Protocol (HTTP). Originally, the returned
data was in eXtensible Markup Language (XML) format, although that’s much less
often the case today.

sics

x

ptg7799847

aJaX and proGreSSIve enhanCement

Like with anything accomplished via JavaScript, you have to be mindful of
the possibility that some users might not have JavaScript enabled. With Ajax,
which requires JavaScript to both perform the request and update the page
with the results, creating a non-JavaScript version is actually fairly easy if you
work backward. I won’t waste precious book space demonstrating these non-
JavaScript alternatives in this chapter, but let’s take a quick look at a couple
of logical examples so you will know how (Chapter 15, PHP and JavaScript
Together, will implement much of this).

One broad use of Ajax is to fetch data from the server and update the page
with that information. The fallback option in such a situation would be to
just create another HTML page that shows the data without using JavaScript.
The first page would link to that other page, and JavaScript could progres-
sively enhance the link by making it trigger the Ajax call instead of taking
the browser to that other page.

The other broad use of Ajax is to send data to the server, for example, from a
contact form or during a registration script. In these cases, you would have the
form’s submission continue to the server-side script when Ajax is not possible,
and use Ajax to interrupt that submission when JavaScript is enabled.

You should also remember that search engines cannot see dynamic con-
tent created by JavaScript. If the content being fetched by Ajax needs to be
indexed to appear in search results, the content must also be available in
a non-dynamic way, such as on a linked secondary page, as already explained.

Ajax does require that the user be online, although with HTML5’s ability to
use local storage, this can be overcome (assuming that HTML5 is an option).
And, as explained in Chapter 9, JavaScript and the Browser, unless extra
steps are taken, dynamic changes made by JavaScript cannot be bookmarked,
nor are those changes reflected in the browser’s history. At the end of the
chapter, I discuss the solution to these problems.

aJaX BaSicS 427

ptg7799847

Every browser has defined an XMLHttpRequest object with the required func-
tionality, but as you’ve probably come to expect by now, the particulars of creating
an instance of that object varies just slightly from browser to browser.

To create an Ajax object reliably for all browsers, use this code:

var ajax;

if (window.XMLHttpRequest) {

 ajax = new XMLHttpRequest();

} else if (window.ActiveXObject) { // Older IE.

 ajax = new ActiveXObject(‘MSXML2.XMLHTTP.3.0’);

}

The XMLHttpRequest object exists in all non-IE browsers, and in Internet
Explorer since version 7. Older versions of IE must create a new ActiveXObject,
providing MSXML2.XMLHTTP.3.0 as the argument. This code will work on IE as
old as version 5 (you’ll see slight variations on this value in various bits of code
and other resources). The good news is that once you’ve created the Ajax object,
regardless of how, you can use it in exactly the same way.

Because this is code you’ll use many times over, it makes sense to put it into its
own function, defined in a separate file, to be named ajax.js:

function getXMLHttpRequestObject() {

 var ajax = null;

 if (window.XMLHttpRequest) {

 ajax = new XMLHttpRequest();

 } else if (window.ActiveXObject) { // Older IE.

 ajax = new ActiveXObject(‘MSXML2.XMLHTTP.3.0’);

 }

 return ajax;

}

All of the examples in the rest of this chapter would then include this script.
You would use the function like so:

var ajax = getXMLHttpRequestObject();

x

ptg7799847

Because ajax will have a null value if an XMLHttpRequest object could not be
assigned to it, if you want to be extra careful, your code could then verify that the
Ajax object has a non-FALSE value before attempting to use it:

if (ajax) { // Use it!

identiFYing a result handler

Once you have an Ajax object, the next step you should take is to identify the
result handler for that object. This is the function that will be called during the
Ajax transaction. To associate the function with the Ajax call, assign the function
to the object’s onreadystatechange property:

ajax.onreadystatechange = handleStateChange;

You can also use an anonymous function here, and you’ll see both approaches
in this chapter.

Making a request

With the Ajax object created and the response handling function identified, it’s time
to perform the actual request. To make an Ajax request, you first call the open()
method of the object, providing the type of request to make as the first argument,
the URL of the server resource as the second, and the value true as the third:

ajax.open(‘GET’, ‘http://www.example.com/page.php’, true);

The most common request types are GET and POST. GET requests are the
standard method for requesting any HTML page; it’s the type of request a browser
makes when you click on a link. Philosophically, GET requests are best used to fetch
data. POST requests are the standard method for form submissions (aside from
search engine forms, which normally use GET). Philosophically, POST requests are
intended to cause a server change or reaction. Put another way, GET is for requests
that should be common and repeatable, even bookmarkable; POST is for unique
requests, not intended to be repeated, such as the updating of a specific database
record or the submission of a contact form (in either case, the general concept will
be repeated, but the specifics would differ). Note that the method type should be
in all capital letters.

aJaX BaSicS 429

ptg7799847

The URL can be either absolute or relative (see Chapter 2, JavaScript in Action),
but must be accurate. If you’re running the page http://www.example.com/page.
html, then the values http://www.example.com/page.php or just page.php will
both work, assuming that page.php and page.html are within the same directory.

There are two common problems and points of confusion when it comes to
the URL. The first involves the same-domain policy, explained in Chapter 9. As a
security measure, JavaScript in the browser is prevented from making requests of
resources on another domain. This means that http://www.example.com/page
.html cannot make a request of http://shop.example.com/page.php or http://
www.LarryUllman.com/page.php. At the end of the chapter, I discuss different
ways to circumvent this restriction, when appropriate.

The second issue is that Ajax requests must be made through a server in order to
work. This means that the HTML page with the JavaScript in it must also be loaded
through a URL (i.e., http://something). If your request is returning a 0 status code
(more on status codes later), or is returning PHP code instead of data, you probably
are not making the request through a URL. If you don’t have a live Web site on which
you can test the examples in this chapter, then I would recommend installing an all-
in-one package such as XAMPP for Windows (www.apachefriends.org) or MAMP
for Mac OS X (www.mamp.info) in order to use your desktop computer as a server.

The third argument to the open() method indicates whether the request should
be made asynchronously or synchronously. The default is true, which correlates to
asynchronously, but you should explicitly provide it anyway. During asynchronous
requests, other JavaScript code can be executed, such as that handling other events,
while the JavaScript awaits the server response. In very rare circumstances you will
want to perform a synchronous request, as doing so prevents JavaScript from doing
anything else while the request is being made and processed, including handling
user-based events (you’ll see one practical example of a synchronous request in
this chapter). If you were to perform a synchronous request, you wouldn’t create a
function to handle readyState changes, as the script waits for the server response
before doing anything else anyway.

The open() method takes optional fourth and fifth arguments, representing a
username and password, respectively. Both would be necessary if the resource is
protected by HTTP authentication. However, to use these arguments, you’d need
access to those values in your JavaScript code. The only secure way to do that would
be to have the user input those values so they are not hardcoded in the page’s source.

x

http://www.LarryUllman.com/page.php
http://www.LarryUllman.com/page.php
www.apachefriends.org
www.mamp.info

ptg7799847

The final step is to actually send the request, by calling the send() method:

ajax.send(null);

For the time being, use the value null as the only argument to this method,
which represents the data to be included in the request.

Once a request has been sent, but before it has been completed, you can cancel
it by invoking the object’s abort() method. You could set a timer (see Chapter 9)
that aborts the request if it takes too long:

ajax.open(‘GET’, ‘http://www.example.com/page.php’, true);

var ajaxAbortTimer = setTimeout(function() {

 if (ajax) {

 ajax.abort();

 ajax = null;

 }

}, 5000); // Five seconds.

That code creates an anonymous function that will be called after 5 seconds.
Within the function, if the ajax object still has a non-FALSE value, it’s assumed
that the request is still being made and should now be aborted. When the request
is aborted or completed, ajax would be assigned a FALSE value, such as null, to
indicate that the request is no longer active. You would also want to indicate the
problem to the user in some way.

handling the server resPonse

Once an asynchronous Ajax request has been made, the function assigned to the
onreadystatechange property of the Ajax object will be called whenever the object’s
readyState property changes. There are five possible values for this property, in
this order of execution:

J 0, unsent

J 1, opened

J 2, headers received

J 3, loading

J 4, done

aJaX BaSicS 431

ptg7799847

For example, immediately after sending the request, the value would be 1, then
2, then 3, and finally, 4. At that point, this function will be used to handle the
server’s response, but understand that the function will be called during each
phase of the process.

In the function that handles readyState changes, you can check the readyState
property and react accordingly. For example, a value of 4 means the process has
been completed and the page can make use of the results. Other values means the
Ajax request is still being processed, in which case the script could do nothing, or
could show a “Loading…” message to the user:

if (ajax.readyState == 4) {

 // Handle the response.

} else {

 // Show the ‘Loading...’ message or do nothing.

}

Alternatively, you could create the “Loading…” message after calling the open()
method, and then hide the message when the readyState equals 4.

When the readyState value equals 4, the Ajax request has come full circle, but
there’s one more check to make before trying to handle the response: confirming
that the response was good. To do that, check the object’s status property, which
represents the server’s response code for the resource. These are server HTTP
codes, which include:

J 200, OK

J 301, Moved Permanently

J 304, Not Modified

J 307, Temporary Redirect

J 401, Unauthorized

J 403, Forbidden

J 404, Not Found

J 500, Internal Server Error

You don’t have to memorize, or even address every single probability. When
the status code is in the 200’s, the resource was found and able to be loaded. If the
status code is 304, the browser already has a cached version that can be used. All
other codes are problematic.

x

ptg7799847

Putting this code together, the handling function begins with this skeleton:

if (ajax.readyState == 4) {

 if ((ajax.status >= 200 && ajax.status < 300)

 || (ajax.status == 304)) {

 // Handle the response.

 } else {

 // Status error!

 }

}

Depending upon the specific use of Ajax, if a problematic status code is returned,
you could reenact the default browser behavior: redirect the browser to the non-
Ajax page, actually submit the form, and so forth.

The statusText property represents the string message returned by the server,
corresponding to the status code. You can use that in any error reporting.

When the function is ready to handle the server response, it can look into one
of two properties to find the response data: responseXML and responseText. The
former is used when the returned data is in XML format, and will be explained
later in the chapter. The responseText property will be populated when XML data
was not returned, and therefore will be used most of the time. This property just
stores a string, and can be used like any other string. You’ll see an example shortly.

One you are done with the Ajax object—and it won’t be used again by the
script—you should clear it out by assigning it a null value:

ajax = null;

This frees up the browser resources required by the object.
To test the information covered so far, this next example will simply request a

resource and write the received response to the page (Figure 11.1). The relevant HTML is:

fiGURe 11 .1 The content shown
below the button will be retrieved
from another file via Ajax.

aJaX BaSicS 433

ptg7799847

<div><button type=”button” id=”btn”>Run the test</button>

<p id=”output”></p></div>

I would put this in a file named test.html, which would include both the ajax.
js script (the contents of which were just shown) and then test.js, to be written in
the following steps. You’ll also need to create a plain text file named test.txt, and
you can place any amount of HTML or text in it. Store this text file in a resources
directory, to keep it separate from the other files (Figure 11.2).

To test Ajax:

1. Create a new JavaScript file in your text editor or IDE, to be named test.js.

2. Begin defining an anonymous function for when the page has loaded:

window.onload = function() {

 ‘use strict’;

All of the work will actually take place within this function, which avoids
polluting the global namespace. For brevity sake, I’m also using DOM Level 0
event handlers, but you can change that code, if you’d prefer.

3. Create the Ajax object:

var ajax = getXMLHttpRequestObject();

This assumes that the ajax.js script is included prior to the page loading.

4. Begin creating the onreadystatechange function:

ajax.onreadystatechange = function() {

 if (ajax.readyState == 4) {

This anonymous function will be called when the object’s readyState prop-
erty changes. Within the function, a conditional checks the value of the
readyState, as the only important value is 4.

NOTE: all of the code for the book is available for download from
www.LarryUllman.com.

fiGURe 11 .2 The directory
structure for this chapter, with
all Ajax requests being made
of files stored in the resources
directory.

x

www.LarryUllman.com

ptg7799847

5. If the correct status code was returned, update the page with the response:

if ((ajax.status >= 200 && ajax.status < 300)

|| (ajax.status == 304)) {

 document.getElementById(‘output’).innerHTML =
 p ajax.responseText;

If the status code has a value within the 200’s, or a value of 304, then the
innerHTML property of the output element in the HTML is assigned the
entire value of the returned response.

For security reasons, you don’t want to be in this habit of blindly requesting
data via Ajax and inserting it into the page as HTML. If someone were to
hack the system, the server resource could return malicious HTML, which
is to say HTML with JavaScript. Such data, when assigned to the innerHTML
property, would execute the JavaScript. To prevent that, when possible, you
should assign the data to an innerText or textContent property instead, or
first search the response to make sure it does not include the text <script
(case insensitive).

6. Report the status text if a different status code was returned:

} else {

 document.getElementById(‘output’).innerHTML = ‘Error: ‘ +
 p ajax.statusText;

}

If the conditional in Step 5 is FALSE, this else clause applies, showing the
textual version of the status code (Figure 11.3). You would not want to reveal
this to an actual user, but instead either show a generic error message or
allow the non-Ajax process to proceed (you’ll see examples of that shortly).

7. Complete the onreadystatechange function:

 } // End of readyState IF.

}; // End of onreadystatechange anonymous function.

fiGURe 11 .3 The result if the server
returned a poor status code.

aJaX BaSicS 435

ptg7799847

You’ll notice that I’m not clearing out the Ajax object (by assigning it a null
value), as I expect to reuse it.

8. Invoke the Ajax request when the button is clicked:

document.getElementById(‘btn’).onclick = function() {

 ajax.open(‘GET’, ‘resources/test.txt’, true);

 ajax.send(null);

}; // End of onclick anonymous function.

To invoke the request, first open it, then call send().

9. Complete the onload function:

}; // End of onload anonymous function.

10. Save the file as test.js, in a js directory, and test it in your Web browser
(Figure 11.1).

Again, you’ll need to have created test.txt, with any text or HTML in it.

11. Change the contents of test.txt, and click the button to test the results
(Figure 11.4).

If you don’t immediately see the altered contents displayed, your browser
is probably caching the results, and I’ll explain how to work around that
later in the chapter. For now, reloading the browser first should do the trick.

sending data

Once you know how to retrieve data from a server resource, the next thing to learn
is how to send data to the server. The data transmitted could be used to impact
the data returned (e.g., to fetch the employees in a specific department, the Ajax
request would send a department identifier to the server). In other situations, the
data sent would be validated by the server, such as the availability of a username.

fiGURe 11 .4 The updated
contents of the text file are
reflected in the updated
Web page.

x

ptg7799847

Or, the data sent could trigger a server reaction, like the posting of comments to
a message board.

There are a couple of ways to send data to the server as part of the request.
The first option is to append the data to the URL. The data should be structured in
name=value pairs, with multiple pairs separated by ampersands. To guarantee the
data is safe to use in the request, wrap it in encodeURIComponent() calls:

ajax.open(‘GET’, ‘http://www.example.com/somepage.php?id=’ +
p encodeURIComponent(id), true);

A slightly better alternative is to provide the data as the lone argument to the
send() method (in place of null):

var data = ‘email=’ + encodeURIComponent(email) + ‘&password=’ +
p encodeURIComponent(password);

ajax.open(‘GET’, ‘http://www.example.com/somepage.php’, true);

ajax.send(data);

The end result is the same for both approaches, but the latter code is cleaner.
Because the GET method is being used, the receiving PHP script can access the

sent data in $_GET[‘email’] and $_GET[‘password’], respectively.
When you’re making a POST request, you must provide the data to the send()

method, as opposed to appending it to the URL. And, when using POST, for
improved reliability, you should indicate (to the server), the content type being
sent. You can do this by calling the setRequestHeader() method of the Ajax object.
Its first argument is the name of the header and the second is the value. To identify
the proper data encoding, use this:

ajax.setRequestHeader(‘Content-Type’,
p ‘application/x-www-form-urlencoded’);

To be clear, you would want to do this prior to sending the request:

var data = ‘email=’ + encodeURIComponent(email) + ‘&password=’ +
p encodeURIComponent(password);

ajax.open(‘POST’, ‘http://www.example.com/somepage.php’, true);

ajax.setRequestHeader(‘Content-Type’,
p ‘application/x-www-form-urlencoded’);

ajax.send(data);

aJaX BaSicS 437

ptg7799847

Here, because the POST method is being used, the receiving PHP script can
access the sent data in $_POST[‘email’] and $_POST[‘password’], respectively.

As you can see, the structure of the data is the same whether you make GET or
POST requests, but, as was explained earlier, there are times when it’s appropriate
to make GET requests and times when it’s proper to use POST. There is also a limit
as to how much data can be transmitted via GET, somewhere in the range of 2-4
KB, depending upon the browser.

An alternative way to send data to the server is to create a FormData object:

var data = new FormData();

Then add each item by calling the append() method of the FormData object,
providing a name and a value:

data.append(‘email’, email);

data.append(‘password’, password);

When using this approach, note that you don’t need to invoke ecnodeURIcom-
ponent(), as the data will be encoded automatically. You also don’t need to set
the Content-Type.

Finally, provide the data object to the send() method:

ajax.send(data);

FormData is not supported by all browsers yet; you can test for its availability
in order to create the data in a reliable way:

if (typeof FormData == ‘function’) {

 // Create data as FormData.

} else {

 // Create data as name=value pairs.

 // Add Content-Type header, if POST.

}

ajax.send(data);

x

ptg7799847

When transmitting data to, or from, the server, be aware of any security implica-
tions. Just because the request is being made behind the scenes does not mean that
the data is being transmitted secretly or securely. In cases where higher security
is required, the server resource can be accessed over HTTPS (assuming the server
supports that).

BasiC deBugging

The hardest aspect to Ajax, in my opinion, is that debugging can be a bit more dif-
ficult. But with the right tools and approach, this, too, is manageable.

The first thing you should always do is to test the server-side resource to con-
firm the data being sent back to the JavaScript. Not only should you do this as a
debugging step, but I recommend that you do this immediately after creating the
server-side resource, in order to confirm that there are no problems prior to writing
any JavaScript. Many server-side resources can be tested by merely loading them
directly in your browser. The net effect of loading the resource will often be the
same as the response received by the JavaScript. In the previous example, a simple
text file was being used, so loading that in your browser just shows the contents
of the text file (Figure 11.5). This is good to confirm, though. With PHP scripts, or
other dynamic, server-side tools, you’ll want to load them to make sure they are
working properly. Too many of my initial Ajax attempts have failed because the
PHP script had an error in it, an error I would have caught had I just tested the
script first. In all cases, always make sure that you are loading your Ajax page, and
therefore the resource, through a URL (http://something).

If the PHP script (or other server-side resource) needs to receive some data in
order to work, testing it can be a bit more challenging. If a GET request is being made
of the script, then you can append that data to the URL yourself, as in: http://www.
example.com/somepage.php?name=value&name2=value2. If data is being sent to the
server-side resource via POST, you’ll need to post data to it, which isn’t as simple.
One way to do that would be to have a form send the data to the PHP script. In fact,
if you’re using progressive enhancement, you should already have that process in
place: just test the submission of the form data to the PHP script without involving
JavaScript at all. In any case, testing the server-side resource should always be the
first step before adding the JavaScript code. Or, if you forgot to do that, it should
be your first debugging step.

fiGURe 11 .5 The results of directly accessing
the Ajax resource in the browser.

aJaX BaSicS 439

ptg7799847

The second thing you should do to debug Ajax processes is use a network moni-
tor. Firebug, and some browser tools such as Opera’s Dragonfly and Safari’s Web
Inspector, have one built in. The network monitor can verify that a request was
made, show what data was transmitted in the request, and show what data was
returned in the response (Figure 11.6). Almost always, this will reveal the cause
of the problem. Or, if not, the network monitor will clue you in as to whether the
problem is in the request or in the response. From there, you can apply debugging
techniques to the JavaScript or PHP, accordingly.

When you begin using different data formats, such as JSON and XML, you’ll want
to verify the integrity of the data itself. It’s possible, if not likely, that the server is
returning a positive response, but that the data isn’t properly formatted, making
it unusable in the JavaScript code. You can validate JSON data using JSONLint
(http://jsonlint.com). You can validate XML using any number of validators
found by searching online using the terms XML Validator.

Another thing to be aware of is when the same page might make multiple Ajax
requests. You can use a single Ajax object only if a page has a single request to make.
However, if multiple and different requests are required, possibly at the same time,
you’d want to use multiple Ajax objects to avoid conflict.

Finally, debugging can be made more challenging because of the browser’s natural
attempts to cache data. To improve performance, and therefore the user’s experience,
the browser will cache downloaded resources whenever possible. This includes
everything from images to CSS to JavaScript to HTML. By storing a resource locally,
the browser will not need to download the resource again when the resource is used

fiGURe 11 .6 The network
monitor clearly shows the data
sent and received as part of
a request.

x

http://jsonlint.com

ptg7799847

in subsequent requests. For example, when a user goes to a Web page, the browser
will download and then cache the CSS file in use by that page. When the user goes
to another page on that same site, which uses the same CSS script, the browser can
utilize the cached version instead of downloading it again.

This is relevant to Ajax because the browser will attempt to cache the results
of the Ajax request. You may have already seen this with the previous example.
If the browser is caching the request, changes made to the server-side resource
won’t immediately be reflected, which will make debugging even harder. There
are several ways of overcoming this obstacle. The first is to disable the cache in
the browser (Figure 11.7). This solution is simple and only affects your experience.

Another solution, which will affect everyone using the same server-side
resource, is to have that resource indicate that the request should not be cached.
In PHP, this is done by sending a Cache-Control header:

<?php

header(‘Cache-Control: no-cache’);

Again, this will prevent all browsers from caching the request, which isn’t always
appropriate.

A third option is to make each request seem to be unique, even if it’s not. A
common way to do that is to add a random value to the requested URL, such as
a timestamp:

var url = ‘http://www.example.com/somepage.php?stamp=’ +
p new Date.getTime();

ajax.open(‘GET’, url, true);

Because each request will have a different and unique URL, there will never be
a previously cached version that can be used in lieu of making the request again.

I’m presenting the issue of caching here as a debugging one, as caching can trip
you up. In terms of development, there are situations where you would want to
prevent anyone from caching a server-side resource. For example, say the resource
is returning a stock quote. During the hours that the stock market is open, such
a request should not be cached, as the returned response would differ from one
request to the next, although the request itself would always look to be the same.
For most situations, though, caching is a valuable tool that enhances the perfor-
mance of both the Web site in the client and the Web server itself. Caching should
not be overridden without due consideration.

fiGURe 11 .7 On Safari, use the
Develop menu to disable the
cache.

aJaX BaSicS 441

ptg7799847

WorkInG With other data

The first example just received plain text back from the server, which is an ideal
route when the server is only returning a simple response. But when a lot of
information, or just more complex data, is being returned, other data formats
are required. The original data format for Ajax requests was XML, to be discussed
first. Over time, the JSON format has become more popular, as it is, by definition,
more natural to JavaScript, and therefore easier to use. In the discussion of these
formats, a text file will still be used as the resource. After this section, you’ll learn
what you need to know to send XML and JSON dynamically from a server, specifi-
cally using a PHP script.

xMl

The XML format is quite similar to HTML, with tags surrounding values to define
meaning. XML always has one root element that encompasses the entire data set.
As in HTML, XML tags can also have attributes, providing additional information.
Unlike with HTML, XML tags can be entirely made up by you:

<book>

 <chapter id=”1”>(Re-)Introducing JavaScript</chapter>

 <chapter id=”2”>JavaScript in Action</chapter>

</book>

That’s a fairly simple snippet of XML, but that’s really all there is to it. You just
have to make sure that the XML is well formed: all opened tags are closed and all
tags are properly nested. You should use all lowercase letters for your tags, too.

When using an XMLHttpRequest object to fetch XML, the returned data will
automatically be represented in JavaScript as a DOM tree. This means you can use
many of the same techniques explained in Chapter 9 to navigate that data. If an Ajax
request fetched the above XML data, you can first get a reference to the response:

var data = ajax.responseXML;

Form there, you can use documentElement to access the root, then the first-
Child, nextSibling, childNodes, and other properties to navigate the data. One
trick about XML data is that the blank space between tags gets represented as an
empty text node (in the above, book has three children). And, to get the value of a

x

ptg7799847

node, you must use nodeValue. The end result can be quite wordy. This bit of code
points to the value (Re-)Introducing JavaScript:

documentElement.firstChild.nextSibling.firstChild.nodeValue

When you know there are a number of records represented by the XML, each
with the same tag name, the easiest way to grab them all is to use the getEle-
mentsByTagName() method:

var chapters = data.getElementsByTagName(‘chapter’);

You can then loop through the records:

for (var i = 0, count = chapters.length; i < count; i++) {

 // Use chapters[i].

}

To fetch the value of an attribute, use the getAttribute() method, providing
it with the attribute name. To get the value of an individual tag, use firstChild.
nodeValue:

for (var i = 0, count = chapters.length; i < count; i++) {

 // Use chapters[i].getAttribute(‘id’)

 // Use chapters[i].firstChild.nodeValue

}

If you want to try applying this new information, just create a text file that con-
tains some XML, and name it test.xml. To clearly indicate that the file contains
XML data, it must begin with the XML declaration:

<?xml version=”1.0” encoding=”utf-8” standalone=”yes” ?>

<book>

 <chapter id=”1”>(Re-)Introducing JavaScript</chapter>

 <chapter id=”2”>JavaScript in Action</chapter>

</book>

worKing with other data 443

ptg7799847

Then update test.js to make a request of this new file. Finally, modify the func-
tion that handles the readyState changes so that it fetches the data from responseXML,
gets the relevant elements from that data by calling getElementsByTagName(), and
then loops through those to obtain the individual values. If these instructions aren’t
immediately clear, all of this code can be found in the test.js script, available in
the downloads from the book’s Web site.

Json

While XML has been a standard format for representing data for years, it’s not
without its negatives. First, XML as a format is bulky: representing the four-digit
year 2012 requires all of the characters in <year>2012</year>. Second, parsing
XML data, while not hard, does require compound constructs like chapters[i].
firstChild.nodeName. Also, XML is not native to JavaScript, and performance
can be an issue.

Douglas Crockford, one of JavaScript’s founding fathers, realized that JavaScript
already had a good format for representing data. This format is both terse and easily
navigable in JavaScript: JavaScript’s Object Notation (JSON). The same earlier XML
can be represented as a JavaScript object like so:

var chapters = {

 1: {

 title: ‘(Re-)Introducing JavaScript’

 },

 2: {

 title: ‘JavaScript in Action’

 }

};

As you know, with object notation, you can now simply use chapters[1].title
to get to (Re-)Introducing JavaScript.

In theory, if you were to take that same data, without assigning it to a variable,
and place it in a text file, it would be in JSON format. However, JSON suggests that
you quote all properties and values, using double quotation marks:

x

ptg7799847

{

“1”: {“title”: “(Re-)Introducing JavaScript”},

“2”: {“title”: “JavaScript in Action”}

}

(The data could be compressed even further so it required even fewer charac-
ters to represent.)

In terms of Ajax, there’s only one trick to turning JSON data into something usable:
it has to be parsed as JavaScript code. To start, get the data from the responseText
property of the Ajax object (there is no responseJSON property):

var data = ajax.responseText;

SendInG Xml or JSon to the Server

All of the examples in this chapter send plain text data to the server, which will often be the case. You can,
however, send data to the server in other formats, such as XML or JSON. To do that, you’ll first need to indi-
cate to the server the proper content type:

ajax.setRequestHeader(‘Content-Type’, ‘text/xml’);

or

ajax.setRequestHeader(‘Content-Type’, ‘application/json’);

Next, you’ll need to generate data in the right format. You can create XML by either creating literal strings
of XML data, or by creating elements and nodes. The latter generates more reliable XML but requires more
work (search online for specifics).

If you have data that you want to turn into JSON format, you can use the JSON.stringify() method:

data = JSON.stringify(data);

This method will be defined by your browser, or is available in the json2.js library.

In any case, the data must be in a format that’s understandable—and expected—by the server-side resource.

NOTE: Json is not exactly the same as a Javascript object, because it cannot
represent some things, such as functions or regular expressions.

worKing with other data 445

ptg7799847

Historically, the text was turned into a JavaScript object by running it through
eval(), which executes a bit of code:

var data = eval(‘(‘ + data ‘)’);

To make the intent clear, parentheses needed to be wrapped around the data.
As mentioned in Chapter 9, it’s actually quite a bad thing to use the eval() func-
tion. Because this function executes a string as if it’s JavaScript code, eval() could
introduce a major security hole. Quickly enough, Crockford came up with a better
solution: a JSON library that turned JSON data into a usable JavaScript object while
still making any data provided safe to run through eval(). Eventually, the JSON
library was incorporated into the browser so that you can now use JSON.parse()
instead of eval():

var data = JSON.parse(data);

// Use data[1].title

The JSON object, and its parse() method, have been supported in most browsers
for several versions now. Unfortunately, it was only added in IE as of version 8. For
older versions of IE, you must first include a JSON parsing library, such as json2.js
(Crockford’s update of his original), available at www.json.org. Once you’ve copied
that library to your JavaScript directory, you can include it in your HTML page:

<script src=”js/json2.js”></script>

A great feature of this library is that it will only define a new JSON object if one
doesn’t already exist. If you’d rather, you could have JavaScript dynamically load
the library if the JSON object doesn’t exist already:

if (typeof JSON == ‘undefined’) {

 var script = document.createElement(‘script’);

 script.src = ‘js/json2.js’;

 // Add it to the HTML head:

 document.getElementsByTagName(‘head’)[0].appendChild(script);

}

x

www.json.org

ptg7799847

If you want to try applying this new information, just create a text file that contains
some JSON data, and name it test.json. Then update test.js to make a request
of this new file. Finally, modify the function that handles the readyState changes
so that it fetches the data from responseText, parses it using JSON.parse(), and
then uses object notation to access the individual values. Of course, you’ll need to
include the JSON parsing library in the HTML page. Again, if these instructions aren’t
immediately clear, all of this code can be found in the test.js script, available in
the downloads from the book’s Web site.

the Server-SIde SCrIpt

The examples thus far only used a simple text file, but in the real world, you’ll use
a more dynamic server-side resource. For me, that’s normally a PHP script. I’ll
quickly explain how a server-side PHP script would be written so that it may return
plain text, XML, or JSON. In all cases, the most important thing to remember is that
the PHP script will only be accessed by the JavaScript, so it shouldn’t include or
output any HTML (unless the script is returning HTML as part of a text response).
Also, remember to test PHP scripts to make sure they work, prior to hooking them
into the JavaScript.

As a warning, the content to follow does assume some familiarity and comfort
with PHP. If you’re using a different server-side technology, use that instead. If you
don’t yet know PHP, you’ll probably want to learn, and I would selfishly recommend
my book PHP for the Web: Visual QuickStart Guide, 4th Edition (Peachpit Press).

returning Plain text

Returning plain text from a PHP script is just a matter of having PHP print whatever
text should be sent back to the JavaScript:

<?php // Nothing before this!

echo ‘This is some text being printed’;

?>

the Server-Side Script 447

ptg7799847

Normally, the PHP script will use some logic and perhaps a database call to deter-
mine the text to be returned. This text might indicate the availability of a username:

<?php

if (/* username is available */) {

 echo ‘AVAILABLE’;

} else {

 echo ‘UNAVAILABLE’;

}

?>

The JavaScript code would then see if ajax.responseText equaled AVAILABLE
or UNAVAILABLE. (In situations like this I prefer to return status indicators using
all capital letters, as if they were constants.)

Although plain text is really only best for a limited amount of data, you can
send multiple pieces if each is separated by a unique character—one that would
not be in the data itself—such as the pipe. Here, then, is a single employee’s record:

<?php

// Validate the employee ID, received by this page!

// Get the employee record from the database.

// Return the record:

echo “{row[‘first_name’]}|{row[‘last_name’]}|{row[‘email’]}”;

?>

Within the JavaScript, you can split the incoming text on the same character
in order to access the individual parts:

var employee = ajax.responseText.split(‘|’);

// Use employee[0], employee[1], and employee[2]

x

ptg7799847

returning xMl

Having a PHP script return XML data is not that hard. The first thing the script has
to do is send a Content-Type header to indicate that XML data is to follow:

<?php // Nothing before this!

header(‘Content-Type: text/xml’);

This should be the first line in the PHP code, after the opening PHP tag.
Next, XML documents begin with a declaration that should be printed by the

PHP script:

echo ‘<?xml version=”1.0” encoding=”utf-8” standalone=”yes” ?>’;

A version value of 1 is just fine, but do make sure that the encoding indicated
matches that actually being used by the PHP script itself (i.e., used by the applica-
tion in which you created this PHP script). For technical reasons, you should have
PHP print the declaration, as in the above, rather than trying to hardcode the
literal text into the script.

Next, all XML data requires one root element. This can be called virtually
anything:

echo ‘<comments>’;

As with all data being returned to JavaScript by PHP, the data is “returned” by
just printing it out (so that it would appear in the Web browser, if the script were
to be accessed directly).

Normally, the data being returned by the PHP script will come from the data-
base. Database records are fetched in a while loop; thus, you can create the XML
in the loop:

$q = ‘SELECT comment, email, date_submitted FROM comments ORDER BY
p date_submitted DESC’;

$r = mysqli_query($dbc, $q);

while ($row = mysqli_fetch_array($r)) {

 echo “<record>

 <comment>{$row[‘comment’]}</comment>

 <email>{$row[‘email’]}</email>

the Server-Side Script 449

ptg7799847

 <date>{$row[‘date’]}</>{$>

 </record>\n”;

}

Finally, the PHP script needs to close the root element:

echo ‘</comments>’;

returning Json

To return JSON data from a PHP script, you start by sending the appropriate Content-
Type header:

<?php

header(‘Content-Type: application/json’);

After that, the PHP script needs to print the JSON data. Because the JSON syntax
can be difficult to accurately create, the easiest solution is to build up an array of
data, and then convert that data into JSON:

$data = array();

$q = ‘SELECT comment, email, date_submitted FROM comments ORDER BY
p date_submitted DESC’;

$r = mysqli_query($dbc, $q);

while ($row = mysqli_fetch_array($r)) {

 $data[] = $row;

}

echo json_encode($data);

The json_encode() function has been part of PHP since version 5.2. If you’re
using an older version of PHP, you’ll need to install a JSON library instead. The one
now built into PHP comes from PECL (http://pecl.php.net), the Zend Framework
has its own JSON library (http://framework.zend.com), and there are other JSON
libraries out there. In any case, whatever JSON library you use, convert the data
to JSON and print it.

x

http://pecl.php.net
http://framework.zend.com

ptg7799847

s

To wrap up this chapter, let’s put this knowledge to the test with several real-world,
practical uses of Ajax. With some examples, I’ll discuss the premise and the solution,
without fully implementing it. With others, I’ll cover the most pertinent details.
By the end of the chapter, you should be well able to mix and match the ideas and
features to suit your needs. Again, I recommend that you download the correspond-
ing files from www.LarryUllman.com, which include the full code.

shoWing Progress

In Ajax processes that could take longer to execute, it’s a good idea to indicate to
the user that something is happening, particularly if you’d rather the user not do
anything else in the interim. Unlike with the other event handling examples you
have seen, Ajax processes can take longer because a lot of data must be validated
and then sent to the server, or because a lot of data is being returned by the server
and the DOM must then be heavily manipulated. For whatever delay, via CSS and
DOM manipulation, it’s easy to indicate that something is happening.

First, you should decide whether you want to use an image, some text, or both.
You can even use a modal window, if you want (see Chapter 9). To quickly gener-
ate your own custom animated GIF, head to Ajaxload (www.ajaxload.info). Once
you’ve done that, you have two options:

J Add the appropriate HTML to the page, initially hide the image using CSS,
and show it when appropriate

J Add the HTML dynamically when it’s time

For example, say you’ve added an animated GIF to the Web page:

And the CSS hides this image:

#loader { visibility: hidden; }

The Ajax process would then start by showing this image:

loader.style.visibility = ‘visible’;

ajax.open(‘GET’, ‘http://www.example.com/somepage.php’, true);

ajax.send(null);

aJaX eXaMpleS 451

www.LarryUllman.com
www.ajaxload.info

ptg7799847

If data is being validated before the request is made, you could reveal the ani-
mated GIF before the validation even occurs.

In the function that handles the readyState change, after the response has
been received and addressed, you simply hide the image again:

loader.style.visibility = ‘hidden’;

When running this code on your own computer, or with simple demonstrations,
the animation may only appear for a moment. To get a fuller effect, you can delay
the Ajax call using a timer (see Chapter 9):

var ajaxTimer = setTimeout(function() {

 ajax.open(‘GET’, ‘http://www.example.com/somepage.php’, true);

 ajax.send(null);

}, 1000); // Wait one second!

Again, this time is only to delay the demonstration; you wouldn’t want to use
a timer to delay the request on a live site.

Thus far, you’ve only been made aware of and used a single Ajax-related event:
the changing of the readyState value. There are four others that you can watch for:

J progress

J load

J error

J abort

The progress event is triggered when the Ajax request is being made, and will
be triggered one or more times, depending upon how long it takes to complete the
request. Within that event handler, the event object’s total property will reflect
the total number of bytes to be transferred and loaded will reflect the total bytes
already received. Thus, you can use these two properties to determine how much
of the transaction has occurred:

ajax.onprogress = function(e) {

 if (typeof e == ‘undefined’) e = window.event;

 var pct = e.loaded/e.total;

}

x

ptg7799847

s

Although not demonstrated in this book, it is possible to upload a file via
Ajax. One solution is to use a FormData object. But as already mentioned,
FormData is not supported by all browsers. The most common solution is to
use a hidden iframe for this purpose. If you search online, you’ll find many
tutorials explaining exactly how.

Understand, however, that Ajax requests normally happen very quickly; watch-
ing for progress events will only be meaningful on lengthy requests.

The load event is equivalent to the readyState being changed to 4. The other
two events may or may not ever occur, but could be used to handle errors or do
something different should a slow request be aborted.

Note that these handlers, like the readystatechange handler, need to be
assigned before calling the open() method.

CoMPleting the login exaMPle FroM ChaPter 2

To bring things full circle, it’s time to add the Ajax layer to the login example begun
in Chapter 2. The JavaScript script will take the username and password from the
form and pass them to a server-side script for validation. The PHP script will only
return a simple text message indicating the validation of the submitted values. The
focus in the following steps is just to add server-side validation of the form data; there
are many ways you can improve upon this example, and you’ll see notes accordingly.

To complete the login example:

1. Include the ajax.js script in login.html:

<script src=”js/ajax.js”></script>

This is the only change needed in the HTML file.

2. Within login.js, if the minimum validation is passed, create an Ajax object:

if ((email.value.length > 0) && (password.value.length > 0)) {

 var ajax = getXMLHttpRequestObject();

aJaX eXaMpleS 453

ptg7799847

The original script performed a minimum of validation. If you wanted, you
could use the information taught since then, such as regular expressions from
Chapter 10, Working with Forms, to make the validation more stringent. In
any case, if the data passes this validation, then the Ajax request will be made.

3. Begin creating the readyState change handling function:

ajax.onreadystatechange = function() {

 if (ajax.readyState == 4) {

 if ((ajax.status >= 200 && ajax.status < 300)

 || (ajax.status == 304)) {

4. Use an alert to report upon the results:

if (ajax.responseText == ‘VALID’) {

 alert(‘You are now logged in!’);

} else {

 alert(‘The submitted values do not match those on file!’);

}

The server-side PHP script will just be returning (i.e., printing) a simple
text message: VALID or INVALID. Either way, alerts are used to report upon
the results (Figure 11.8). For a more professional interface, if the response
was VALID, you could hide the form and show other content (you’ll see an
example of this with a contact form shortly). If the response was INVALID,
you could add an error message to the page.

5. Complete the readyState change handling function:

 } else { // Bad status!

 document.getElementById(‘theForm’).submit();

fiGURe 11 .8 For demonstra-
tion purposes, an alert reports
upon the Ajax result.

x

ptg7799847

 } // End of status IF-ELSE.

 } // End of readyState IF.

}; // End of function assignation.

If, for whatever reason, the server returned a status code not among the
proper values, then the form needs to be actually submitted to the server-
side script for processing. This would be the server-side script identified
by the action attribute of the form, which is different than the Ajax script
(e.g., one would include HTML, the other wouldn’t).

6. Send the request, passing along the data:

ajax.open(‘POST’, ‘resources/login.php’, true);

ajax.setRequestHeader(‘Content-Type’,
p ‘application/x-www-form-urlencoded’);

var data = ‘email=’ + encodeURIComponent(email.value) +
p ‘&password=’ + encodeURIComponent(password.value);

ajax.send(data);

The request will be made using POST, which is standard for a login form.
Then the Content-Type header is sent, so that the data to follow is properly
handled (this is necessary when using POST and passing data). Next, the
data is created as a string of name=value pairs, with the values run through
encodeURIComponent() for security. Finally, the send() method is called.

7. Change the next return statement to return false:

return false;

Originally, the JavaScript would have returned true here to allow the form’s
actual submission to go through. Now, Ajax is sending the data to the server,
and false should be returned instead.

8. Save login.js.

9. Create a PHP script named login.php, in a resources directory:

<?php # login.php

if (isset($_POST[‘email’], $_POST[‘password’])

aJaX eXaMpleS 455

ptg7799847

 && ($_POST[‘email’] == ‘test@example.com’)

 && ($_POST[‘password’] == ‘securepass’)) {

 echo ‘VALID’;

} else {

 echo ‘INVALID’;

}

?>

The PHP script needs to validate the incoming data and compare it to that
stored on the system. Then the script prints just a single word that indicates
the results. For simplicity sake, I’ve hardcoded the proper values into this
script. In the real world, you’d tie the validation to a database. If you have
basic PHP and MySQL skills, that should not be hard for you to implement.

You could also begin a session in the PHP script upon a successful login. The
session won’t impact the page the user is currently viewing, but when the
user accesses subsequent pages, the session will be active.

10. Test the system in your Web browser (Figure 11.9).

Creating an aJax ContaCt ForM

For this next example, an Ajax layer will be applied to a contact form (Figure 11.10).
Again, the PHP script on the server will only return a simple message indicating
the result. Within the JavaScript, I’ll demonstrate two new tricks. The first will be
a quick method for creating Ajax data out of multiple form elements. The second
will be how to use a non-anonymous function to handle the readyState changes.

fiGURe 11 .9 Now correctly
logged in, via Ajax!

fiGURe 11 .10 The data in this
contact form will be submitted
to the server via Ajax.

x

ptg7799847

maIntaInInG State

When creating a system like that in the content example, in which content
is preloaded via Ajax, and swapped out when the user clicks a link, it’s
important to remember that the changes in the browser’s “state”—the
exact content being displayed—will not be maintained by the browser. This
means that, for example, the second page of displayed content cannot be
bookmarked, shared, or tweeted. And this system does break the browser’s
default behavior: clicking Back and Forward will not change what the user
sees. The solution, as explained in Chapter 9, is to use the hash part of the
uRL to create unique uRLs for each state. For example: http://www.example.
com/page.html#model and http://www.example.com/page.html#view. The only
remaining trick is that the JavaScript would need to watch for changes in the
hash part of the uRL in order to change the displayed content. To do that,
you’d need to set a timer that checks the hash on an interval, perhaps every
second or two, comparing the current hash value with the previous one.

The relevant HTML is:

<form action=”#” method=”post” id=”theForm”>

 <fieldset><legend>Contact</legend>

 <p>All fields are required.</p>

 <div class=”two”><label for=”name”>Name</label>
 p <input type=”text” name=”name” id=”name” required></div>

 <div class=”two”><label for=”email”>Email</label>
 p <input type=”email” name=”email” id=”email” required></div>

 <div class=”two”><label for=”comments”>Comments</label>
 p <textarea name=”Comments” id=”Comments” required>
 p </textarea></div>

 <div class=”one”><input type=”submit” value=”Submit”
 p id=”submit”></div>

 </fieldset>

</form>

This page includes the ajax.js script, and contact.js, to be written in the
following steps.

aJaX eXaMpleS 457

ptg7799847

To create an Ajax-based contact form:

1. Create a new JavaScript file in your text editor or IDE, to be named contact.js.

2. Begin defining the handleAjaxRequest() function:

function handleAjaxResponse(e) {

 ‘use strict’;

 if (typeof e == ‘undefined’) e = window.event;

 var ajax = e.target || e.srcElement;

In the previous examples, when using an anonymous function to handle
the readyState changes, the ajax variable was already available within that
function (because of variable scoping). When you use a separate function to
handle this event, the ajax variable will not be accessible, unless you were to
make it global. The workaround is simple, however: get the object that was
the target of the event, using code you’ve seen many times over by now. The
object that is the target of the event will be the same XMLHttpRequest object.

3. Update the page with the script’s response:

if (ajax.readyState == 4) {

 if ((ajax.status >= 200 && ajax.status < 300)

 || (ajax.status == 304)) {

 document.getElementById(‘contactForm’).innerHTML =
 p ajax.responseText;

If there was a positive response, the form will be replaced with the response
(there is a DIV with an id of contactForm that surrounds the form itself).

4. Complete the handleAjaxResponse() function:

 } else { // Status error!

 document.getElementById(‘theForm’).submit();

 }

 ajax = null;

 } // End of readyState IF.

} // End of handleAjaxResponse() function.

x

ptg7799847

If the server returns a bad response code, then the form will actually be submit-
ted to the server-side script. In either case, the Ajax object is then cleared out.

5. Begin an anonymous function for handling the window load:

window.onload = function() {

 ‘use strict’;

 var ajax = getXMLHttpRequestObject();

 ajax.onreadystatechange = handleAjaxResponse;

The Ajax object is created here so that it can be quickly used when the
form is submitted.

6. Add an event handler to the form’s submission:

document.getElementById(‘theForm’).onsubmit = function() {

7. Create the data to be sent to the server:

var fields = [‘name’, ‘email’, ‘comments’];

var data = [];

for (var i = 0, count = fields.length; i < count; i++) {

 data.push(encodeURIComponent(fields[i]) + ‘=’ +
 p encodeURIComponent(document.getElementById(fields[i]).
 p value));

}

This shortcut code makes it quick and easy to send all the form’s data to the
server. First, an array is filled with the id values of the form elements to be
passed to the server. Then an empty array is created, which will represent
the data itself. The loop then goes through the array of elements.

Within that loop, an element is added to the data array. That element’s value
will simply be name=value, where the name comes from the fields array
and the value comes from the corresponding form element. Both are passed
through encodeURIComponent() for security. When the loop is done, there
will be three name=value pairs stored in data.

For added security, you could include basic validation—that some value
was provided for the element—within the loop.

aJaX eXaMpleS 459

ptg7799847

8. Invoke the Ajax request:

ajax.open(‘POST’, ‘resources/contact.php’, true);

ajax.setRequestHeader(‘Content-Type’,
p ‘application/x-www-form-urlencoded’);

ajax.send(data.join(‘&’));

The final step in making the data appropriate for the request is to convert
the data array into a string, with each name=value pair separated by an
ampersand. The join() method can do just that.

9. Complete the onsubmit anonymous function:

 return false;

}; // End of onsubmit anonymous function.

The value false is returned to prevent the actual submission of the form.
10. Save the file as contact.js, in a js directory.

11. Create the contact.php script.

The PHP script would perform basic validation and then use the submitted
data in the mail() function:

mail(‘youremail@example.com’, ‘Contact Form Submission’,
p $body, $from);

The $body value would come from $_POST[‘comments’], after running it
through sanitizing functions to make it safe. The $from value would come
from $_POST[‘email’], after confirming that it’s a syntactically valid email
address. If you’re unsure of how to do that, you can ask me for help in my
support forums (www.LarryUllman.com/forums/).

12. Test in your Web browser (Figure 11.11).

fiGURe 11 .11 Upon a successful
Ajax request, the form will be
replaced with a message.

x

www.LarryUllman.com/forums/

ptg7799847

Preloading data

The next example will use Ajax in a slightly different way: to preload content that
the user would presumably need to see in short order. As how quickly a Web page
is loaded depends partially on how much data is being downloaded, a page can load
more quickly when it contains less data. Surely, you could trim out some of the fat,
but if there’s any content that won’t be visible immediately but might be needed
in time, that content is a good candidate to be loaded via Ajax. Logical examples
include content shown in tabs, accordions, HTML tables, or even upon the user
scrolling down the page (i.e., you could load elements in the top half of the page
first, and then load more content subsequently).

For the specific example, the page will display an initial page of content, intended
to be part of a series (Figure 11.12). As soon as the page has loaded, the next bit of
content will be retrieved, making it available for immediate display when the user
clicks the link. The relevant HTML is simply:

<div><h1 id=”title”>Introduction</h1><p id=”content”>THIS IS THE
p INTRODUCTION. Lorem ipsum...</p>

<p>Next Page</div>

This page includes the ajax.js script, and content.js, to be written in the
following steps.

To preload data:

1. Create a new JavaScript file in your text editor or IDE, to be named content.js.

2. Begin defining a function to be called when the window has loaded:

window.onload = function() {

 ‘use strict’;

This one function will do all the work.

fiGURe 11 .12 This content,
shown when the user first
arrives, is the only content that
has to be initially downloaded.

aJaX eXaMpleS 461

ptg7799847

3. Create two variables for tracking the pages:

var pages = [‘model’, ‘view’, ‘controller’];

var counter = 0;

The page begins with some introductory text, as shown in Figure 11.12. The
next three pages, in order, discuss the Model, the View, and the Controller:
the three parts of the MVC approach. Each keyword is stored in the correct
order in an array and a counter is initialized to 0. This counter will be used
to know what page to fetch and display next.

4. Fetch the next bit of content:

var ajax = getXMLHttpRequestObject();

ajax.open(‘GET’, ‘resources/content.php?id=’ + pages[counter],
p false);

ajax.send(null);

The request will be made of content.php, passing that script an id value to
indicate which bit of content should be requested. Note that this system is
going to use a synchronous request, as clicking the link won’t be meaningful
until the new content has been loaded. Alternatively, you could perform
an asynchronous request (so as not to prevent other user interactions), but
disabled the link until the next bit of content has been loaded.

5. Get the data:

var title = ajax.responseXML.getElementsByTagName
p (‘title’)[0].firstChild.nodeValue;

var content = ajax.responseXML.getElementsByTagName
p (‘content’)[0].firstChild.nodeValue;

As this is a synchronous request, the data can be immediately fetched, instead
of using a readyState function. The data itself will be in XML format, like:

<item>

 <title>The View Component</title>

 <content>Lorem ipsum dolor sit amet.</content>

</item>

x

ptg7799847

To get the individual values out, use the getElementsByTagName() method.
This method always returns an array, even if it’s an array of one element.
Consequently, that call must be followed by [0]: the array notation for the
first item. Thus, ajax.responseXML.getElementsByTagName(‘title’)[0] will
represent <title>The View Component</title>. To get the actual value out,
you must again use firstChild—pointing to the text node—and nodeValue.

6. Start creating the link click handler:

var nextLink = document.getElementById(‘nextLink’);

nextLink.onclick = function() {

 document.getElementById(‘title’).innerHTML = title;

 document.getElementById(‘content’).innerHTML = content;

When the link with an id of nextLink is clicked, the page should be updated
with the new content. That’s accomplished by assigning the corresponding
variables to the innerHTML properties of the HTML elements. You could use
innerText and textContent with the title, if you want to be more precise
and restrictive.

7. Increment and then check the counter:

counter++;

if (counter == 3) {

 nextLink.parentNode.removeChild(nextLink);

 ajax = null;

To retrieve the next bit of content, the counter has to be incremented (to
point to the next item in the pages array). However, there are only three
pages of content: when the counter equals 3, the process should stop. In that
case, the link is also removed and the Ajax object is cleared out.

8. If the counter does not equal 3, request the next chunk of content:

} else { // Get the next bit of content:

 ajax.open(‘GET’, ‘resources/content.php?id=’ +
 p pages[counter], false);

 ajax.send(null);

aJaX eXaMpleS 463

ptg7799847

 title = ajax.responseXML.getElementsByTagName
 p (‘title’)[0].firstChild.nodeValue;

 content = ajax.responseXML.getElementsByTagName
 p (‘content’)[0].firstChild.nodeValue;

}

This code repeats the earlier code, fetching the next page of content.

9. Complete the onclick anonymous function:

 return false;

}; // End of onclick anonymous function.

The value false is returned to prevent the actual request of the linked page.

10. Complete the onload anonymous function:

}; // End of onload anonymous function.

11. Save the file as contact.js, in a js directory.

s

If you would like to preload images, there’s an easier, non-Ajax solution: just
create a new image element with the file to be loaded as the src:

var temp = document.createElement(‘image’);

temp.src = ‘images/someimage.png’;

As soon as that line of code is executed, someimage.png will be loaded by the
browser. Because this code will presumably be executed after the page has
loaded, the additional loading of the new image will not impede the loading
of the original content. You can then swap in this new image, or add it to the
page, when needed. To have the code react once the new image has loaded,
just attach a load event handler to the new image.

x

ptg7799847

12. Create the content.php script.

The PHP script would perform basic validation of $_GET[‘id’] and then
return the correct XML. See the code in the downloadable file if you need
direction.

13. Test in your Web browser (Figure 11.13).

stoCk quotes With tiMer

For the last example in this chapter, let’s create a page that displays a stock quote
(Figure 11.14). The HTML page itself will be simple, the most important part being:

<p>Apple: $</p>

This page also includes the ajax.js script, and quote.js, to be written in the
following steps.

To retrieve the quote, I will use a Google page that returns the data for a stock
in JSON format. However, because of the cross-domain policy restriction (see the
sidebar on the next page), Ajax cannot directly access that Google page. The solu-
tion in this case will be to have the JavaScript access a PHP script on the same
domain, and that PHP script will access the Google page using a URL access utility
named cURL. PHP and cURL do not have the same cross-domain restriction. The
Google page returns the data in JSON format, and the PHP script will also return
the data in JSON format.

In order to automatically update the stock quote, without any user interaction,
a timer will be used to call the PHP script every minute. Remarkably, all of this
functionality requires comparatively little code.

fiGURe 11 .13 The last page of
dynamically drawn content,
with the link now removed.

fiGURe 11 .14 This page
retrieves the latest price for a
stock, showing it in the browser,
and updating it every minute.

aJaX eXaMpleS 465

ptg7799847

s

As mentioned in Chapter 9, browsers rightfully prevent JavaScript from retrieving data from other domains.
This protects the end user, which is always the first goal. However, if you do need to retrieve data from a
reliable source on another domain, there are options.

The first is to use a proxy script as in this example: the PHP script acts as an agent between the JavaScript
in the client and the data on the other domain. This is a common solution, but be aware that it deliberately
undercuts the browser’s security measures and adds stress to the server. It would be most prudent to have
your PHP script validate the returned data as thoroughly as possible before returning it to the JavaScript.

Another solution is to use an iframe within the client itself. A page can include an iframe whose source is on
another domain.

One more solution is to use something called JSON-P, short for “JSON with Padding” (www.json-p.org).
Whereas there’s a restriction on having JavaScript request a resource from another domain, browsers do
allow script tags to reference other domains. To take advantage of this capability, the script tag just needs
to load a resource that contains JSON. However, JSON cannot be used as the root of a script block (i.e.,
there’s no executable code in pure JSON). The work-around is to associate a function call with the request.
When the JSON data is returned, that function will be called:

<script src=”http://other.example.edu/resource?jsonp=parse”></script>

The function, parse() in the above, is defined in your JavaScript. When that server responds, the JSON data
will be immediately sent to the parse() function in your code, which can then parse and handle the data as
needed. The function should also perform all the necessary error handling.

An alternative solution still under development is Cross-Origin Resource Sharing (CORS). This is a
proposed extension of the XMLHttpRequest object that would allow cross-domain requests under the
proper circumstances.

To create stock ticker:

1. Create a new JavaScript file in your text editor or IDE, to be named quote.js.

2. Begin defining a function to be called when the window has loaded:

window.onload = function() {

 ‘use strict’;

Again, this one function will do all the work.

3. Create the Ajax object:

var ajax = getXMLHttpRequestObject();

x

www.json-p.org

ptg7799847

4. Begin defining the onreadystatechange function:

ajax.onreadystatechange = function() {

 if (ajax.readyState == 4) {

 if ((ajax.status >= 200 && ajax.status < 300)

 || (ajax.status == 304)) {

This code should be quite familiar by this point.

5. Update the page with the new quote:

var data = JSON.parse(ajax.responseText);

var output = document.getElementById(‘quote’);

if (output.textContent !== undefined) {

 output.textContent = data[0].l;

} else {

 output.innerText = data[0].l;

}

The first step is to parse the JSON data to make it a usable object (you could
validate the response here as well). The next step is to update the quote
span’s contents with the latest stock price. To do that, assign a new value
to either textContent or innerText. The Google page returns an array of
objects: one object for each stock quote requested. Even if you only request
one quote, you still get an array. Hence, the code needs to obtain a reference
to the first object, which is data[0]. The specific property that shows the
last price of the stock is a lowercase l, so data[0].l is the complete refer-
ence to the latest price for the one stock.

6. Complete the onreadystatechange anonymous function:

 } // End of status IF.

 } // End of readyState IF.

}; // End of onreadystatechange anonymous function.

aJaX eXaMpleS 467

ptg7799847

7. Make an Ajax request to get the first quote:

ajax.open(‘GET’, ‘resources/quote.php’, true);

ajax.send(null);

The page will start out without any stock quote at all. To fix that, an imme-
diate request is made.

8. Within a timer, perform the request again, every minute:

var stockTimer = setInterval(function() {

 ajax.open(‘GET’, ‘resources/quote.php’, true);

 ajax.send(null);

}, 60000);

The timer will call the anonymous function every minute, or 60,000 mil-
liseconds. The function itself just resends the Ajax request.

9. Complete the onload anonymous function:

}; // End of onload anonymous function.

10. Save the file as quote.js, in a js directory.

11. Create the quote.php script, to be stored in a resources directory:

<?php # quote.php

header(‘Content-Type: application/json’);

$curl = curl_init(‘http://www.google.com/finance/
p info?infotype=infoquoteall&q=AAPL’);

curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);

$result = curl_exec($curl);

curl_close($curl);

print substr($result,3);

?>

Using cURL with PHP is a bit of an advanced topic—I discuss it in my PHP 5
Advanced: Visual QuickPro Guide (Peachpit Press), but I’ll explain this code.

x

ptg7799847

First, because the PHP script is returning JSON data, the proper Content-
Type header must be sent. Then the cURL request is initialized, providing
the specific URL to access. The curl_setopt() line tells cURL to return
the request response so that it may be assigned to a variable, which is what
happens on the next line when the cURL request is executed. Finally, the
response itself has to be printed so that the JavaScript receives it. Because
the Google response begins with a space and //, I chop those off first.

If your version of PHP doesn’t support cURL, or if you’d rather not mess
with all this, you can just create a text file with the stock quote in it as JSON
data and then update that file every minute. The JSON data, to match what
quote.js expects, would be:

[{“l”: “380.10”}}]

12. Test in your Web browser (Figure 11.15).

revIeW and purSue

w

J How do you create an Ajax object?

J What are the arguments to the open() method?

J When should you make GET requests and when should you make POST requests?

J Why is it critical to load an HTML page through a URL when the JavaScript
will be making an Ajax request?

J What is the difference between an asynchronous request and a synchronous one?

J What is the significance of the readyState property? What readyState value
is most important?

fiGURe 11 .15 The stock
price has been updated
automatically.

review and purSue 469

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

ptg7799847

J What two properties should you check to confirm that it’s time to handle
the server response (and what values should those properties have)?

J What method actually begins the Ajax request?

J How do you send data as part of the request? Note: There are multiple answers.

J What Ajax debugging techniques should you deploy when you have prob-
lems with Ajax?

J What is caching and how does it affect Ajax processes?

J How do you handle XML data using JavaScript? How do you handle JSON data?

J How do you write a PHP script that just returns plain text? What about
XML? JSON?

J How do you repeatedly perform an Ajax request, every minute or some other
interval? How do you delay performing an Ajax request?

Pursue

J For a more time-consuming challenge, complete the examples in this chapter
so that they are all progressively enhanced versions that will work well with
JavaScript disabled. If you have trouble doing so, see the code in Chapter 15.

J Change any example to use DOM Level 2 event handling instead of DOM
Level 0.

J Update the test.js example so that it displays a “Loading…” message or
an animated GIF while the Ajax request is occurring.

J Rewrite test.js to work with XML data. Try it with different XML data sets.

J Rewrite test.js to work with JSON data. Try it with different JSON data sets.

J Update login.js to hide the form after the user has logged in. Also have
the JavaScript show an error message upon the submission of improper
credentials, letting the user try again.

J If you already have an appropriate database, and are comfortable with
PHP and MySQL, rewrite login.php to compare the submitted credentials
against the database.

x

ptg7799847

J Flesh out the contact.php script so that it may be used as a part of a contact
form on a live site.

J Modify quote.html and quote.js so that it retrieves multiple stock quotes.

WraPPing up

Although there’s still one more chapter in this second part of the book, this chapter
on Ajax concludes coverage of what I would describe as the most fundamental
aspects of modern JavaScript. The rise and ubiquitous implementation of Ajax has
given today’s JavaScript its due as a reliable way to enhance the user experience.

The first half of the chapter covered the basics of Ajax, from creating an object,
to making the request, to sending data to the server-side resource. You also learned
about the three main formats for data—plain text, XML, and JSON—how to create
them using PHP, and how to handle them in JavaScript. In the process, you devel-
oped a simple test example. You can use that test script to practice any type of Ajax
request, while you’re learning now or when developing something new in the future.

You also read through the fundamental steps for debugging Ajax processes. You
should take these to heart:

J Test the server-side resource by itself.

J Make sure you’re running everything through a URL.

J Watch requests in a network monitor.

J Be aware that caching may trip up your debugging efforts.

The last half of the chapter walked through many examples, describing both
the theories and the most critical pieces of code. Hopefully, by now you have a
sound sense of what Ajax is and can apply this knowledge—and the code—to
your current projects.

In the next chapter, the last for Part 2 of the book, you’ll learn about error
management, a hallmark of the professional programmer.

wrapping up 471

ptg7799847

12

ERROR
manaGement

ptg7799847

One of the most profound differences between the

beginning programmer and the expert is error manage-

ment. Certainly errors will occur regardless of the skill level of

the programmer, as the user causes many problems. But the more

seasoned developer does a markedly better job of handling errors

when they do occur. In this chapter, you’ll learn three ways to

prevent and deal with errors. The first is called exception handling,

and takes advantage of JavaScript’s built-in syntax: try…catch. The

second approach is the use of assertions, which is an easy debug-

ging tool utilized while writing code. Building on that concept, the

chapter concludes with an introduction to unit testing.

473

ptg7799847

Most of the examples in the book have a basic if-else construct watch for errors:

if (/* something good */) {

 // Do this.

} else {

 // Error!

}

This approach is sufficient for simple blocks of code, but with more complex
situations, especially in Object-Oriented Programming (OOP), there is a better
system—exception handling, involving the try and catch statements. Over the
next several pages, you’ll learn these two terms, plus throw and finally.

CatChing errors

The syntax for a try…catch block is:

try {

 // Lots of code.

} catch (error) {

 // Use error.

}

This may seem to be virtually the same as the if-else approach, but a key dif-
ference is that a single catch can handle any error that occurs within any number
of lines of code. For example:

try {

 doThis();

 doThat();

} catch (error) {

 // Use the error somehow.

}

s

474 ChaPter 12 error ManageMent

ptg7799847

CatChInG BY type

The code in this chapter demonstrates the basics of catching exceptions, with one catch block handling all of the
exceptions that could occur within a try block. But exceptions can also be caught by specific type. For example,
standard JavaScript code can throw a TypeError exception when the wrong type of object is used or a RangeEr-
ror exception when a number surpasses the range of allowed values. As these are clearly different problems, you
can handle them individually. To do that, use multiple catch blocks, indicating what type of exception each block
should catch. To catch a specific type of exception, use the instanceof operator with a conditional:

try {

 // Lots of code.

} catch (ex if ex instanceof TypeError) {

 // Use error.

} catch (ex if ex instanceof RangeError) {

 // Use error.

}

Once you know how to create your own object types, discussed in Chapter 14, Advanced JavaScript, you can
have your code catch your own custom types of exceptions, too.

When an error occurs within the try block (the section between the curly
braces), programming flow immediately moves to the catch block. In the previous
bit of code, this means that if the doThis() call causes an error, the doThat() call
will never be made. If no errors occur within the try block, then the catch block
will not be executed at all.

Within the catch block, you can use the error to respond accordingly. As you
might come to expect by now, as almost everything in JavaScript is an object, the
error variable will also be an object. In fact, in OOP, the errors involved in try…catch
blocks are normally called exceptions, which is just an object representation of an
error. (Now that I’ve introduced the term exception, I’ll use that, and the variable
ex, largely from here on.) Unless otherwise specified (see the sidebar), the specific
type of object will be Error. This object will always have these two useful properties:

J name, which stores the error type

J message, which stores the error message

(Other browsers may provide other Error object properties.)

catching and throwing errorS 475

ptg7799847

Using this information, a catch block might just log errors to the console:

console.log(error.name + ‘: ‘ + error.message + ‘\n’);

Understand that the exception variable in the catch block is like a function
parameter, and will only exist within that catch block.

FinallY Clause

An addition you can make to the try…catch structure is the finally clause. It
always comes last:

try {

 // Lots of code.

} catch (ex) {

 // Use ex.

} finally {

 // Wrap up.

}

The code in the finally block will always be executed, whether or not there
was an error. The finally block is normally used to perform cleanup: that which
always needs to be done, regardless of what happened beforehand. For example,
the code in the finally clause could remove error handlers or assign a null value
to a no-longer-needed Ajax object.

Neither the catch nor the finally block is required, but you must have at
least one of the two. If you write code in a try block with an exception that is not
caught, the exception will be reported to the user like a standard error without a
try…catch. If, for some reason, you don’t want to do anything with the exceptions
that occur, then you can just create an empty catch block:

try {

 // Lots of code.

} catch (ex) {

}

476 ChaPter 12 error ManageMent

ptg7799847

throWing exCePtions

The code thus far is predicated upon the idea of JavaScript raising the exception
when a problem occurs. You can also trigger your own exceptions, to be caught by
a catch block. Doing so uses the throw statement:

throw something;

The something part can be a number, a string, or an Error object:

throw 2; // Assumes 2 is meaningful in the catch.

throw ‘No such HTML element!’;

throw new Error(‘No such HTML element!’);

If you want, you can also throw a custom exception object, but it should have
the name and message properties, as those are expected by most catch blocks:

var error = {name: ‘Division Error’, message: ‘Cannot divide
p by zero.’};

throw error;

You can condense these two lines into one:

throw {name: ‘Division Error’, message: ‘Cannot divide by zero.’};

All that being said, it’s generally best to throw Error objects, as you can consis-
tently write catch blocks to use the name and message properties that way. As an
added bonus, Error objects may have additional useful properties in some browsers.

Often, the code within a try block will throw an exception when a function
call fails, likely because the function did not receive the proper arguments. You
can write your own functions to throw exceptions, too:

function $(id) {

 ‘use strict’;

 if (typeof id != ‘undefined’) {

 return document.getElementById(id);

 } else {

catching and throwing errorS 477

ptg7799847

 throw Error(‘The function requires one argument.’);

 }

}

Then, the try block might look like:

try {

 var elem = $();

 elem.innerHTML = ‘<p>blah</p>’;

} catch (ex) {

 console.log(‘Could not update the element because: ‘ +
 p ex.message + ‘\n’);

}

With that code, no attempt will be made to update the element’s innerHTML
property, because the function will have thrown an exception, moving focus to
the catch.

Putting it all together

There are many good and common uses of try…catch. In this next bit of code,
the getXMLHttpRequestObject() function from Chapter 11, Ajax, will be updated.
Specifically, the code will try to create an ActiveXObject, and catch any exception
that occurred if it could not be created.

To use try and catch:

1. Open ajax.js in your text editor or IDE.

2. Replace the line that creates the new ActiveXObject with:

try {

 ajax = new ActiveXObject(‘MSXML2.XMLHTTP.3.0’);

} catch (ex) {

 console.log(‘Could not create the ActiveXObject: ‘ +
 p error.message + ‘\n’);

}

478 ChaPter 12 error ManageMent

ptg7799847

Now the attempt to create the ActiveXObject is placed within a try
block. If that attempt fails, the exception will be caught and reported. You
could extend this approach so that it attempts to create different kinds
of ActiveXObjects, starting with the most current version possible—
MSXML2.XMLHTTP.6.0—and working your way backward to a version
that’s supported.

3. Save the file as ajax.js.

To test this updated version, rerun any of the examples from the previous
chapter.

s

A precursor to true unit testing—to be discussed next—is the assertion. Unlike the
try...catch structure just discussed, intended to more gracefully handle errors that
might occur, assertions and unit testing are designed to flag errors that shouldn’t
occur. In programming, an assertion is code that basically says: Confirm that this
is the case. Assertions are easy to use, and can quickly aid debugging while you’re
developing a project. Assertions, like unit testing, will also minimize bugs in the
final code you put out.

JavaScript doesn’t have a predefined assertion method, but you can write one
yourself, or use Firebug, which has its own assertion method. Let’s take a quick
look at both.

Creating an assertion FunCtion

Your own assertion function could be defined like so:

function assert(expression, message) {

 if (!expression) throw {name: ‘Assertion Exception’,
 p message: message};

}

uSing aSSertionS 479

ptg7799847

Let’s look at how that function would be used and then I’ll explain it in detail.
The following code asserts that the variable myVar is not undefined (Figure 12.1):

assert(typeof myVar != ‘undefined’, ‘myVar is undefined!’);

The first argument is an expression to be evaluated: What condition do you
want to assert is TRUE? The second argument is the message to be displayed if the
expression is not evaluated as TRUE. The combination of that specific assert()
function call and the assert() function definition equates to:

if (!(typeof myVar != ‘undefined’)) {

 throw {name: ‘Assertion Exception’, message: ‘myVar is
 p undefined’};

}

Once you’ve defined your own assert() function, you can use it to quickly add
checks to your code as you write:

var radius = document.getElementById(‘radius’).value;

assert((typeof radius == ‘number’), ‘The radius must be a number.’);

volume = (4/3) * Math.PI * Math.pow(radius, 3);

assert(!isNaN(volume)), ‘The volume is not number.’);

The logic on the last assertion is a bit backward: The goal is to confirm that the
volume variable is a number, so the isNaN() function should return false. To assert
that condition, precede the function call by the negation operator.

Because the assert() function throws an exception, that block of code could
be wrapped in a try…catch block.

Note that these assertions should not be part of any live code, for three reasons.
First, users shouldn’t be privy to error messages (in fact, in a proper site, users
shouldn’t see JavaScript errors at all). Second, there’s no reason to have the user

fiGURe 12 .1 The assertion
function triggers an exception
when an assertion fails.

480 ChaPter 12 error ManageMent

ptg7799847

download all that extra code. And third, as mentioned in the introduction to this
section, assertions are intended to catch improbable or unlikely problems (i.e.,
bugs). You would not, for example, use assertions to validate user input.

assertions in FireBug

If you’re already using Firebug, you can invoke its assert() method as a debugging
tool. It’s defined as part of the console object:

var radius = document.getElementById(‘radius’).value;

console.assert(typeof radius == ‘number’), ‘The radius must be a
p number.’);

volume = (4/3) * Math.PI * Math.pow(radius, 3);

console.assert(!isNaN(volume)), ‘The volume is not number.’);

The console.assert() method works exactly like the one just defined, taking
an expression as its first argument and a message as its second.

g

Unit testing is a relative newcomer to programming, but is an approach that many
developers have embraced as it can make developing larger applications much
more reliable. The premise of unit testing is that you define tests to confirm that
particular bits of code work as needed. The tests should be as atomic as possible
(i.e., specific and small). As with assertions, unit tests should check that code works
as intended; unit tests are not for validating user input or for gracefully handling
problems that could possibly arise during the live execution of a site (e.g., a server-
side resource being unavailable for an Ajax call).

As the scope of the application increases, and as you add and modify the code,
you continue to write tests for the new code, while still checking all of the original
code against the existing tests, too. By doing this, you ensure that the introduction
of new and modified code doesn’t break something that was previously working.
Moreover, unit testing will often improve the code you write from the get-go, as
you’ll begin thinking in terms of all possibilities, not just the expected ones.

unit teSting 481

ptg7799847

The best way to implement unit testing is to use one of the many libraries
available for the purpose. The first was JSUnit (www.jsunit.net), but it is no lon-
ger actively maintained. If you’re already using a framework like jQuery or YUI,
both of which are discussed in the next chapter, there are unit-testing plug-ins
or components for those. For this chapter, I’ve decided to demonstrate jsUnity
(http://jsunity.com), which is an updated version of JSUnit. There are many
unit-testing options out there, and I seriously considered both Jasmine (http://
pivotal.github.com/jasmine/) and Selenium (http://seleniumhq.org), but I
find that jsUnity provides a good yet gentle introduction to the concept.

setting uP JsunitY

The first thing you’ll need to do is download the jsUnity library. You can do so by
clicking the link on the jsUnity home page. The download is a single JavaScript file,
to be included in the HTML page to be tested:

<script src=”js/jsunity-0.6.js”></script>

Logically, you would include this after the page’s key JavaScript code. The tests
themselves would then be defined in another script. You’ll see an example of all
of this in just a few pages.

deFining tests

The best way to define a series of tests is to create a suite of tests. You can do so in
many ways, such as defining an encompassing function:

var myTests = function() {

};

Within that function, create subfunctions that represent the individual tests:

var myTests = function() {

 function testThis() {

 }

};

Note that all test functions must have a name that begins with “test.”

482 ChaPter 12 error ManageMent

www.jsunit.net
http://jsunity.com
http://pivotal.github.com/jasmine/
http://pivotal.github.com/jasmine/
http://seleniumhq.org

ptg7799847

Within each test, use one of jsUnity’s assertion methods. There’s no simple
assert() method, but you can use the more specific:

J assertTrue()

J assertFalse()

J assertIdentical()

J assertNotIdentical()

J assertEqual()

J assertNotEqual()

J assertMatch()

J assertNotMatch()

J assertTypeOf()

J assertNotTypeOf()

J assertInstanceOf()

J assertNotInstanceOf()

J assertNull()

J assertNotNull()

J assertUndefined()

J assertNotUndefined()

J assertNaN()

J assertNotNaN()

For example, jsUnity versions of earlier code would be:

jsUnity.assertions.assertNotUndefined(myVar);

jsUnity.assertions.assertTypeOf(‘number’, radius);

jsUnity.assertions.assertNotNaN(volume);

As you can see, all of the assertion functions are defined within jsUnity.assertions.
To reiterate, unit tests should be as particular as possible. Unit tests should

also cover the full range of possibilities. This means that tests should confirm
appropriate results when code is executed properly, as well as the appropriate—but
different—results when code is executed improperly. You’ll see a concrete example
of this later in the chapter.

running tests

Once you’ve defined the tests, you can execute them by invoking the run() method:

var results = jsUnity.run(myTests);

After all the tests have run, the results variable will have several properties
that reflect the results:

unit teSting 483

ptg7799847

J total, the number of tests run

J passed, the number of tests passed

J failed, the number of tests that failed

J duration, the time it took to execute the tests, in milliseconds

This is a good start, but these results alone do not indicate which tests passed
and which ones failed. To do that, you need to define a logging function.

logging results

To create a logging function that reports upon the results of the tests, assign a
function definition to the jsUnity.log property:

jsUnity.log = function(message) {

 // Do something with message.

};

The function takes a string as its lone argument. This string will differ based
upon the current stage of the testing, including reporting on the overall results.
You could send this message to the console or dynamically add it to the Web page.

setting uP and tearing doWn

The last thing to know, before getting into an actual example, is how to prepare for
tests. Many times, tests expect certain things to have occurred in order for the test
to be viable. For example, if functions are triggered after a user action, you could
manually trigger those functions as a setup step instead. This step can also be
used to adjust for scoping issues: making necessary variables available to the tests.

The setUp() function can be used to perform some tasks before the tests are
run. The corresponding tearDown() function will perform tasks after the tests run.
Each can be defined within the test suite:

var myTests = function() {

 function setUp() {

 // Do these things.

 }

484 ChaPter 12 error ManageMent

ptg7799847

 function tearDown() {

 // Now do these.

 }

 function testThis() {

 }

};

Putting it together

To put all this information together, let’s create some unit tests for the utilities library
first defined in Chapter 8, Event Handling. That library has two functions I want to
test: $(), which is a shortcut to document.getElementById(), and setText(), for
setting the textContent or innerText property of an element. To define the tests,
you have to think about what the code should do when used properly or improperly.

The HTML page just needs a couple of paragraphs:

<p id=”output”></p>

<p id=”results”></p>

The first will be used for the tests; the second will be used to display the test results.
The HTML page needs to also include the utilities.js script (i.e., the code

being tested), the jsUnity library file, and a third file, which defines and runs the
tests. It will be written in the following steps.

To perform unit testing:

1. Create a new JavaScript file in your text editor or IDE, to be named tests.js.

2. Begin defining a suite of tests:

var myTests = function() {

 ‘use strict’;

};

The myTests object stores all of the tests. The four following function defi-
nitions should go within this anonymous function.

No setting up or tearing down is necessary in this case.

unit teSting 485

ptg7799847

3. Define the first test:

function testGetElement() {

 jsUnity.assertions.assertNotNull(U.$(‘output’));

}

This test confirms that the $() function returns a value that is not null when
provided with a proper element ID. In other words, when used properly $()
returns a good result. Because this particular function returns an element
reference, and that element could be of many different types—paragraph,
input, and so forth—it’s not possible to test that the result is of a specific type.

4. Define the second test:

function testGetInvalidElement() {

 jsUnity.assertions.assertNull(U.$(‘doesNotExist’));

}

The second test confirms that the function returns null if an invalid ele-
ment ID is provided.

These two tests combine to cover two possibilities. You could add another test
that validates the result when no argument is provided to the $() function.

5. Define the third test:

function testSetText() {

 jsUnity.assertions.assertTrue(U.setText(‘output’, ‘test’));

}

The setText() function returns a Boolean indicating if it could or could not
assign a value to the textContent or innerText property of the provided
element. This first test confirms that the value true is returned when the
function is provided with a valid element and a string.

6. Define the fourth test:

function testCannotSetText() {

 jsUnity.assertions.assertFalse(U.setText(‘doesNotExist’,
 p ‘test’));

}

486 ChaPter 12 error ManageMent

ptg7799847

s

The focus in this chapter is on using a unit-testing library for the purpose of testing a single page of code.
To run the tests, the page itself is loaded in a browser. Some unit-testing frameworks and tools make it
possible to simultaneously test your JavaScript on multiple browsers or in other ways:

J Tutti (http://tuttijs.com)

J Yeti, part of YuI (http://yuilibrary.com/projects/yeti/)

J TestSwarm (http://swarm.jquery.org/)

J JsTestDriver (http://code.google.com/p/js-test-driver/)

J Selenium (http://seleniumhq.org)

These tools are far more complicated than jsunity and other simple libraries, but mastery of them can make
large-scale and complex JavaScript applications much more reliable.

I should also mention that John Resig, creator of jQuery, has created Dromaeo (http://dromaeo.com) for JavaScript
performance testing. And, as a reminder, using tools like JSLint can help catch many actual or potential problems.

This test confirms a result of false when an invalid element ID is provided.
At this point, two possibilities for the setText() function are covered. You
could also write tests for misuses of the function, such as a failure to provide
both arguments or failure to provide the right types of arguments.

7. Create the log() function:

jsUnity.log = function(message) {

 U.$(‘results’).innerHTML += ‘<p>’ + message + ‘</p>’;

};

The log() function in this case will add a paragraph containing the specific
message to the results paragraph’s innerHTML property.

8. Run the tests:

jsUnity.run(myTests);

As the logging function will report upon the results automatically, there’s
no need to assign the results of the tests to a new variable.

unit teSting 487

http://tuttijs.com
http://yuilibrary.com/projects/yeti/
http://swarm.jquery.org/
http://code.google.com/p/js-test-driver/
http://seleniumhq.org
http://dromaeo.com

ptg7799847

9. Save the file as tests.js and run the HTML page in your Web browser
(Figure 12.2).

If any tests failed, you would need to revisit the tested code to see why (i.e.,
look at the code in the utilities library).

revIeW and purSue

w

J What is the syntax for using try…catch? What about try…finally, with or
without a catch block?

J What are the advantages of try…catch over using if-else?

J What is an exception?

J What are assertions? How are they used?

J What is unit testing? How is it used?

J When should you use exception handling and when should you use asser-
tions or unit testing?

Pursue

J Go back and apply exception handling to other code developed in the book
or that you developed on your own.

J If you’re curious, investigate what other Error object properties each
browser provides.

J Update ajax.js so that it attempts to create an ActiveXObject of type
MXSML2.XMLHTTP.6.0 first, and then attempts to create older versions if
an exception was thrown.

fiGURe 12 .2 All four tests were
successful.

488 ChaPter 12 error ManageMent

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

ptg7799847

J Go back and apply assertions or unit testing to code developed in the book
or that you developed on your own.

J Add more tests to tests.js to check the results when no arguments, or the
wrong type of arguments, are provided to the $() and setText() functions.

J Update all the functions in the utilities.js file so that the functions always
deliberately return a value. Write tests for all the possible contingencies.

J If you’re feeling confident with what you learned about unit testing in this
chapter, investigate the subject more, particularly looking into other test-
ing frameworks.

WraPPing up

In this chapter, you learned some new techniques for gracefully handling errors
and for catching for bugs as you write code. The hallmark of the professional pro-
grammer is error management, and exception handling via the try…catch block
is an important tool toward that end. Any error that occurs within multiple lines
of code, placed within a try block, can be handled by the same catch. A finally
clause can perform wrap-up as needed.

You also saw two ways of testing your code as you write it: assertions and unit
testing. Both are meant to flag the unexpected occurrence during the development
process. Assertions are easy to comprehend and are a fundamental building block
of unit testing itself. Unit testing, at its most basic level, applies simple tests to
confirm that code works as it should under various circumstances. As you develop
and expand your software, write more tests, and continue to execute them all, to
better guarantee that bugs are not being introduced.

This chapter concludes Part 2 of the book, which covers all of the fundamental
aspects of programming in JavaScript. The next chapter is one of three in Part 3:
Next Steps. Those chapters introduce ways to expand upon the core principles
that you’ve now learned.

wrapping up 489

ptg7799847

s

ptg7799847

491

The rise of frameworks is one of the reasons for

JavaScript’s larger role in today’s Web, and you can’t

fully appreciate modern JavaScript without learning frame-

works, too. In this chapter, you’ll be introduced to two of the most

popular frameworks—jQuery and the Yahoo! User Interface (YUI)

Library. You’ll pick up the fundamentals for using both, and see a

couple of specific add-ons for each. The chapter begins, though,

with a discussion of how you should select a framework, as well

as the arguments for and against them in general.

ptg7799847

Once you’ve decided to learn a framework, the natural question is: Which frame-
work? Clearly, jQuery is the current dominant JavaScript framework, and it would
be a reasonable decision to just start with it. But other frameworks that exist today
have their own strengths, and new frameworks will come along, so it’s worth iden-
tifying the criteria for selecting what framework to learn and use.

I would start with browser support, making sure that the framework supports
the types and versions of the browsers that your site needs to support. Most frame-
works support a very similar range of browsers, but it’s worth checking into regard-
less. I would also research the framework’s license. Again, almost all frameworks
can be used for free, but you shouldn’t assume that’s the case.

Perhaps this is because I’m a writer, or because I’ve had my fair share of struggles
trying to learn poorly documented subjects, but the quantity and quality of docu-
mentation is my next criterion. If you can’t figure out how to use a framework, it’s
of little use. This includes not just the official documentation but the number, and
clarity, of online tutorials that exist. On a similar note, having a community where
you can turn to for help and advice will make a big difference, particularly when
you get into more complicated uses of frameworks.

Next, I would look at the viability and extensibility of the framework, with the
latter often impacting the former. It’s hard to tell if a new framework is going to
last, but you don’t want to waste time mastering a new framework only to have
it dry up within the next few months. Knowing that Yahoo! is behind YUI is an
argument in its favor (not that companies don’t sometimes abandon products, too).
The viability of a framework is improved if it’s designed to be extensible, as that
encourages community involvement. It also means that if a framework can’t do
what you need it to out of the box, there may be a plug-in that will serve that role,
or you could (in theory) write one yourself.

Finally, the framework has to feel right to you. There are easily a half-dozen or
more frameworks that meet the above criteria, but you might be more inclined toward
one particular framework than another, for no explicable reason. That’s perfectly
reasonable and justification enough for not trying to identify the “best” framework.

The most important thing to remember when using JavaScript frameworks is
that you’re still programming in JavaScript. This will always be the case, and is a
point that can get lost thanks to the ease of frameworks like jQuery. Sound knowl-
edge of JavaScript is required to use a framework, and anyone who says otherwise
is quite mistaken. Learning to use a framework is largely a matter of learning how
to translate something you’d do in straight JavaScript into framework-based code.

ChooSInG a frameWork

ks

ptg7799847

Should you use a frameWork?

Just because frameworks are popular and useful doesn’t mean you should use them, at least not all the
time. The arguments for using a framework include faster development, better code testing, and much bet-
ter cross-browser reliability. Especially when you get into more complex concepts, frameworks will allow
you to implement the desired functionality in a fraction of the time it would take you to do so from scratch.
Further, no matter how good you are about testing the code you write, a popular framework will have been
put to the test much more thoroughly. Toward that end, you should expect the framework to work very,
very well on the range of browsers that it supports.

An argument against using a framework is the initial time required to learn the framework. Today’s frame-
works are fairly approachable, but you will need to spend hours learning how to do something you could do
using straight JavaScript in minutes. The counter argument is that once you’ve mastered a framework, you’ll
spend minutes writing code that would have otherwise taken you hours.

Secondarily, there is a code bloat factor, in that the user will have to download a significant amount of code
on sites that use frameworks. undoubtedly much of that code will define functionality that won’t be used
by the particular site, which is a waste of bandwidth, bad for performance, and so forth. Better frameworks
ameliorate this problem by allowing you to create custom versions of the framework, supporting only the
features you need. And, with today’s faster connection speeds, it’s not unreasonable for the user to down-
load more and more code. Still, with more and more mobile users, and many users in countries with slower
access speeds, you ought to be prudent about what the user is being forced to download.

It’s important for today’s JavaScript programmers to be conversant with at least one framework, but you
should still question, on each project, whether a framework is appropriate. The first criterion for when to
use a framework should be the depth and complexity of the site’s JavaScript needs. For a small site, with
JavaScript that’s not too elaborate, code you write yourself will likely be better (depending, of course, upon
the quality of that code). For a larger site, with a lot of JavaScript that occasionally gets tricky, a framework
is a reasonable choice, even if that possibly means a slight degradation of some performance.

From a development perspective, one common issue with frameworks is that they can make debugging
more challenging. To combat that problem, see if your framework supports testing and debugging tools
(both jQuery and YuI do). Second, be aware that frameworks are designed to implement a broad range of
standard functionality with ease. The antithesis is that when you need custom variations on that function-
ality, you may find that customization to be unbearably difficult to pull off. This depends greatly upon the
extensibility of the framework in use, how well it is documented, and what kind of support is available.

chooSing a FraMeworK 493

ptg7799847

To start, you’ll use a framework to reliably and quickly do those things covered in:

J Chapter 8, Event Handling

J Chapter 9, JavaScript and the Browser

J Chapter 11, Ajax

These topics, in framework terms, will be the focus for both of the frameworks
discussed in this chapter. What you’ll see is that, in these areas particularly, the
framework will normalize how you go about a task, meaning the same framework
code will work across all browsers.

Subsequently, you’ll also learn how to use frameworks to implement new con-
cepts, such as dramatic effects or page widgets. These Web features can be tedious
to implement without a framework (i.e., to do in what I’ll call “straight” JavaScript).

introduCing JQuery

The jQuery framework (http://jquery.com) has caught on over the past few years
to a level that very few technologies reach, especially when there is such varied
competition. It’s difficult to pinpoint exactly why this one framework is so dominant
except to say that jQuery just seems to have “it.” To many developers, like myself,
jQuery feels right. It’s a very simple framework to use, once you get past its cryptic
syntax, particularly for smaller applications. In fact, a frequent assumption is that
many people using jQuery aren’t even learning JavaScript in the first place! (This
is hopefully an exaggeration, as it’s certainly not a good thing.)

For more advanced needs, such as custom functionality and widgets (i.e., date-
picking calendars, dynamic tables, photo displays, and the like), there are oodles
of jQuery plug-ins available. The documentation for core jQuery is pretty good,
although you can spend a fair amount of time finding, and learning how to use,
the plug-ins you need.

The official Web site for jQuery is listed above, and for news and more, check
out the jQuery Blog (http://blog.jquery.com). There’s also a support forum at
http://forum.jquery.com and an alternative presentation of the jQuery docu-
mentation at http://jqapi.com.

ks

http://jquery.com
http://blog.jquery.com
http://forum.jquery.com
http://jqapi.com

ptg7799847

getting started With JquerY

To use jQuery, you must, of course, incorporate the jQuery library into your HTML
page. One option is to download the framework, copy it to your Web server, and
include it from there:

<script src=”js/jquery-1.7.1.min.js”></script>

An alternative is to use a version hosted on a Content Delivery Network (CDN).
A CDN is a series of servers in multiple locations around the world, each able to
provide the same content. Through a CDN, users can download content from a
server closer to their geographic location, thereby improving how quickly the site
loads. Secondarily, if multiple sites use the same CDN for the same content, as
would be the case for a JavaScript framework, the user may not need to download
the framework at all when he or she visits your site, as a cached version may be
on the browser from a previous visit to another site.

For jQuery and many other frameworks, Google provides a copy you can use
through its CDN (see http://code.google.com/apis/libraries/ for more):

<script src=”https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
p jquery.min.js”></script>

After you’ve incorporated jQuery into your HTML page, you can begin using
jQuery within a second script block or external file. All jQuery interactions go
through the jQuery() function, which the framework itself shortens to just $().

What you’ll commonly do with any framework is interact with the Document
Object Model (DOM). To do that, however, you must first be certain that the entire
DOM has been loaded. In straight JavaScript, you would normally wait for the
window to load, prior to taking any steps:

window.onload = function() {

 // Do whatever.

}

The jQuery equivalent is:

$(document).ready(function() {

 // Do whatever.

}

introducing JQuery 495

http://code.google.com/apis/libraries/

ptg7799847

The first part—$(document)—selects the window document. On this selec-
tion, the ready() method is called, which has the effect of calling the internal,
anonymous function when the “ready” event is triggered. This jQuery approach
is actually a slight improvement on waiting for the window to load, as it only waits
for the document to be loaded, allowing JavaScript to be executed before images
and other non-material content have loaded.

This whole construct is further simplified to just:

$(function() {

 // Do whatever.

});

This is one of the few difficulties with jQuery: its syntax is cryptic to the point
of being daunting, particularly for those not comfortable with JavaScript. But once
you understand that the above construct simply waits for the document to be
ready before executing the anonymous function, you can start progressing with
the framework. To be clear, the code in almost all of the following pages would go
within this block (in place of Do whatever.) in a live site.

seleCting eleMents

The next thing to learn how to do in jQuery is to select page elements. References
to page elements are required to add event handlers, manipulate the DOM, fetch
form values, etc. In straight JavaScript, this is accomplished using the getElement-
ById() and getElementsByTagName() methods of the document object (among
other techniques). In jQuery, selections are made through the $() function. In
fact, you’ve already seen how to select the Web document itself: $(document). To
select other page elements, use CSS selectors in place of document:

J #something selects the element with an id value of something

J .something selects every element with a class value of something

J something selects every element of something type (e.g., p selects every
paragraph)

ks

ptg7799847

Those three rules are more than enough to get you started, but know that
unlike document, each of these gets placed within quotation marks. For example,
the code $(‘a’) selects every link and $(‘#output’) selects the element with an
id value of output.

These rules can be combined as well:

J $(‘img.landscape’) selects every image with a class of landscape

J $(‘#loginForm input’) selects every input element found within an ele-
ment that has an id of loginForm

jQuery has its own additional, custom selectors, allowing you to select page
elements in more sophisticated ways. See the jQuery manual for examples.

Note that $() can return one or more elements, depending upon how many
met the criterion (or null, if no matches were made).

ManiPulating eleMents

Once you’ve selected the element or elements to be manipulated, applying any
number of jQuery functions to the selection will change its properties. You can
change the attributes of a selection using the attr() method. Its first argument is
the attribute to be addressed; the second, the new value. For example, the following
code will disable a submit button by adding the property disabled=”disabled”:

$(‘#submitButtonId’).attr(‘disabled’, ‘disabled’);

As you can see, jQuery supports and actively promotes chaining function calls.
The first part finds and returns a selection; the part after the period calls the attr()
function on the selection. This is just a more direct alternative to using separate
lines of code like:

var submit = $(‘#submitButtonId’);

submit.attr(‘disabled’, ‘disabled’);

This next chain of calls changes two attributes in one step:

$(‘#submitButtonId’).attr(‘disabled’, ‘disabled’).attr(‘value’,
p ‘...Processing...’);

introducing JQuery 497

ptg7799847

Another way to manipulate elements is to change the CSS classes that apply
to a selection. The addClass() function applies a CSS class and removeClass()
removes one. The following code adds the emphasis class to a specific blockquote
and removes it from all paragraphs:

$(‘#blockquoteID’).addClass(‘emphasis’);

$(‘p’).removeClass(‘emphasis’);

The toggleClass() function can be used to toggle the application of a class
to a selection: adding the class if it isn’t applied, removing the class when it is.

You can change individual styles using the css() method. Its first argument is
the style name and its second is the new value.

The already mentioned functions generally change the properties of the page’s
elements, but you can also change the contents of those elements. To get the cur-
rent contents, such as the text a user entered into a form element, use val(). When
provided with an argument, val() assigns a new value to that form element. For
example, in Chapter 8, a textarea was limited as to how many characters the user
could enter there. That code in jQuery would be:

var comments = $(‘#comments’); // Get a reference.

var count = comments.val().length;

if (count > 100) { // Update the value:

 comments.val(comments.val().slice(0,100));

}

Similar to val(), the html() function returns the HTML contents of an ele-
ment and text() returns the textual contents. Both functions can also take argu-
ments used to assign new HTML and text, accordingly, similar to using innerHTML,
innerText, and textContent.

doM ManiPulation

In straight JavaScript, DOM manipulation is easy but verbose. To add a new paragraph
within a DIV but before a form, you would create the new paragraph as an element, get
a reference to the DIV, get a reference to the form, and then call the insertBefore()
method on the DIV. jQuery improves upon this flow in a couple of ways.

ks

ptg7799847

First, there are multiple functions for adding content to the DOM (plus varia-
tions on these):

J after()

J append()

J before()

J prepend()

These methods are nice because they allow you to add content without always
obtaining references to two elements. For example, in jQuery, to add a paragraph
before a form, you would call the before() method on the form:

$(‘#actualFormId’).before(/* new paragraph */);

No reference to the parent DIV is required.
Similarly, the remove() method removes an element (or elements, if multiple

were selected) without having to get a reference to the element’s parent node:

$(‘#selection’).remove();

The equivalent in straight JavaScript would be:

var elem = document.getElementById(‘selection’);

elem.parentNode.removeChild(elem);

A second improvement for DOM manipulation in jQuery is that content to
be added can be in multiple formats, including literal HTML. To add a paragraph
to a DIV, you don’t have to create a new paragraph element; you can just do this:

$(‘#actualFormId’).before(‘<p>This is the paragraph.</p>’);

Naturally, you can use element references, too, or you can use jQuery selections.
The following code moves an element from one location to another by adding a
clone, then removing the original:

$(‘#destination’).before($(‘#selection’).clone(true));

$(‘#selection’).remove();

introducing JQuery 499

ptg7799847

handling events

The next thing to learn is how to associate event handlers with an element in
jQuery. You’ve already seen one example:

$(function() {

 // Do whatever.

});

That code calls the anonymous function when the “ready” event is triggered by
the document object. Following this pattern, in jQuery event listeners are assigned
using the syntax selection.eventType(function.)

The selection part would be like $(‘.something’) or $(‘a’): whatever element
or elements to which the event listener should be applied. The eventType value
will differ based upon the selection. Common values are change, focus, mouseover,
click, submit, and select. In jQuery, these are all actually the names of functions
being called on the selection. These functions take one argument: the function to
be called when the event occurs on that selection.

For example, to handle the event of any image being moused over, you would code:

$(‘img’).mouseover(function() {

 // Do this!

});

As explained in Chapter 7, Creating Functions, on some browsers, the this object
can be used within event handlers to refer to the element that triggered the event
(as opposed to using the target property of the event object, as required by older
versions of Internet Explorer). In jQuery, you can reliably use this, regardless of
the browser. The following code adds a change event to an element (theoretically,
a select menu) and alerts the selected value:

$(‘#someSelect’).change(function() {

 alert(this.val());

});

TIP: jquery version 1.7 adds the new on() and off() methods
for adding and removing event handlers.

ks

ptg7799847

jQuery also defines some methods for associating more complex event handlers
with elements. For example, the hover() method takes a mouseover function as its
first argument and a mouseout function as its second, letting you create two event
handlers with an element in one step. See the jQuery documentation for more.

Creating eFFeCts

I haven’t discussed effects much up to this point in the book, as the creation of
effects in straight JavaScript requires a lot of code. But once you’re using a frame-
work, lots of effects become easy to use. For starters, the hide() and show() func-
tions …um…hide and show the selection. Thus, to hide a form (perhaps after the
user has successfully completed it), you would write:

$(‘#actualFormId’).hide();

The toggle() function, when called, will hide a visible element and show a
hidden one (i.e., it toggles between those two states). Note that these functions
neither create nor destroy the selection (i.e., the selection will remain part of the
DOM, whether it’s visible or not).

Similar to show() and hide() are fadeIn() and fadeOut(). These functions
also reveal or hide the selection, but do so with a bit of effect added in. More
complicated effects can be accomplished using the animate() method or through
various plug-ins.

PerForMing aJax

The last use of straight JavaScript that you should know how to perform using
jQuery is an Ajax request. There are several ways to perform Ajax requests in jQuery,
but I’ll explain how to use the $.ajax() method. The ajax() method is not invoked
on a selection, as the previous examples were. Also note that you’re not invoking $,
as in $(), but treating it like an object that has a method named ajax.

The ajax() method takes one argument, an object of options used to configure
the request:

$.ajax(options);

introducing JQuery 501

ptg7799847

All of the Ajax request particulars—the resource to be requested, the type of
request to make, the data to be sent as part of the request, and how to handle the
response—get defined within the options object:

var options = {

 url: ‘http://www.example.com/somepage.php’,

 type: ‘get’,

 data: /* actual data */,

 dataType: ‘text’

};

The url property gets assigned the name of the server-side resource to request.
The type property is the type of request being made, with get and post being the

two most common. A GET request is the default, so it does not need to be assigned,
but it’s normally best to be explicit.

Next, a property named data is assigned the actual data to be passed to the
server-side resource (when applicable). The data should be in the format of an
object, as in (assuming u and p are variables with values):

data: {username: u, userpass: p},

With that data object, the server-side resource—the PHP script—will receive
the data in $_GET[‘username’] and $_GET[‘userpass’], when the GET method
is used.

The dataType setting is the data type expected back from the server-side request.
Allowed values include text, xml, html, and json. In the case of JSON, the response
data will already be parsed so that it’s immediately usable.

The final thing the object has to do is identify the function to be called when
the Ajax request successfully completes. This function is assigned to the success
property. Note that success means both a readyState value of 4 and a good status
code; the function does not need to check for those. The function should take at
least one argument, the data that is the server response:

success: function(response) {

 // Do something with response.

},

ks

ptg7799847

JquerY Plug-ins

What a framework has, but straight JavaScript does not, is the ability to tap into
plug-ins to quickly add complex functionality (the equivalent in straight JavaScript
would be libraries, discussed at the end of the chapter). There is an amazing breadth
of plug-ins available for jQuery, whether you need an image display tool (e.g., the

“lightbox” effect), the ability to handle file uploads via Ajax, or dynamic HTML
tables. I would recommend you begin with the jQuery User Interface (jQuery UI,
http://jqueryui.com). The jQuery UI defines lots of useful widgets, such as the
accordion, the autocomplete, a date picker, and tabs, plus new effects like drag
and drop, resizing, and sorting. jQuery UI also has a theme builder tool, which
makes it easy to customize the look of a widget to your site’s aesthetic. jQuery UI
is easy to use, too.

First, after incorporating the jQuery library, bring in jQuery UI:

<script src=”https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
p jquery.min.js”></script>

<script src=”https://ajax.googleapis.com/ajax/libs/jqueryui/1.8.16/
p jquery-ui.min.js”></script>

As you can see, the jQuery UI library is also available through Google’s CDN.
Then, for example, to create a date picker, call the datePicker() method on

the selection of the element that should trigger the widget (Figure 13.1):

$(‘#dateInput’).datepicker();

fiGURe 13 .1 The jQuery UI
date-picker widget.

introducing JQuery 503

http://jqueryui.com

ptg7799847

This is how all jQuery plug-ins work: they define new methods that can be
called on jQuery selections. Most methods take optional objects to customize the
plug-in’s behavior. The jQuery UI documentation discusses how to customize the
date picker, allowing you to specify the format for the selected date, what default
date to use, the earliest or latest date that can be selected, and so on.

In the following pages, you’ll look more closely at two plug-ins, but I also want to
quickly mention QUnit (http://docs.jquery.com/QUnit), a jQuery-compatible unit-
testing tool. See Chapter 12, Error Management, for more on the topic of unit testing.

the autocoMplete widget
I want to demonstrate, in detail, one widget found in the jQuery UI library: Auto-
complete. Autocomplete is the ability of an input, such as a search terms box, to
make recommendations as you type. It’s a great use of JavaScript, although one
that is tricky to implement without using a framework. Autocomplete requires a
series of components:

J An event handler that watches for keypress events within the input element

J A searchable data source from which matches can be pulled

J The display of applicable matches

J The ability for the user to navigate and select the matches

The jQuery UI Autocomplete widget can do all of this, using a variety of data
sources, including Ajax. As the simplest example, the following uses a hard-coded
JavaScript array as its data source:

$(‘#inputId’).autocomplete({

 source: [‘Afghanistan’, ‘Albania’, ‘Algeria’]

});

The code first selects the target element and then calls the autocomplete()
method on it, thereby converting it to an Autocomplete prompt. Just this little bit
of code does all the work, creating a list as its output, which is styled using CSS
(Figure 13.2).

fiGURe 13 .2 An Autocomplete
widget.

ks

http://docs.jquery.com/QUnit

ptg7799847

To use an Ajax request as the data source, identify the URL to request as the source:

$(‘#inputId’).autocomplete({

 source: ‘http://www.example.com/somepage.php’

});

The user-entered text will automatically be appended to the source in the
format ?term=X, where X is the user’s input. The corresponding PHP script can
use $_GET[‘term’] to determine what values to return. Let’s turn this into a real
example in the next series of steps.

The HTML page, country.html, needs a text input:

<input type=”text” name=”country” id=”country”>

The HTML page also needs to include both the jQuery library and jQuery UI.
In the next script block, add this:

$(function() {

 $(‘#country’).autocomplete({

 source: ‘resources/countries.php’,

 minLength: 2

 });

});

(For the sake of simplicity, in this chapter, the minimal amount of hand-coded
JavaScript will just be placed directly in the page.)

First, the functionality will only be added once the document is ready. Then the
text input is selected, and the autocomplete() method called on it. The method
takes an object as its argument. The object’s source property points to the PHP
script that will provide the data. It will be written in the subsequent steps. The
object’s minLength property prevents an Ajax call from being made until at least
two characters have been entered.

introducing JQuery 505

ptg7799847

To create the PHP script:

1. Create a new PHP script in your text editor or IDE, to be named countries.php.

<?php // countries.php

2. Set the Content-Type header:

header(‘Content-Type: application/json’);

The PHP script will return JSON data, so it must set this header (see Chapter 11
for details).

3. Create an empty array:

$data = array();

The $data variable will store matches.

4. Create a list of countries:

$countries = array(‘Afghanistan’, ‘Albania’, ‘Algeria’,
p ‘Andorra’,...);

The script contains the full list. In the real world, a database would probably
be the source, which would actually be a bit easier (and should be something
the average PHP developer could do).

5. If a term was provided, use it:

if (isset($_GET[‘term’])) {

The jQuery Ajax call will automatically append ?term=X to the URL. The
PHP script can access the characters the user typed via $_GET[‘term’].

6. Loop through the array to find matches:

foreach ($countries as $country) {

 if (stripos($country, $_GET[‘term’]) !== false) $data[] =
 p $country;

} // End of FOREACH.

ks

ptg7799847

The PHP function stripos() quickly finds one string within another, like
JavaScript’s indexOf(). Note that this will find substrings anywhere within
the string, not just at the beginning, and is case insensitive.

The function returns the indexed position where the substring was found,
or false if it was not found. If false is not returned by stripos(), then the
term was found and the particular country will be added to the $data array.

7. Complete the $_GET[‘term’] if:

} // End of IF.

8. Return the JSON data:

echo json_encode($data);

9. Save the file as countries.php, in a resources directory, and test country.
html in your Web browser (Figure 13.3).

Remember that PHP scripts must be run through a URL and so the HTML
page must be run through a URL, too.

the datataBleS plug-in
To wrap up this section on jQuery, I want to discuss a third-party plug-in. HTML was
originally conceived as a way to convey information, with tables being a medium
for presenting lots of data (not, you know, for controlling layouts). HTML tables
are still great for that purpose, although the core functionality of an HTML table,
or the lack thereof, leaves a lot to be desired. Adding functionality to an HTML
table is an excellent task for JavaScript, and much more easily accomplished using
a framework.

There are many table plug-ins for jQuery, but I’ll make use of DataTables
(http://datatables.net). DataTables is open source, easy to use, and has all the
features you might need (even though it’s free, if you like and use it, you ought to
chip in a couple of dollars to the developer).

fiGURe 13 .3 This Autocom-
plete uses a PHP script for its
data source.

introducing JQuery 507

http://datatables.net

ptg7799847

To use DataTables, you must download the library, and then include it in your
HTML page, after you’ve included the jQuery library:

<script src=”https://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
p jquery.min.js”></script>

<script src=”js/jquery.dataTables.min.js”></script>

Next, make sure you’ve created a well-formed HTML table, with a proper ID
(Figure 13.4):

<table id=”countries”>

 <caption>Alphabetical of countries in the world.</caption>

 <thead>

 <tr><th>Country</th><th>Population</th><th>Size (sq. km.)
 p </th></tr>

 </thead>

 <tbody>

 <tr><td>Afghanistan</td><td>29121286</td><td>645807
 p </td></tr>

Next, in another script block, call the dataTable() method on the selection:

$(function() {

 $(‘#countries’).dataTable();

});

That’s all there is to it (Figure 13.5)! To customize the effect of DataTables,
provide a configuration object to the dataTable() method call. Naturally, the
DataTables documentation lists all the particulars, with plenty of examples.

fiGURe 13 .4 The original
HTML table.

fiGURe 13 .5 The enhanced
HTML table, now sortable
by clicking on the column
headings.

ks

ptg7799847

introduCing yuI

The Yahoo! User Interface (YUI) Library (http://yuilibrary.com) was originally
created by Yahoo! to be used internally, but was later converted to a public frame-
work. The framework is used by Yahoo!’s own network of sites, meaning that the
code is well tested and designed to perform as optimally as possible. The framework
excels at complex Rich Internet Applications (RIAs), particularly those that work
with a lot of data. If you’re already using some of Yahoo!’s own Web services, YUI
makes all the more sense. On the other hand, for smaller, simpler needs, jQuery
or a similar framework may be more appropriate.

In 2009, Yahoo! released a major overhaul of YUI, version 3, which fixes many of
the mistakes that had been made, or eventually developed, in the first two versions
of the library. In this chapter, I’ll write specifically about version 3, although some
of its components are still in beta at the time of this writing. When you encounter
YUI-related documentation and tutorials online, be certain to distinguish between
YUI 3 and older versions. As you’ll see, code in YUI 3 starts with YUI(), whereas code
in YUI 1 and 2 started with YAHOO, although YUI 3 is somewhat backward-compatible.

The official Web site for YUI is listed above, and for news and more, check out
the YUI Blog (http://yuiblog.com). If you’re already familiar with jQuery, you will
appreciate the jQuery - YUI 3 Rosetta Stone (www.jsrosettastone.com), which does
a great job of translating common tasks between the two frameworks.

getting started With Yui

To use the YUI framework, you must first incorporate it into your page. You can
do so by downloading the framework to your computer, placing it on your Web
server, and including it from there. Alternatively, Yahoo! makes the library avail-
able on its CDN:

<script src=”http://yui.yahooapis.com/3.4.1/build/yui/yui-min.js”>
p </script>

To use YUI, you must create a “sandbox,” which is a realm in which YUI will
execute. To do that, invoke YUI().use(). YUI() is the one function that gets placed
within the global namespace; all the remaining functionality is performed through
it. The use() method takes two or more arguments. The first argument(s) will always
be the modules you want to load. The final argument will be a function to call:

introducing yui 509

www.jsrosettastone.com
http://yuilibrary.com
http://yuiblog.com

ptg7799847

YUI().use(‘module’, function(Y) {

 // Do stuff here.

});

or

YUI().use(‘module1’, ‘module2’, function(Y) {

 // Do stuff here.

});

The list of modules that are available can be found in the YUI documentation
and I’ll highlight some of the key ones in this chapter. The two most important are
Node, for DOM interactions, and Event. User-contributed modules can be found in
the gallery (http://yuilibrary.com/gallery/). Smartly, YUI will only download
modules when they are needed, which minimizes the performance hit of using a
framework and multiple modules. Further, YUI will automatically attempt to load
all dependent modules. For example, you don’t need to formally load the Event
module, as it will be loaded automatically by many others.

The function, provided as the last argument, will be called (and its contents
executed) once the modules have loaded. This function should be set to accept
one argument, which will be a reference to the YUI sandbox instance, Y. Much of
what you’ll do within the function will use that argument.

To be clear, you can have multiple uses of this construct within the same page,
thereby creating multiple sandboxes. One sandbox might establish core functional-
ity; another might create a widget.

Finally, you should know how to wait until the window is ready before interact-
ing with the DOM. To do that in YUI, use:

YUI().use(‘module1’, ‘module2’, function(Y) {

 Y.on(‘domready’, function() {

 // Do DOM stuff here.

 });

});

ks

http://yuilibrary.com/gallery/

ptg7799847

This is roughly equivalent to this in straight JavaScript:

window.onload = function() {

 // Do whatever.

}

And to this in jQuery:

$(function() {

 // Do whatever.

});

(Technically, the framework versions will fire the events slightly before window.
onload, but the point is the same.)

Over the next several pages, I’ll talk about a couple of the main modules, with a
focus on those the end user will benefit from. If you do begin using YUI, be certain
to look into the developer modules: Console, Profiler, and Test. The Console is a
debugging tool, Profiler helps you to improve your code’s performance, and Test
is for creating unit tests (discussed in Chapter 12).

seleCting eleMents

Most of what you’ll do with YUI requires a reference to one or more page elements.
Interacting with the page is done through the Node module, which means it must
be loaded:

YUI().use(‘node’, function(Y) {

 // Do stuff here.

});

Within that function, you can write your specific code. Note that you use the
lowercase version of the module name in the use() call.

To select a single page element, invoke the one() method. To select multiple
matching elements, use all(). Both are called through the Y argument passed to
the function. Both methods will work with the same kinds of CSS selectors used
in jQuery:

introducing yui 511

ptg7799847

var header = Y.one(‘#header’); // Element with an id of ‘header’.

var links = Y.all(‘a’); // All link elements.

var errors = Y.all(‘.error’);; // All elements with a class of error.

ManiPulating eleMents

Once you have a reference to an element (which YUI calls a node), you can access
its properties using set() and get(). The get() method returns the value of a
given property:

var email = Y.one(‘#email’);

email.get(‘value’); // Value entered into the email input.

As with jQuery, it makes sense to chain commands together in situations where
you won’t need to refer to the element later:

Y.one(‘#email’).get(‘value’);

The set() method takes two arguments: the property to set and its new value.
For example, this code disables a submit button:

Y.one(‘#submit’).set(‘disabled’, ‘disabled’);

To change an element’s text or HTML, instead of one of its properties, use the
setContent() method:

Y.one(‘someP’).setContent(‘New text.’);

This is equivalent to using innerHTML.
There are also several methods for working with an element’s styling. The

addClass() method adds a new class to an element and removeClass() removes it:

Y.one(‘#emailP’).addClass(‘error’);

Both methods are safe to use without affecting any other classes that the ele-
ment might also have. In this way, using addClass() and removeClass() are more
powerful and simpler than just assigning values to an element’s className attribute,
as you would in straight JavaScript. The toggleClass() attribute adds a class if it
isn’t applied to an element and removes it if the class was already applied.

ks

ptg7799847

To retrieve an element’s applicable styling, invoke the getStyle() or getComputed
Style() method, depending upon whether you’re looking for the inline style rules
or all applicable styles. Each takes the style you’re looking at as its argument:

var s = Y.one(‘#someDiv’).getComputedStyle(‘height’);

To change an element’s inline styling, invoke the setStyle() method, providing
the style name and its new value:

Y.one(‘#someDiv’).setStyle(‘font-size’, ‘12em’);

doM ManiPulation

The create() method of the Node module is used to make new elements. It takes
the opening HTML tag as its argument:

var p = Y.Node.create(‘<p>’);

Note that this is different than using document.createElement(), which just
takes the tag name:

var p = document.createElement(‘p’);

Once you’ve created an element, use prepend(), append(), or insert() to add
it to the page. All are called on the parent element:

Y.one(‘#someDiv’).prepend(p);

The prepend() method adds the new content as the first child of the parent,
pushing any existing content down. The append() method adds the new content
as the last child. The insert() method takes a second argument, which is the
element before which the new content should be inserted:

Y.one(‘#someDiv’).insert(p, Y.one(‘#someOtherP’);

Interestingly, these methods can take new nodes (i.e., elements) as the content
to be added or they can take raw HTML or just a string:

Y.one(‘#someDiv’).prepend(‘<p>This paragraph of text.</p>’);

To remove an element from the DOM, call remove() on the element:

Y.one(‘#someElem’).remove();

introducing yui 513

ptg7799847

Note that you don’t need to get a reference to the parent element as you would
in straight JavaScript:

var elem = document.getElementById(‘someElem’);

elem.parentNode.removeChild(elem);

handling events

To create event handlers in YUI, invoke the on() method, called on the target
element. Its first argument is the type of event; the second is the function to be
called when the event occurs:

Y.one(‘#theForm’).on(‘submit’, handleForm);

Y.all(‘a’).on(‘click’, handleClick);

The full list of events can be found in the YUI documentation, and naturally
differ from one type of element to the next.

The handling function will receive the event as its lone argument and will
do so across all browsers (i.e., you don’t have to check window.event on IE). The
event argument is also normalized, meaning its behavior and properties will be
consistent and reliable regardless of the browser. For example:

Y.all(‘a’).on(‘click’, function(e) {

 // e.target.href is always usable!

});

Creating eFFeCts

As I explained in the jQuery section on effects, I haven’t discussed effects much
to this point in the book. With YUI, there are plenty of effects you can implement,
starting with the show() and hide() methods. By default, they immediately reveal
or hide the element(s) on which they are called:

Y.one(‘#someDiv’).show();

Y.one(‘#someDiv’).hide();

If you use the value true as the first argument to either of these methods, YUI
will fade the element in or out, using the Transition module:

ks

ptg7799847

Y.one(‘#someDiv’).show(true);

Y.one(‘#someDiv’).hide(true);

The documentation for the Transition module shows how to further customize
the effect being applied.

PerForMing aJax

To make Ajax requests in YUI, use the IO (Input/Output) utility module. Once the
module has been loaded, the io() method performs an Ajax request. Its first argu-
ment is the resource to be requested; its second is a configuration object. Through
this object you establish all the request particulars, including the type of request
to be made, the data to be sent, and what to do when the request finishes.

Y.io(‘somepage.php’, {

 method: ‘get’,

 data: /* actual data */,

 on: {

 success: function(id, response) {

 // Use response.responseText or response.responseHTML.

 }

 }

});

The default method is GET, so you can omit the method property unless you’re
using a different method. (Still best to be overt most times.)

The data property of the configuration object passes data to the server-side
resource. The data can be in the format of a string of name=value pairs, separated
by ampersands, or as a generic object.

The on property takes an object as its value. That object should indicate the
functions called for one or more Ajax request events. The most important is suc-
cess, which indicates both a readyState of 4 and the proper status code. When that
event occurs, the function will be called. Its first parameter will be a transaction ID,
which won’t necessarily be meaningful or used. The second parameter will receive
the Ajax response, the same as in a straight Ajax request.

introducing yui 515

ptg7799847

s

A nice feature of YuI is the ability to skin widgets (like jQuery uI’s themes). To apply a skin, just add the
skin’s identifier as a class for the widget container or page:

<body class=”yui3-skin-sam”>

That applies the default skin, Sam, to the entire page. To use a different skin, you’ll change the skin class
accordingly, and then link the corresponding CSS. The style sheets are also available through Yahoo!’s CDN.
For example, to apply Yahoo!’s Night skin to a tab widget, you’d use this:

<link rel=”stylesheet” type=”text/css” href=”http://yui.yahooapis.com//build/tabview/assets/skins/

p night/tabview.css”>

Or, you can indicate the skin when creating the YuI instance, and YuI will automatically load the needed assets:

YUI({skin: ‘night’}).use(‘someModule’, function(Y) {});

The YuI documentation discusses how to extend the two base skins—Sam and Night—to create your own
look or one that matches the rest of your site.

using Widgets and utilities

YUI has several predefined widgets for creating HTML content, ranging from date
pickers to charts, data tables, overlays (i.e., modal CSS windows), and tabs. I want
to demonstrate one of them here: AutoComplete.

the autocoMplete widget
The autocomplete concept was explained in the jQuery section. In YUI, as the
simplest example, the following uses a hard-coded JavaScript array as an Auto-
Complete widget’s data source:

YUI().use(‘autocomplete’, ‘autocomplete-filters’, function (Y) {

 Y.on(‘domready’, function() {

 Y.one(‘#country’).plug(Y.Plugin.AutoComplete, {

 resultFilters: ‘phraseMatch’,

 source: [‘Afghanistan’, ‘Albania’, ‘Algeria’]

 });

 });

});

ks

ptg7799847

To start, the YUI instance loads both the AutoComplete module and AutoCom-
plete Filters, which defines the available filters to use. Next, the code waits until
the DOM has loaded.

Finally, the AutoComplete widget is enabled as a plug-in to the #country ele-
ment, via the plug() method. This is how most widgets and such are used in YUI:
by calling the plug() method on a selection, providing the plug-in as the first
argument and a configuration object as the second. In this case, the configura-
tion object sets the type of results to match (using the filter) and the data source.

To use an Ajax request as the data source, just change the source to the URL,
appending ?q={query} to it:

source: ‘http://www.example.com/search.php?term={query}’

The user-entered text will be used in lieu of {query} and the corresponding
PHP script can use $_GET[‘term’] to determine what values to return.

To further tweak the widget’s behavior, use other object properties, such as
maxResults, to restrict how many results are displayed (the default is unlimited),
and minQueryLength, which requires a minimum number of characters before
autocompletion kicks in (the default is only 1).

Figure 13.6 shows the AutoComplete widget using the same PHP source script
as defined earlier.

As an added bonus, you can have the widget automatically highlight matches within
the results using the AutoCompleteHighlighters module and the resultHighlighter
property (Figure 13.7):

YUI().use(‘autocomplete’, ‘autocomplete-filters’,
p ‘autocomplete-highlighters’, function (Y) {

 Y.on(‘domready’, function() {

 Y.one(‘#country’).plug(Y.Plugin.AutoComplete, {

 resultFilters: ‘phraseMatch’,

 resultHighlighter: ‘phraseMatch’,

 source: ‘resources/countries.php?term={query}’

 });

 });

});

fiGURe 13 .6 The Ajax-based
AutoComplete widget in YUI.

fiGURe 13 .7 The same
AutoComplete widget
(and results), with inline
highlighting.

introducing yui 517

ptg7799847
the yQl utility
Along with the widgets, YUI has defined several utilities. For example, the ability
to sort lists of items is made possible by the Sortable module. There are animation
utilities, those for managing the browser’s history, ones that create graphics, and
tons of utilities for working with data. One in particular that I want to demonstrate
is YQL, the Yahoo! Query Language (http://developer.yahoo.com/yql/).

YQL is an SQL-like language for querying data over Web services. In other words,
instead of retrieving records from a local database using SQL and PHP, you can
retrieve records across a network using YQL and JavaScript. (You can also use YQL
without YUI, such as directly from a PHP script.)

To start using YQL, you’ll want to open the YQL Console in your Web browser.
It’s available at http://developer.yahoo.com/yql/console/ (Figure 13.8). The
console provides an interface where you can practice queries and see the exact
results. On the right side of the page you’ll find example queries. Just click on any
one to see and execute the corresponding SQL statement.

Under the example queries are the available data tables (i.e., sources). At the
time of this writing, there are 152 native tables and over 1,000 more community
ones. You can search through the tables by keyword or browse through them in
the list. Most tables have multiple possible queries. For example, the music source
provides the ability to find information about an artist by name, look into a specific
album, song, or video, or even find similar artists to a given one.

fiGURe 13 .8 The YQL Console.

ks

http://developer.yahoo.com/yql/
http://developer.yahoo.com/yql/console/

ptg7799847
The weather table is easy to use: click on it in the list, then click on the weather.

forecast item, and the console will run the query

select * from weather.forecast where location=90210

Underneath the query, the resulting data is displayed. Click on the tree to easily
navigate the results (Figure 13.9).

To use YQL with YUI, perform a query using the syntax

Y.YQL(query, function(result) {

 // Use result.

});

The result variable will contain the response you saw in the Console window.
With the weather example, result.query.results.channel.item.description will
contain HTML that can be displayed within the Web browser (Figure 13.10). While
that may not seem obvious, all you need to do is navigate the tree of results in the
Console to confirm this for yourself, where result.query is the root of the response.
Navigating the tree more, you’d see that result.query.results.channel.item.
forecast[0] would contain information about today’s forecast, and result.query.
results.channel.item.forecast[1] has information about tomorrow’s forecast.

fiGURe 13 .9 The query for
grabbing the weather report
for a given zip code.

fiGURe 13 .10 Part of the
response from the weather
request, used to update
the page.

introducing yui 519

ptg7799847

To reiterate, to use YQL:

1. Head to the YQL Console.

2. Find the table you need.

3. Create the query you need.

4. Examine the results.

5. Turn to the JavaScript to use those results.

Let’s put this into action in the following example, which will take a stock
symbol from the user and fetch the latest price (Figure 13.11).

The HTML page, to be named stock.html, needs a form for entering the symbol
and a place to write the output:

<form action=”#” method=”get” id=”theForm”>

 <p>Enter a symbol in the field below to see the latest price.</p>

 <p><label for=”symbol”>Symbol <input type=”text” name=”symbol”
 p id=”symbol”></label> </p>

 <p><input type=”submit” value=”Submit”></p>

</form>

The HTML page would also include the YUI library, and have another script
block where the functionality is defined. That will be written in the following steps.

To use YQL:

1. Create a new script block after including the YUI library:

<script></script>

2. Within the script block, create a YUI sandbox:

YUI().use(‘node’, ‘yql’, function(Y) {

});

This JavaScript will explicitly use two YUI modules: Node and YQL.

fiGURe 13 .11 Yahoo!’s latest
stock price, fetched using YQL.

ks

ptg7799847

3. Within the anonymous function just defined, check for the domready event:

Y.on(‘domready’, function() {

});

4. Within the domready anonymous function, get the needed document
references:

var symbol = Y.one(‘#symbol’);

var output = Y.one(‘#output’);

The first reference is to the form input where the user will enter the symbol.
The second reference is to the span where the output will be written.

5. Still within the domready anonymous function, set an event handler on
the form’s submission:

Y.one(‘#theForm’).on(‘submit’, function(e) {

});

The rest of the code will go within this anonymous function.

6. Prevent the form’s submission:

e.preventDefault();

7. Assign a message to the output span:

output.set(‘text’, ‘...checking...’);

This line changes the contents of the span to that string. This is equivalent
to assigning a value to the innerText or textContent property. Depending
upon how quickly the request is performed and handled, the user may or
may not see this message for a brief moment.

8. Perform the request:

Y.YQL(‘SELECT Name, LastTradePriceOnly FROM yahoo.finance.
p quotes WHERE symbol=”’ + symbol.get(‘value’) +
p ‘”’, function(result) {

 output.set(‘text’, result.query.results.quote.Name +
 p ‘: $’ + result.query.results.quote.LastTradePriceOnly);

}); // YQL

introducing yui 521

ptg7799847

The request is made using YQL and the command:

SELECT Name, LastTradePriceOnly FROM yahoo.finance.quotes
p WHERE symbol=”XXX”

Within the handling function, the result variable will represent the
response. Two of its properties are used to set the span’s new text: the
stock name and its last trade price. Remember that you can verify the result
using the YQL Console.

In a real-world script, I’d likely confirm that results were returned, and
indicate an error if not.

9. Save the file and test it in your Web browser (Figure 13.12).

s

Short of using a full-on framework but still an alternative to writing your own
code for every problem is to use a library. Libraries aren’t as all encompassing
as a framework, but sometimes that’s an advantage. I want to mention some of
the libraries that should be on your radar. For most of these, you should have no
problems using them by reading the library’s own documentation or one of the
many tutorials you can find online.

SWFObject (http://code.google.com/p/swfobject/) has been around for
years and years and has historically been one of the most common libraries. This
is ironic, because the point of SWFObject is to embed Flash content—using the
.swf format—within a Web page. With the advent of HTML5, the need for Flash is

undoubtedly diminishing, but there still is a demand.
Modernizr (www.modernizr.com) is a wonderful library that is a must for sites

using cutting-edge HTML and CSS. Modernizr makes it safe to use HTML5 and
CSS3 in a site, allowing those features to degrade nicely on older browsers.

Head JS (http://headjs.com) is intended to be the only JavaScript file included by
your site. It then downloads the other scripts that the site needs. This arrangement,

fiGURe 13 .12 Apple’s latest
stock price.

ks

http://code.google.com/p/swfobject/
www.modernizr.com
http://headjs.com

ptg7799847

which may seem like simple obfuscation, will improve how quickly the site loads.
Head JS also has some of the same HTML5 and CSS3 support features as Modernizr.
Similarly, RequireJS (http://requirejs.org) acts as a JavaScript library or module
loader, with the intent of improving performance and compatibility.

To display video on your site, without using Flash, there are many JavaScript
libraries available. Just two are Video JS (http://videojs.com) and MediaElement.
js (http://mediaelementjs.com).

If you plan on doing Web development for mobile devices, there are other
libraries and frameworks to consider:

J jQuery Mobile (http://jquerymobile.com)

J Sencha Touch (www.sencha.com/products/touch)

J Zepto (http://zeptojs.com)

While not a framework for use on final Web sites, Blackbird (www.gscottolson.
com/blackbirdjs/) creates an inline HTML alternative to the console, making
debugging easier.

If you’re using PHP for your server-side development, there are a few JavaScript
libraries intended to bridge that gap, although documentation, viability, and sup-
port are inconsistent among them all (from what I’ve observed).

Although not a library itself, you should check out Microjs (http://microjs.com),
which lists a slew of microframeworks and microlibraries. These are tools that
normally required only 3 KB or less, sometimes less than half a kilobyte. There’s a
menu at the top of the page to filter the list by a specific need.

revIeW and purSue

w

J What are the benefits to using a framework? What are some of the negatives?

J What is a CDN? Why is it beneficial?

review and purSue 523

http://mediaelementjs.com
http://requirejs.org
http://videojs.com
http://jquerymobile.com
www.sencha.com/products/touch
http://zeptojs.com
www.gscottolson.com/blackbirdjs/
www.gscottolson.com/blackbirdjs/
www.LarryUllman.com/forums/
www.LarryUllman.com/forums/
http://microjs.com

ptg7799847

J How do you confirm that the window is ready for DOM manipulation in jQuery?

J What are some of the ways to select elements in jQuery?

J How do you get, or set, the value of elements using jQuery?

J How do you establish event handlers in jQuery?

J How do you perform an Ajax request using jQuery?

J How do you create a YUI sandbox?

J How do you confirm that the window is ready for DOM manipulation in YUI?

J How do you select one or multiple elements using YUI?

J How do you get, or set, the value of elements using YUI?

J How do you establish event handlers in YUI?

J How do you perform an Ajax request using YUI?

J What is YQL? Where can you go to experiment with YQL?

Pursue

J If neither YUI nor jQuery felt right to you, investigate one of the other
frameworks mentioned in Chapter 1, (Re-)Introducing JavaScript, or look
online for yourself.

J Rewrite any of the examples from the previous chapters (particularly those
in Chapters 8, 9, and 11) using a framework.

J Research and experiment with some of the other components in jQuery UI.

J Research and experiment with other third-party jQuery plug-ins.

J Research and experiment with some of the other YUI modules and utilities.

J Research and experiment with some third-party YUI modules.

J Try the YUI AutoComplete example for yourself.

J Try the YUI weather forecasting example for yourself.

ks

ptg7799847

J Add validation to the stock-quote-fetching example, both on the user input
and on the YQL result.

J For a more advanced application, modify the stock-quote-fetching example
to handle multiple stocks. As a hint, you can use an IN clause in the query:

SELECT Name, LastTradePriceOnly FROM yahoo.finance.quotes
WHERE symbol in (‘XXX’, ‘YYY’, ‘ZZZ’)

Then you would loop through result.query.results.

J Try playing with some of the other YQL tables.

J Research and experiment with some of the libraries mentioned.

WraPPing up

Frameworks are an important component of any language, and JavaScript is no
exception. Indeed, the creation and evolution of many good JavaScript frameworks
have greatly helped developers overcome browser inconsistencies, resulting in
more reliable sites. Toward that end, the chapter began with a quick discussion of
how one goes about selecting a framework, and how one decides whether using
a framework is appropriate or not.

Most of the chapter introduced and demonstrated core concepts in two popular
frameworks: jQuery and YUI. jQuery is especially approachable, and can quickly
suit lots of needs, but you have to get accustomed to its syntax first. YUI is larger
in scope, and does a wonderful job of handling data (particularly that from Web
services), but can be daunting to implement in situations where one component
depends upon another. Still, you should hopefully have a fair sense of how to use
either, from the basics of selecting elements, DOM manipulation, event handling,
and making Ajax requests, to creating widgets and using plug-ins.

In the next chapter, you’ll return to straight JavaScript, investigating some of its
more advanced concepts. Like frameworks, those concepts are crucial to modern
JavaScript, but aren’t necessary for every project on which you will work.

wrapping up 525

ptg7799847

14

ADVANCED
JavaSCrIpt

ptg7799847

As with any Object-Oriented Programming (OOP)

language, working with JavaScript can range from being

relatively simple and easily comprehended, to extremely com-

plex and rather obtuse. Since this book is intended for beginners,

I’ve restricted coverage thus far to the most critical yet under-

standable aspects of the language. However, there are several

more advanced concepts with which you should be familiar, and

those are the focus in this chapter. Even if you don’t immediately

begin using these new techniques, they should be in the back of

your mind, for retrieval at some future date when the need arises.

527

ptg7799847

Most OOP languages support namespaces: named realms for defining classes, librar-
ies, and modules. Chapter 7, Creating Functions, demonstrated how variables exist
in the global scope or in the local (i.e., function) scope. Namespaces simply create
a new local scope that keeps its code out of the global scope. Namespaces are use-
ful once you begin creating libraries of code, as namespaces prevent conflicts. For
example, by using namespaces, the error() function you defined in your code
won’t conflict with the error() function defined in an imported library.

JavaScript doesn’t support namespaces in the same way that other OOP lan-
guages do, but you can create a namespace by defining an object:

var someNamespace = {

 someProperty: 23,

 someMethod: function() {...}

};

Once defined, you can access the properties and methods using object notation:
someNamespace.someProperty and someNamespace.someMethod(). This, hopefully,
looks familiar to you as it was first done in Chapter 8, Event Handling, with the
definition of the U library (short for utilities). In fact, that’s all namespaces are:
the creation of a single, globally available object that encapsulates useful code
within a local scope.

When defining namespaces, you do need to ensure that the namespace object
identifier will be unique. Using your name or initials as part of the name would
probably suffice.

If the namespace you’re creating represents a library that will be regularly
updated and maintained, it would be prudent to add information about the library
to its definition:

var LARRYULLMAN_UTILITIES = {

 NAME: ‘Larry Ullman Utilities Library’,

 VERSION: 1.6,

 /* More variables and functions. */

};

s

528 ChaPter 14 advanced JavaScript

ptg7799847

CreatInG a ConFiguration oBJeCt

Along with namespaces, another common use of an object in distributed code is to act as a configuration
tool. To create a configuration object, define a custom object that uses its properties to represent site-
specific settings:

var CONFIG = {

 host: ‘http://www.example.com/’,

 errorClass: ‘error’,

 outputElement: ‘output’,

 something: ‘value’

};

Your other JavaScript code could then refer to CONFIG.x, such as:

elem.className = CONFIG.errorClass;

By creating one configuration object, you can more easily use the same body of JavaScript code on multiple
projects without needing to hunt through lines and lines of code to edit specific values. Further, when done
properly, the rest of the JavaScript library can be upgraded without changing the configuration, and without
breaking the site.

Conventionally, information such as this is represented as a constant, which
JavaScript does not universally support. Still, the names can still be written in
all capital letters (as constants normally are in other languages) to indicate the
constant-like intent.

s

JavaScript has defined several objects that serve necessary tasks: Math, String,
and so forth. Sometimes you’ll want your own custom object type, though, to
better represent the kind of data that a particular application will be working
with. In a typical OOP language, custom objects are created by defining classes,
a class being a template. Code then creates instances of those classes, which are
objects. Because JavaScript is a prototypical OOP language (not a class-based one),
a different approach is needed. There are two options: which you choose depends
upon whether you need to create a single custom object or multiple instances of
the same custom object.

creating cuStoM oBJectS 529

ptg7799847

Creating a single CustoM oBJeCt

To create a single custom object, just create a new variable of type Object:

var employee = {

 firstName: ‘Joseph’,

 lastName: ‘Doe’,

 department: ‘Accounting’,

 hireDate: new Date(),

 getName: function() {

 return this.lastName + ‘, ‘ + this.firstName;

 } // No comma.

}; // Don’t forget the semicolon!

That code comes from Chapter 6, Complex Variable Types. This approach is
fine in many situations, but you could not create two similar custom objects in this
manner (e.g., two separate employees).

Creating MultiPle instanCes oF a CustoM oBJeCt

The alternative way to create a custom object is to use a function as an object
generator. Here is how the employee example would be rewritten:

function Employee(firstName, lastName, department) {

 this.firstName = firstName;

 this.lastName = lastName;

 this.department = department;

 this.hireDate = new Date();

 this.getName = function() {

 return this.firstName + ‘ ‘ + this.lastName;

 };

}

530 ChaPter 14 advanced JavaScript

ptg7799847

Let’s look at what’s happening in detail. First, a function to be used as an object
generator, called a constructor function, is conventionally named with an initial
capital letter. Second, within the function, variables are referenced using this. The
special this keyword, introduced in Chapter 7, has different meanings in different
contexts, but in this situation, this will always refer to the current object. Finally,
it’s important that the function does not return any values, because the function
will be invoked differently than other functions you’ve created in this book.

With this particular example, the expectation is that the values that differenti-
ate one employee from the next will be passed to the function when it’s first called.
Those values are then stored in variables. The Employee function itself also defines
a function, named getName(), which returns the employee’s first and last names,
separated by a space.

To have this function create an object, use the new keyword when calling it:

var e1 = new Employee(‘Jane’, ‘Doe’, ‘Accounting’);

That line, with new, creates a copy of the Employee function definition using
the specific argument values.

More employees can be created:

var e2 = new Employee(‘John’, ‘Smith’, ‘Human Resources’);

You can now use the object’s properties and methods as you would any other
object (Figure 14.1):

e1.firstName; // Jane

e2.getName(); // John Smith

fiGURe 14 .1 Two instances of
the custom Employee object.

NOTE: Make sure you use the new keyword when using a constructor
function or strange side effects can occur.

creating cuStoM oBJectS 531

ptg7799847

This whole concept is really just the same as how you can (but normally don’t)
create a String, Number, or Object variable:

var lang = new String(‘JavaScript’);

You can even pass your custom object to functions, as you would any other
object. Here is another custom object definition, which then takes an object as an
argument to one of its methods (Figure 14.2):

function Department(name) {

 this.name = name;

 this.employees = [];

 this.addEmployee = function(emp) {

 this.employees.push(emp);

 emp.department = this.name; // To ensure consistency.

 };

}

var hr = new Department(‘Human Resources’); // Create the object.

hr.addEmployee(e2); // Add an Employee object.

hr.employees[0].lastName; // Smith

That last line first grabs a reference to the first employee in the hr department, and
then returns the employee’s lastName property. As an alternative, you could add a
method to the Department object that returns a single employee by indexed position:

this.getEmployee(index) {

 return employees[index];

}

Then you could do this instead:

hr.getEmployee(0).lastName;

fiGURe 14 .2 This example
uses two custom objects,
with one being passed to the
method defined with another.

532 ChaPter 14 advanced JavaScript

ptg7799847

More CoMPlete CustoM oBJeCts

To be consistent with the way other objects behave in JavaScript, you could define
toString() and valueOf() methods for your custom objects. The toString()
method always returns a string representation of the object. With a custom object,
it’d be up to you, the developer, to determine what the appropriate representation
might be (Figure 14.3):

function Employee(firstName, lastName, department) {

 // Other stuff.

 this.toString = function() {

 return ‘Name: ‘ + this.firstName + ‘ ‘ + this.lastName +
 p ‘\nDepartment: ‘ + this.department;

 };

}

The valueOf() method returns the simplest representation of the object and its
value. With many objects, these two methods return the same thing, but with some
objects, they don’t. For example, the valueOf() a Date object is a number: the time-
stamp of that date, as the number of milliseconds since the epoch. The toString()
method of a Date object returns the date and time as a string (Figure 14.4).

With the Employee object, I’d be inclined to have the valueOf() just return the
employee’s name, without any labels or additional information. Or, if applicable,
the valueOf() method could return something equally unique and meaningful,
such as the employee’s ID number.

fiGURe 14 .3 How the toString() method for an
Employee object might represent the object’s value.

fiGURe 14 .4 The toString() and valueOf()
results for a Date object.

creating cuStoM oBJectS 533

ptg7799847

Putting it all together

To practice creating custom objects, let’s create another version of the tasks man-
agement application, first begun in Chapter 6, and then updated in Chapter 7. In
this version, each task will have three properties: its name, its priority, and whether
or not it has been completed. The HTML page, to be named tasks.html, will need
to have a form that takes two of these three values (Figure 14.5):

<form action=”#” method=”post” id=”theForm”>

 <fieldset><legend>Enter an Item To Be Done</legend>

 <div><label for=”task”>Task</label><input type=”text”
 p name=”task” id=”task” required></div>

 <div><label for=”priority”>Priority</label>
 p <select name=”priority” id=”priority” required>

 <option value=”high”>High</option>

 <option value=”normal” selected>Normal</option>

 <option value=”low”>Low</option>

 </select></div>

 <input type=”submit” value=”Add It!” id=”submit”>

 <div id=”output”></div>

 </fieldset>

</form>

The form also has a DIV, with an id of output, where messages will be displayed.
The HTML page includes the tasks.js script, to be written in the following steps.

fiGURe 14 .5 The form for
adding new tasks.

534 ChaPter 14 advanced JavaScript

ptg7799847

To create and use custom objects:

1. Create a new JavaScript file in your text editor or IDE, to be named tasks.js.

2. Begin defining the Task function:

function Task(name, priority) {

 ‘use strict’;

This function will create new Task objects. It takes two arguments: the task
name and its priority.

3. Assign the parameters to internal variables:

this.name = name;

this.priority = priority;

this.completed = false;

The two parameters are assigned to variables, and a third variable, completed,
is given an initial value of false.

4. Define a toString() function:

this.toString = function() {

 return this.name + ‘ (‘ + this.priority + ‘)’;

};

The toString() function returns the task in the format task (priority).

5. Complete the Task function:

} // End of Task function.

6. Begin defining the window’s load event-handling function:

window.onload = function(){

 ‘use strict’;

This anonymous function will be called when the page loads and it will do
all the remaining work.

creating cuStoM oBJectS 535

ptg7799847

7. Get references to the various elements:

var task = document.getElementById(‘task’);

var priority = document.getElementById(‘priority’);

var output = document.getElementById(‘output’);

The JavaScript will need access to three page elements: two form elements
and the DIV where the output will be written.

8. Declare the tasks variable:

var tasks = [];

As in the previous versions of this script, this array will store every task.

9. Begin defining a function to handle the form’s submission:

document.getElementById(‘theForm’).onsubmit = function() {

This anonymous function will be called every time the form is submitted.
Its role is to create a new Task object and add it to the tasks array.

10. Create a new Task and add it to the array:

var t = new Task(task.value, priority.value);

tasks.push(t);

To create a new Task object, invoke the Task constructor function, prefac-
ing the call with new. The values for the two arguments will come directly
from the form. Next, the task, represented by the variable t, is added to
the array using push().

11. Update the output DIV and complete both anonymous functions:

 output.innerHTML = ‘There are now ’ +
 p tasks.length + ‘ item(s) in the to-do list.
 p Just added:
’ + t.toString();

 return false;

 }; // End of onsubmit anonymous function.

}; // End of onload anonymous function.

536 ChaPter 14 advanced JavaScript

ptg7799847

The output will show the number of tasks currently stored and the informa-
tion about the task just added.

12. Save the file as tasks.js, in a js directory next to tasks.html, and test it
in your Web browser (Figure 14.6).

s

As stated many times over in this book, JavaScript is a different kind of OOP language
in that it is prototypical. This means that the variables you create are derived from
a predefined model, called a prototype, not a class definition. This prototypical
nature is true whether the prototype is built into JavaScript or defined by you:

var lang = ‘JavaScript’;

var e1 = new Employee(‘Jane’, ‘Doe’, ‘Accounting’);

In that code, the lang variable is an instance of the String prototype and e1
is an instance of Employee. (One technicality: the value of lang is a literal string,
but it will be automatically converted to a String object when it is used like one.)

fiGURe 14 .6 Another task
has been added!

underStanding prototypeS 537

ptg7799847

PrototYPiCal inheritanCe

Every JavaScript object inherits the properties and methods defined in its proto-
type. If you were to inspect a custom object you created, you’d find methods and
properties that you did not create (Figure 14.7).

And, as you’ve already seen in the Employee example, objects can also be
assigned their own properties and methods, which would not be found in the
original prototype. For example, Department has an addEmployee() method, but
Object, Department’s prototype, does not.

Some variables will have a prototype that in turn has its own prototype. For
example, the e1 object is based upon the Employee prototype, which is based upon
Object. This is known as the prototype chain. When you reference any object
property or method, JavaScript looks through the object’s prototype chain to find
a corresponding attribute. JavaScript will stop looking through the prototype chain
when it gets to the root prototype—that from which all other prototypes stem,
which is Object. If no corresponding property or method is found in the chain,
then undefined is returned.

To differentiate between properties or methods defined within an object or
within its prototype chain, you can call the hasOwnProperty() method, providing
it with the property in question. This method is defined in Object, and is therefore
inherited by all other objects. For example:

var test = { thing: 1 };

test.hasOwnProperty(‘thing’); // true

test.valueOf(); // Object: i.e., there is a valueOf() method

test.hasOwnProperty(‘valueOf’); // false

NOTE: the Math object is one of the few that you cannot create an
instance of (i.e., it cannot be the prototype for any other objects).

fiGURe 14 .7 The empty Test
object instance already has
some methods defined, inher-
ited from the Object prototype.

538 ChaPter 14 advanced JavaScript

ptg7799847

adding PrototYPe Methods

In a class-based OOP language, you can change the properties and methods of
every instance object by altering the underlying class definition. In JavaScript,
which doesn’t have classes, you change the prototype’s properties and methods
by editing the object’s prototype property. For example, the Employee object can
be altered after its original definition. Here, a new method is added to it:

function Employee(firstName, lastName, department) {

 /* Actual code. */

}

Employee.prototype.getNameBackwards = function() {

 return this.lastName + ‘, ‘ + this.firstName:

}

Now that the new method has been added to the prototype, you can call it
on any instance objects: e1.getNameBackwards(). In fact, you can even call this
method if the e1 variable was created prior to adding the method to the Employee
prototype (Figure 14.8)!

The ability to retroactively change a prototype even allows you to change the
definition of objects built into JavaScript, such as String. This next bit of code adds
a trim() method to the String object, if it doesn’t already have one:

if (typeof String.prototype.trim == ‘undefined’) {

 String.prototype.trim = function() {

 return this.replace(/^\s+|\s+$/g,’’);

 };

}

fiGURe 14 .8 By changing the
prototype, any instance of that
prototype can make use of the
modifications.

underStanding prototypeS 539

ptg7799847

(The ability to actually trim blank space from the beginning and end of a string
requires a regular expression.) After executing that code, your JavaScript will have a
trim() method for String objects, whether that method was native to the browser
(as the method was added in ECMAScript 5) or not.

As another example, you could extend the Date object so that it has a getMonth
Name() method, which returns the textual version of the month represented by
the date.

Although JavaScript allows for you to modify prototypes, this concept is some-
times called monkey patching, and should be used cautiously. Understand that
modifying a prototype is a global change that impacts every instance of that pro-
totype. Adding unusual methods and properties to built-in JavaScript objects, such
as String, could create bugs in code that expects the prototype to be untainted.
The best use of this concept is to create backwards-functional objects, as in the
String.prototype.trim() example (i.e., creating a String object that can be used
reliably regardless of the browser type or version).

Each method added to a prototype is therefore added to every instance of that
prototype, whether it is needed or not. If you only need a function for a specific
instance, you can create that function separately and call it while providing the object:

function doSomething(obj) {

 // Do something with obj.

}

Or you could add the function definition to just the single instance:

var obj = {};

obj.doSomething = function() {

 // Do something with this.

}

TIP: Changing a prototype can also be used to prevent closures
from being created, although this is a much more advanced topic.

540 ChaPter 14 advanced JavaScript

ptg7799847

s

One of the most important, albeit abstract JavaScript concepts is the closure. You’ll
come across different ways of describing closures, but I think it’s easiest to think of a
closure as a function call with a memory. In other words, a closure is a function tied
to the scope in which it was created. This means that a closure function can make
use of the variables that existed (in the same scope) when the function was created.

Loosely speaking, you might have a closure situation when:

J One function is defined within another

J The inner function references variables that exist in the outer function
(including the outer function’s parameters)

J The inner function will be called after the outer function has stopped
executing

Let’s look at an example to better explain this: The tasks.js script just defined
has a closure in it. The key components of the onload anonymous function are:

window.onload = function() {

 // Setup variables, including tasks.

 document.getElementById(‘theForm’).onsubmit = function() {

 tasks.push(t);

 };

};

The onload function will only be called once: when the page loads. That func-
tion defines some variables, including the tasks array. In a normal, non-closure
situation, function variables are no longer available once the function execution
has completed. This means that without a closure, the tasks array will cease to
exist after the onload function has executed all its commands.

worKing with cloSureS 541

ptg7799847

JavaScript Activity

window.onload = function(){

 //Setup variables, including tasks.

 document.getElementByID(‘theForm’) onsubmit = function(){

 tasks.push(t);

 };

}; End of onload Function

Window Loads

Form Submission

Form Submission

The closure is created by defining another function within that outer onload
function. All closures require that one function be defined within another. The
inner function, which handles the form submission, will be called any number
of times, but always after the outer function has finished executing (Figure 14.9).

Because the onsubmit function will be called after the onload function has
finished executing, and because the onload function has variables with the same
scope as the onsubmit function, JavaScript retains those variables after the onload
function has completed, creating a closure. Thanks to the closure, the onsubmit
function can make use of tasks, because the variable is kept alive. This is the
hallmark of a closure: the local variables that were available to the function when
the function was defined are still available to that function even when it is called
at a later time. The closure creates a persistent but still locally scoped variable.

A variation on this same script created in Chapter 7 also had a closure, this time
using an immediately invoked function:

(function(){

 var tasks = [];

 function addTask() {

 // Use tasks.

 }

 function init() {

fiGURe 14 .9 Form submis-
sions will invoke one function
defined within another
function that has long since
stopped executing.

542 ChaPter 14 advanced JavaScript

ptg7799847

 document.getElementById(‘theForm’).onsubmit = addTask;

 }

 window.onload = init;

})();

The outermost anonymous JavaScript function is executed as soon as JavaScript
encounters it. Within that function is a variable, tasks, which exists in the local
scope. The addTask() function will be called every time the form is submitted,
which will always come after this immediately invoked anonymous function has
stopped running. Again a closure is created, with the addTask() function retaining
access to the tasks variable.

In a moment I’ll walk through another closure example, but I want to highlight
one common point of confusion first. As explained, a key feature of closure func-
tions is that they have access to the local variables that existed (in the same scope)
when the closure was defined. The trick is that the closure will have access to the
value of the variable at the time of the closure function call, not its definition.
For example, this next onload function is a closure with access to the i variable:

(function() {

 var i = 1;

 window.onload = function() {

 alert(i); // 2, not 1

 }

 i = 2;

})();

When the inner function is defined, i is initially assigned a value of 1. By the
time the inner function is called—in this case, after the outer immediately invoked
function has terminated—i will have a value of 2, which is what will be alerted.

This problem most commonly arises when closures are created within a loop.
For example, say you want to add a click handler to every link in a page. The click
handler will then do something with the link that was clicked. You might think
you could do this:

worKing with cloSureS 543

ptg7799847

function someFunction() {

 var links = document.getElementsByTagName(‘a’);

 for (var i = 0, count = links.length; i < count; i++) {

 links[i].onclick = function() {

 // Use links[i] (but this will not work).

 return false;

 }

 }

}

What you would find is that links[i] within the onclick function always returns
undefined. To discover why, let’s assume there are two links. The for loop would
be executed twice, successfully adding a click handler to each link. Then the loop
terminates when i becomes 2, which is greater than the length of the links array.
When you click on one of the links, because of the closure, the onclick anonymous
function will still be able to access i, but its value will be 2, which is the last value
that the variable had.

There are more advanced uses of closures, most notably involving situations
in which one function returns another function. But the topic itself is difficult
enough to grasp that I’m choosing to start with the most accessible uses, specifically
related to event handling. For another example of a closure, the following script
will use a timer. Timers, by their very nature, have functions that are defined at
one time but executed at another (see Chapter 9, JavaScript and the Browser, for
more on timers). The following example will use a timer and a closure to create a
fader, which changes the opacity of an element from 100 percent to 0 percent to
fade it out gradually.

For the HTML page, to be named fader.html, you can create any visible element
with an id value of target. It doesn’t matter whether the element is a paragraph of
text or an image. However, you do need to add this CSS to your page, in order for
Internet Explorer to recognize changes in this opacity:

#target { zoom: 1; }

The HTML page should include the fader.js script, to be defined in the fol-
lowing steps.

544 ChaPter 14 advanced JavaScript

ptg7799847

To use a closure to create a fader:

1. Create a new JavaScript file in your text editor or IDE, to be named fader.js.

2. Begin defining an onload anonymous function:

window.onload = function() {

 ‘use strict’;

 var target = document.getElementById(‘target’);

The outer function first gets a reference to the target element.

3. Set the initial opacity:

var opacity = 100;

The opacity begins at 100 (i.e., percent), and will be decreased within the
fader function.

4. Begin defining the setInterval() function:

var fader = setInterval(function() {

 opacity -= 10;

The setInterval() function takes a function as its first argument. This func-
tion, which will be called repeatedly after the outer, anonymous onload func-
tion terminates, will be a closure, with access to the target and opacity
variables.

Within the function, the opacity is reduced by 10, so that each invocation
of the function dims the target even more.

5. If the opacity is greater than or equal to 0, change the opacity style:

if (opacity >= 0) {

 if (typeof target.style.opacity == ‘string’) {

 target.style.opacity = (opacity/100);

 } else {

 target.style.filter = ‘alpha(opacity=’ + opacity + ‘)’;

 }

worKing with cloSureS 545

ptg7799847

First, the opacity should only be changed if opacity is a positive number.
Once the opacity becomes a negative number, the process should stop (in
the next step).

To change the opacity, one has to use either the style.opacity or the style.
filter property of the target element, depending upon the browser (see a
CSS reference for more details, if needed). For the former, the opacity value
needs to be a decimal, so opacity is divided by 100.

Note that although closures have access to the last known value of a variable
(the common problem explained earlier), the value of opacity is changed
within this closure function, meaning its value is retained from function
call to function call.

6. If opacity is not greater than or equal to 0, stop the timer:

} else {

 clearInterval(fader);

}

7. Complete the timer:

}, 100);

The anonymous function will be called every 100 milliseconds.

8. Complete the onload anonymous function:

};

9. Save the file as fader.js, in a js directory next to fader.html, and test it
in your Web browser.

There’s no point to providing an image for this example, since it’s quite hard
to demonstrate animation in a book!

546 ChaPter 14 advanced JavaScript

ptg7799847

alternative type
IdentIfICatIon

In Chapter 5, Using Control Structures, the typeof operator was introduced as a
way to identify a variable’s type (or any data’s type):

if (typeof myVar == ‘number’) {...

The typeof operator generally works well enough, and is a reliable way to
confirm that something isn’t undefined:

if (typeof myVar == ‘undefined’) {...

Still, there are situations where the result of using typeof is too vague. For
example, the typeof an Object is object, but so is the typeof an Array, null, and
even a custom object, such as Employee.

An alternative is to confirm an object’s prototype, via the instanceof operator:

if (myVar instanceof Number) {...

This operator was first introduced in Chapter 12, Error Management, as a way
of catching specific kinds of exceptions. The instanceof operator looks up the pro-
totype chain to see if the object on the right is a prototype of the value on the left.
This means that the instanceof a String would match both String and Object, but
instanceof does distinguish between, for example, an Array and an Object. Note
that neither of the two operands being compared is quoted, and the object prototype
on the right must be capitalized to match its name, unlike with typeof, which uses
lowercase (e.g., “number” for Number).

A catch when using instanceof is that the object being tested must have been
created new (Figure 14.10).

Even more reliable type checking can be accomplished by checking a variable’s
constructor property. The constructor property reflects the function that would
have been called to create the object in the first place:

if (myVar.constructor == Number) {...

Unlike instanceof, the constructor property represents the prototype whether
you create the type literally or using new (Figure 14.11):

fiGURe 14 .10 Using
instanceof will only work
when the object was created
with the new keyword.

fiGURe 14 .11 The constructor
property has the same value
either way the string was
generated.

alternative type identiFication 547

ptg7799847

Another way to test a value’s type is to use duck typing. The name comes from
the James Whitcomb Riley line: “When I see a bird that walks like a duck and
swims like a duck and quacks like a duck, I call that bird a duck.” In programming,
the premise is that sometimes it doesn’t matter whether a value is technically,
say, a String, but whether it can be used as one. You can perform duck typing by
checking for the presence of the qualities required by subsequent code: in other
words, by using object detection. In object-oriented terms, this means looking for
properties and methods required for whatever task about to be attempted. If the
necessary property or method exists, treat the object like a duck!

MiniFYing Code

Once you’ve written, tested, debugged, optimized, and finalized all of your code,
it’s time to release it into the wild. This is to say: distribute the code on live sites.
There’s one more step you could take before doing so: minify the code. To minify
code is to remove all of its comments and extraneous white space in order to con-
dense the code as much as possible. Minifying a script will significantly reduce its
file size, perhaps by as much as 50 percent. This in turn makes the site load faster
in the browser, as there will be less data for the user to download.

There are a couple of tools you can use to minify code. A simple solution is
Minify JavaScript (www.minifyjavascript.com), a Web-based solution. Just paste
your code into the top textarea, click the Compress JavaScript button, and the
minified version will appear in the second textarea (Figure 14.12).

fiGURe 14 .12 Minimizing the
tasks.js code reduced the file
size by 60 percent.

548 ChaPter 14 advanced JavaScript

www.minifyjavascript.com

ptg7799847

looking ahead

This book was written for those with no formal JavaScript training, who may
also be new to programming in general. For this reason, I’ve only covered
the topics that are the right combination of easy to grasp and commonly
used. The more esoteric topics, and those that would likely go over your head,
have been omitted. My goal, in short, has been to teach you to become thor-
oughly comfortable with fundamental JavaScript, not to train you to be a
JavaScript ninja, inclined to write your own custom framework from scratch.

When the time comes that you ought to learn more advanced JavaScript
techniques, I recommend investigating these three subjects first:

J More on closures

J Execution context

J The call(), apply(), and bind() methods

Searching online using these terms will provide numerous results.

Then, take the minified code and paste it into a new script, named filename.
min.js (e.g., tasks.min.js). Conventionally, the .min is added to indicate minified
code. Be certain not to replace the original code or file, as you will lose all of your
comments and original formatting during the minification process.

Another Web-based option is Packer (http://dean.edwards.name/packer/), by
Dean Edwards. Packer takes minification a step further, also shortening variable
names, which condenses the code even more.

More thorough minification can be accomplished using a command-line tool
such as:

J JSMin (http://www.crockford.com/javascript/jsmin.html), by Douglas
Crockford

J YUI Compressor (http://developer.yahoo.com/yui/compressor/), by Yahoo!

J Closure Compiler (http://code.google.com/closure/compiler/), by Google

Instructions for using these can be found on the corresponding Web sites, or
by searching online. (Google’s Closure Compiler is also available online at http://
closure-compiler.appspot.com/home.)

MiniFying code 549

http://www.crockford.com/javascript/jsmin.html
http://developer.yahoo.com/yui/compressor/
http://code.google.com/closure/compiler/
http://closure-compiler.appspot.com/home
http://closure-compiler.appspot.com/home
http://dean.edwards.name/packer/

ptg7799847

revIeW AND purSue

w

J What are namespaces? Why are they useful? How do you create and use a
namespace in JavaScript?

J What is a configuration object? What are its benefits? How would you cre-
ate and use one?

J What are the two ways can you create custom objects? What is a constructor
function? How do you invoke a constructor function?

J What does it mean that JavaScript is a prototyped-based OOP language?
What is the prototype chain?

J What effect will the following code have?

Number.prototype.isPositive = function() {

 return (this > 0);

};

Secondarily, why isn’t that piece of code a good idea?

J What is a closure? What conditions generally exist to create a closure?

J What ways of identifying an object’s type or prototype have you learned in
this book and in this chapter?

J How do you minify your code and why is that beneficial?

Pursue

J Return to Chapter 7 and rewrite the employee example to use a constructor
function for creating an employee object.

J Think of ways to expand the definitions of the Employee and Department
objects to make them more useful.

J Tweak tasks.js so that it clears the form values after the task has been added.

550 ChaPter 14 advanced JavaScript

www.LarryUllman.com/forums/

ptg7799847

J Expand tasks.js so that it displays every task, along with each task’s priority.

J For a tougher challenge, have tasks.js order the tasks by priority, from
highest to lowest.

J For another challenge, add the ability to mark tasks as done.

J Use Date.prototype to add a getMonthName() method to the Date object.

J When you’re feeling comfortable enough, read more about closures by
searching online.

J Practice using the different kinds of type and prototype identification
approaches to see the benefits and challenges of each.

J Experiment with some of the various ways to minimize code.

WraPPing up

This is the last chapter in the book where the focus is on teaching new material (in
the next chapter, you’ll see how to put together an entire project). Here, you encoun-
tered a smattering of new ideas, some more complex and advanced than others.

Most of the topics, including namespaces, custom objects, prototypes, and type
identification, greatly expand the coverage that had previously been given to objects,
the most important data type in JavaScript. By now you should be very comfortable
with the concept of objects, with OOP in general, and, hopefully, with JavaScript’s
prototypical design.

A few pages of this chapter focused on closures, a key feature of JavaScript.
Unfortunately, closures are conceptually hard to grasp, even for the astute and
seasoned programmer, so don’t be alarmed if the concept did not immediately

“click” with you. Closures provide solutions to many problems, and, with time,
they’ll become more natural for you.

In the next chapter, the last one in the book, you’ll take all of the knowledge cov-
ered thus far (with emphasis given to that from Part 2: JavaScript Fundamentals), to
develop and design a full Web project. That example will use a combination of HTML,
CSS, JavaScript, and PHP, with progressive enhancement, Ajax: the works. The best
thing about the next chapter is that it will demonstrate how much you now know!

wrapping up 551

ptg7799847

ether

ptg7799847

To wrap up the book, this chapter will put the ideas

covered in the previous 14 chapters to the test by creat-

ing a viable, real-world site. I tried to come up with an example

that was a practical, good use of JavaScript, without getting too

elaborate. I’ll explain the specific example next, and then walk

through all of the key parts in the remaining pages.

No new JavaScript will be introduced in this chapter, although

you’ll encounter new uses of what you’ve already learned. The

example does require server-side technologies, though, for which

I’ve used PHP and MySQL. There is not enough space to explain

the PHP code in detail, but I will deliberately walk through the

more advanced parts.

553

ptg7799847

The goal in this chapter is to put forth a practical, real-world example that uses both
server-side technologies and JavaScript to create a wonderful user experience. In
terms of the JavaScript, I wanted the site to demonstrate the most important concepts:

J Unobtrusive scripting

J Progressive enhancement

J A custom (developer-designed)
library

J DOM manipulation

J Ajax

J Closures

Of course, the example would also have to use event handling, custom functions,
and so forth. In the end, the project I came up with is the core of an auction site,
where items are listed and users can bid on them. Individual auctions will close
at a certain time, and each bid must be higher than the last.

For this chapter, I also wanted to demonstrate how to pass values back and
forth between JavaScript and PHP. This is a common need, and a common point
of confusion, for many Web developers.

Implementing the entire functionality would require half a book, and so this
chapter will focus on the hardest components. The trickiest aspect, truly, is manag-
ing the closing dates and times in a way that’s reliable across multiple time zones.
To save space, some features or ideas have been omitted, but those should be easy
enough for you to develop on your own.

The core of the auction site is represented by three pages:

J index.php, which is the home page and lists the open auctions (Figure 15.1)

J login.php, which allows users to log in (Figure 15.2)

J view.php, which shows an individual auction and allows users to bid
(Figure 15.3)

These pages alone require around 430 lines of JavaScript code. Coupled with the
JavaScript are over 550 lines of PHP, plus CSS and HTML. I won’t walk through all
1,000+ lines of code in this chapter, but will explain the most important and complex
parts. Naturally, you can download the complete code from www.LarryUllman.com.
If you have any questions or problems, you can post them in my supporting forums
at www.LarryUllman.com/forums/.

IdentIfyInG the Goal

554 ChaPter 15 php and JavaScript together

www.LarryUllman.com
www.LarryUllman.com/forums/

ptg7799847

fiGURe 15 .1 The home page
lists the current, open auctions.

fiGURe 15 .2 Users must
log in to bid on items.

fiGURe 15 .3 The view page
shows a specific item and
is where bids are entered.

identiFying the goal 555

ptg7799847

CreatInG the dataBaSe

The database required by the example as implemented in this chapter requires three
tables: bids, items, and users. The SQL commands to create them (in MySQL) are:

CREATE TABLE `bids` (

 `bidId` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,

 `itemId` INT(10) UNSIGNED NOT NULL,

 `userId` MEDIUMINT(8) UNSIGNED NOT NULL,

 `bid` DECIMAL(7,2) UNSIGNED NOT NULL,

 `dateSubmitted` TIMESTAMP NOT NULL,

 PRIMARY KEY (`bidId`),

 KEY `itemId` (`itemId`),

 KEY `userId` (`userId`)

);

CREATE TABLE `items` (

 `itemId` INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,

 `item` VARCHAR(100) NOT NULL,

 `description` TINYTEXT,

 `openingPrice` DECIMAL(7,2) UNSIGNED NOT NULL,

 `finalPrice` DECIMAL(7,2) DEFAULT NULL,

 `dateOpened` timestamp NOT NULL,

 `dateClosed` datetime NOT NULL,

 PRIMARY KEY (`itemId`)

);

CREATE TABLE `users` (

 `userId` MEDIUMINT(8) UNSIGNED NOT NULL AUTO_INCREMENT,

 `username` VARCHAR(40) NOT NULL,

 `userpass` CHAR(40) NOT NULL,

 `timezone` VARCHAR(100) NOT NULL,

556 ChaPter 15 php and JavaScript together

ptg7799847

 `dateCreated` TIMESTAMP NOT NULL,

 PRIMARY KEY (`userId`),

 UNIQUE KEY `username` (`username`),

 KEY `login` (`username`,`userpass`)

);

Some of the particulars will be explained in conjunction with the applicable
code. I will point out here that all dates and times will be represented using Coor-
dinated Universal Time (UTC). Each user will register her or his preferred time
zone, allowing for all dates and times to be converted to the user’s time. For more
information on time zones and MySQL, see my PHP and MySQL for Dynamic Web
Sites: Visual QuickPro Guide (4th Edition) or, of course, the MySQL manual.

You will need to create these tables, and the database itself, before getting too far
along. You’ll also need to populate the items and users tables, as there was not space
to create scripts for that purpose. The appropriate SQL commands will look like:

INSERT INTO `items` (`item`, `description`, `openingPrice`,
p `dateOpened`, `dateClosed`) VALUES (‘This is the item.’,
p ‘This is the description.’, 1.25, UTC_TIMESTAMP(),
p ‘2012-07-05 13:01:00’);

INSERT INTO `users` (`username`, `userpass`, `timezone`,
p `dateCreated`) VALUES (‘testing’, SHA1(‘securepass’),
p ‘America/New_York’, UTC_TIMESTAMP());

The SHA1() function will be used to encrypt passwords. The time zone values
come from MySQL’s list of time zones, which the MySQL server must have installed
(see the MySQL manual). All new records are inserted using the UTC_TIMESTAMP()
function, which returns the current moment and time in UTC.

creating the dataBaSe 557

ptg7799847

eStaBlIShInG the SIte

mysqli_connect.phpsome folder

htdocs

index.php

ajax

includes

js

http://www.example.com
points here

Figure 15.4 shows part of the structure for the site, where htdocs is the Web root
directory (i.e., www.example.com points there). I’ve put the JavaScript in a js folder
and the PHP scripts used for Ajax requests in an ajax folder. The includes folder
is used for files to be included by PHP scripts:

J config.inc.php, a configuration file

J header.html, which starts the HTML template

J footer.html, which completes the HTML template

Breaking an HTML template into two or more files and then including them is
a standard PHP approach. The page-specific content will go within each specific
page file: index.php, login.php, and view.php. The header.html page does include
one JavaScript file: utilities.js, a library of common code needed by two of the
three pages.

The configuration file is well documented, but you will need to change a few
values to make the code usable on your server:

fiGURe 15 .4 The bulk of the
site structure.

558 ChaPter 15 php and JavaScript together

http://www.example.com
www.example.com

ptg7799847

// Site URL (base for all redirections):

define (‘BASE_URL’, ‘http://www.example.com/’);

// Location of the MySQL connection script:

define (‘MYSQL’, ‘/path/to/mysqli_connect.php’);

One more PHP script is required: mysqli_connect.php. It establishes the con-
nection to the database. For security purposes, I prefer placing it outside of the
Web directory, although it’s not horrible if you cannot (in which case, you’d put
it within the includes folder, and change the reference to it in the configuration
file accordingly). Note that you’ll need to also edit these lines in the MySQL con-
nection script for your server:

DEFINE (‘DB_USER’, ‘username’);

DEFINE (‘DB_PASSWORD’, ‘password’);

DEFINE (‘DB_HOST’, ‘localhost’);

DEFINE (‘DB_NAME’, ‘databaseName’);

The HTML template for the site was created by Jonas Jacek (http://jonas.me/)
and is used with his kind permission. In his original template, he used a single letter
for some of the directory names, such as i for images and s for css. I did not stick
with that convention, but doing so would ever so slightly decrease the amount of
data each user has to download.

CodInG the non-
JavaSCrIpt version

The next step in the development process is to create the non-JavaScript version.
This should be a fully functional site that will work even if JavaScript is disabled
or just not available. The focus here is on the PHP code, then, and JavaScript will
be used to progressively enhance this functionality later.

Although PHP is my favorite server-side language, this is not a PHP book, so
I won’t go through the PHP code in detail. I recommend that you download and
examine the PHP scripts for yourself, as they contain sufficient inline comments.

coding the non-JavaScript verSion 559

http://jonas.me/

ptg7799847

If you’re not comfortable with PHP and MySQL, then you can just skim the fol-
lowing pages to get a sense of what’s being done (you will probably have difficulty
installing this project, however).

The most complicated aspects of the PHP code stem from the need to show
all auctions and bids in the user’s chosen time zone. You’ll see how I handle that
in the following pages.

listing auCtions

The home page, index.php, will list the open auctions (see Figure 15.1). For all of the
PHP pages that the user will access directly (i.e., for all scripts that aren’t included
by other scripts or used for Ajax calls), the basic structure is:

<?php

require(‘includes/config.inc.php’);

$page_title = ‘Some Page Title’;

include (‘includes/header.html’);

require(MYSQL);

/* Page-specific content. */

include (‘includes/footer.html’);

?>

The configuration file sets several parameters, such as the location of the MySQL
connection script and whether the site is live or not, so it must always be included early.

Next, the page title is set as a variable that will be used within the header file
to customize the browser window title.

The MySQL connection script, mysqli_connect.php, can be included by ref-
erencing the MYSQL constant, which is assigned a value in config.inc.php. By
assigning this value to a constant, the same line of code can be used for top-level
scripts such as this one, as well as for scripts found in subdirectories, such as
ajax/getBids.php.

The page-specific content will differ from one page to the next, naturally.
Finally, the footer is included, which completes the template.

560 ChaPter 15 php and JavaScript together

ptg7799847

The page-specific content on the home page is the display of open auctions
within an HTML table (see Figure 15.1). The item name in each row is linked to
view.php, passing along the item ID in the URL. The home page’s query there-
fore needs to select four pieces of information: the item ID, the item itself, the
item’s current price, and the date and/or time when the item’s auction closes.
The complete query is:

SELECT items.itemId, item, COALESCE(MAX(bid), openingPrice),

IF($tz < DATE_ADD(UTC_TIMESTAMP(), INTERVAL 24 HOUR),
p DATE_FORMAT($tz,’%l:%i %p’), DATE_FORMAT($tz,’%M %D @ %l:%i %p’))

FROM items LEFT JOIN bids USING (itemId)

WHERE dateClosed > UTC_TIMESTAMP()

GROUP BY items.itemId ORDER BY dateClosed ASC

This query performs a LEFT JOIN across the items and bids tables. The itemId
and item name will be selected from the items table. For those items with bids, the
highest bid will be brought in from the bids table.

To select the current price of the item, you have to consider that new items will
not have bids. For those new items, the current price is the opening price. For those
items with bids, the current price is the highest bid price. To select one or the other,
utilize the MySQL COALESCE() function, which returns the first non-null value. Hence,
COALESCE(MAX(bid), openingPrice) returns the highest bid, if any bids exist, or the
openingPrice if not. To use MAX() on the bids, the GROUP BY clause is required, too.

Selecting the date and time is even trickier. For starters, if the user is logged
in, the date and time should reflect the user’s chosen time zone. If the user is not
logged in, the original (UTC) date and time should be used. To accomplish that, I
create a PHP variable that represents what should be selected. This will be either
the converted date and time or the unmodified version:

if (isset($_SESSION[‘timezone’])) {

 $tz = “CONVERT_TZ(dateClosed, ‘UTC’, ‘{$_SESSION[‘timezone’]}’)”;

} else {

 $tz = ‘dateClosed’;

}

coding the non-JavaScript verSion 561

ptg7799847

That code goes before the query and assigns the right value to $tz. (This code
is explained in greater detail in Chapter 17, Example—Message Board, of my PHP
and MySQL for Dynamic Web Sites: Visual QuickPro Guide, 4th Edition, book.) In
theory, the query could now just select a formatted version of the proper date and
time using DATE_FORMAT($tz, ‘formatting’).

Taking the date and time modification a step further, I’d like the page to show
just the time portion if the auction closes within the next day. Thus, the fourth
value selected by the query changes the closing date formatting based upon how
soon the auction closes:

IF($tz < DATE_ADD(UTC_TIMESTAMP(), INTERVAL 24 HOUR),
p DATE_FORMAT($tz,’%l:%i %p’), DATE_FORMAT($tz,’%M %D @ %l:%i %p’))

If the date and time (represented by $tz, adjusted for the user’s time zone, when
appropriate) is less than the current UTC timestamp plus 24 hours, the auction closes
within the next day and only the hour, minute, and AM/PM indicator is returned.
Otherwise, the month, day, hour, minute, and AM/PM indicator is returned.

Whew! A fairly complex query, but as with all advanced sites, complex queries
are at the heart of the system. If you have any problems following this query, use
the standard PHP-MySQL debugging steps:

J Print out the query being executed using echo $q.

J Run that same query using another interface such as phpMyAdmin or the
command-line mysql client.

J Use the results (Figure 15.5) or error message to determine what debugging
steps to take next.

There are several possible upgrades for this page, starting with pagination of
the auctions. Pagination is a simple and common PHP technique. Taken a step
further, you could paginate the auctions using JavaScript, too, although I recom-
mend using a framework or plug-in for something as complex as that. You could
also add a link to another page that shows expired auctions.

fiGURe 15 .5 The results of run-
ning the home page’s query
using the mysql client.

562 ChaPter 15 php and JavaScript together

ptg7799847

The home page does not use any JavaScript at all as currently written. More
complexity and a better user experience can be added by displaying the minutes
remaining next to each auction that closes within the hour, and to update the time
remaining, and the current price, using Ajax. The view.php script will do both of
those, but for a single auction.

logging in

The login page is the simplest of the three. Along with the standard structure
already explained for the home page, the login page will handle the submission of
the login form to validate the user. That’s accomplished within this block, which
checks for a form submission:

if ($_SERVER[‘REQUEST_METHOD’] == ‘POST’) {

 /* Form validation. */

}

The PHP code performs minimal validation of the username and password
fields (see Figure 15.2), and makes the submitted data safe to use in a query. Any
errors that occur are added to a PHP array named $errors. If no errors occurred,
a database query selects the user’s ID, name, and time zone from the database:

SELECT userId, username, timezone FROM users WHERE
p (username=’$u’ AND userpass=SHA1(‘$p’))

These three pieces of information are then stored in a session. Next, a nice
message is displayed, the footer is included, and the script is terminated so as not
to show the form again (Figure 15.6).

fiGURe 15 .6 The login
page upon successfully
logging in.

coding the non-JavaScript verSion 563

ptg7799847

All errors are shown above the login form, giving the user the chance to try
again (Figure 15.7).

The login page will include the login.js script, which will progressively
enhance the login process.

vieWing an auCtion

The view.php script is by far the most complicated, requiring around 160 lines of
well-documented and spaced code. The script must do several things (see Figure
15.3 for most of these):

J Validate the itemId passed to the page in the URL (from the link in index.
php).

J Retrieve and display the item’s details.

J Provide a form to bid on the item, but only if the viewer is logged in.

J Handle the bid form’s submission.

J Show the list of current bids.

I’ll walk through these in order.

validating the iteM id
Validating the item ID is simply a matter of confirming that it exists and is an integer
greater than or equal to 1. If you’re using PHP 5.3 or later, the Filter extension is the
best way to do that. However, this page can be accessed in two ways: by clicking
the link on index.php (which performs a GET request of view.php) or by submit-
ting the bid form back to this same page (i.e., a POST request). To account for both
possibilities, use the following code to validate the item ID:

fiGURe 15 .7 The login page
when one or more errors
occurred.

564 ChaPter 15 php and JavaScript together

ptg7799847

$itemId = false;

if (isset($_GET[‘itemId’]) && filter_var($_GET[‘itemId’],
p FILTER_VALIDATE_INT, array(‘min_range’ => 1))) {

 $itemId = $_GET[‘itemId’];

} elseif (isset($_POST[‘itemId’]) && filter_var($_POST[‘itemId’],
p FILTER_VALIDATE_INT, array(‘min_range’ => 1))) {

 $itemId = $_POST[‘itemId’];

}

For this to work, the item ID will need to be stored in a hidden input in the
form, as you’ll see shortly.

If, after that code, $itemId still has a false value, then an error message will
be shown, the footer included, and the page terminated (Figure 15.8). You could
take this validation another step further and confirm that the item ID successfully
points to an item in the database.

diSplaying the iteM’S detailS
A database query is required to retrieve the item’s details: the item name and
description, its opening price, its current price, and its closing date and time. That
can all be fetched using a query similar to the one on index.php, including the
factoring in of the user’s time zone.

Two more pieces of information will be useful, though: the current auction
status (open or closed) and how many minutes are left in the auction. The former
can be retrieved via an IF that selects the string closed or open depending upon
whether the closing date and time is in the past:

IF(dateClosed < UTC_TIMESTAMP(), ‘closed’, ‘open’).

fiGURe 15 .8 The view page
if it does not receive a valid
item ID.

coding the non-JavaScript verSion 565

ptg7799847

The number of minutes remaining can be calculated by subtracting the closing
date from the current UTC timestamp, and dividing by 60:

CEILING((UNIX_TIMESTAMP(dateClosed) - UNIX_TIMESTAMP
p (UTC_TIMESTAMP()))/60)

For the math to work out properly, both values need to be timestamps, which
is why UNIX_TIMESTAMP() is applied. It may seem unnecessary to apply this func-
tion to the UTC_TIMESTAMP() result, but trust me: this is how you guarantee the
math works.

The resulting query is this behemoth:

SELECT item, description, openingPrice, COALESCE(MAX(bid),
p openingPrice), DATE_FORMAT($closeTz,’%M %D @ %l:%i %p’),
IF(dateClosed < UTC_TIMESTAMP(), ‘closed’, ‘open’),
p CEILING((UNIX_TIMESTAMP(dateClosed) - UNIX_TIMESTAMP
p (UTC_TIMESTAMP()))/60) FROM items LEFT JOIN bids USING (itemId)
p WHERE items.itemId=$itemId GROUP BY bids.itemId

The query will return one record, which can be fetched into variables and used
to display all the item’s details (Figure 15.9):

list ($item, $description, $openingPrice, $currentPrice,
p $dateClosed, $status, $minutesRemaining) =
p mysqli_fetch_array($r, MYSQLI_NUM);

fiGURe 15 .9 The item details
for an auction closing soon.

566 ChaPter 15 php and JavaScript together

ptg7799847

creating the Bid ForM
The bid form should only be displayed if the auction is still open:

if ($status == ‘open’) {

The form is prefaced by a heading that indicates the required bid, based upon
the current value (see Figure 15.9):

echo ‘<h3>Bid On This Item</h3>

<p>Enter a price above $’ .
p $currentPrice . ‘ to bid on this item.</p>’;

This will always be shown if the auction is open. If the user is also logged in,
the form itself is displayed. The form needs to store the item ID and the current
price in hidden form inputs:

echo ‘<input type=”hidden” name=”itemId” id=”itemId”
p value=”’ . $itemId . ‘”>

<input type=”hidden” name=”currentHidden” id=”currentHidden”
p value=”’ . $currentPrice . ‘”>’;

These two values will be used when the form is submitted.
(As a reminder, all of the code thus far is meant to work without any JavaScript.)
If the viewer is not logged in, a message is shown indicating that the person

must log in to bid:

} else { // Not logged in.

 echo ‘<p class=”caution”>You must log in
 p to place bids.</p>’;

}

If the auction is closed, the current price is displayed as the final price (Figure 15.10):

fiGURe 15 .10 When the auction
has closed, the final price is
shown instead of the bid form.

coding the non-JavaScript verSion 567

ptg7799847

} else { // Closed!

 echo ‘<p class=”caution”>This auction is now closed.</p>

 <h2>Final Price: $’ . $currentPrice .’</h2>’;

}

handling the Bid ForM SuBMiSSion
When the bid form is submitted, the data will be posted back to the view.php page.
To check for that, use this code:

if ($_SERVER[‘REQUEST_METHOD’] == ‘POST’) { }

Within that code, user ID and bid amount have to be validated (the item ID
will have been validated by this point already). I again turn to the Filter extension
for both validations:

if (isset($_SESSION[‘userId’]) && filter_var($_SESSION[‘userId’],
p FILTER_VALIDATE_INT, array(‘min_range’ => 1))) {

 $userId = $_SESSION[‘userId’];

}

if (isset($_POST[‘bid’]) && filter_var($_POST[‘bid’],
p FILTER_VALIDATE_FLOAT) && ($_POST[‘bid’] >
p $_POST[‘currentHidden’])) {

 $bid = $_POST[‘bid’];

}

You’ll see that the bid is also checked against the current price, stored in a hidden
form element. This structure does allow for the submission of a bid that’s lower
than the current price, through some hacking. But as the final price will always be
based upon the highest bid, there’s no gain should a hacker attempts to do that.

If both validation routines are passed, then the bid is entered into the database:

INSERT INTO bids (itemId, userId, bid, dateSubmitted)
p VALUES ($itemId, $userId, $bid, UTC_TIMESTAMP())

Messages report upon the success (Figure 15.11) or failure (Figure 15.12) of
the bid.

568 ChaPter 15 php and JavaScript together

ptg7799847

Showing the current BidS
The last thing the view page should do is display the list of bids received (see Fig-
ure 15.3). Doing that requires a query of just the bids table:

SELECT bid, IF($bidTz > DATE_SUB(UTC_TIMESTAMP(), INTERVAL 24 HOUR),
p DATE_FORMAT($bidTz,’%l:%i %p’), DATE_FORMAT($bidTz,’%M %D @
p %l:%i %p’)) FROM bids WHERE itemId=$itemId ORDER BY bids.bid DESC

This query retrieves the bids in descending order of amount: the highest bid
is always listed first (which should also be the most recent bid). The date and time
of the bid is formatted to the user’s time zone, if applicable. As on the home page,
bids within the past day are just shown using the bid’s time.

s

With the base functionality in place, you can start progressively enhancing the
site. Primarily, this is done via Ajax; hence, the next step I would take would be
to create the three PHP scripts that are used as the resources for the Ajax calls.
These scripts are:

J login.php

J getBids.php

J bid.php

fiGURe 15 .11 A successful
bid has been submitted.

fiGURe 15 .12 The provided bid was
not greater than the current price.

creating the aJaX reSourceS 569

ptg7799847

Let’s take a look at each individually. Remember that, as a debugging step, you
should always run the Ajax resource scripts directly in your browser to confirm they
don’t have errors, prior to writing any JavaScript. Even if the script requires data to be
sent to it, merely running the script directly can provide peace of mind that there are
no PHP errors (while simultaneously showing the results when used inappropriately).

Note that all three scripts will have to start the session themselves, as the scripts
will not include the HTML header that otherwise does that.

the login aJax sCriPt

Like the login page itself, the login Ajax script will be quite simple. It should receive
and validate the username and password, and then query the database for those
values. This validation code and the query is the same as in login.php. If the
provided information was correct, the retrieved data is stored in the session and
the script prints only a single word: VALID. If the information is not correct, or
if those two pieces of information are not posted to the page, the script prints
INVALID (Figure 15.13).

Now, it may be confusing why storing data in a session even works via Ajax. An
Ajax script can manipulate the user’s session and/or cookies because the Ajax PHP
script is being requested by the JavaScript running in the user’s browser. Therefore,
the request is the same as if the user accessed the page directly and overtly. In this
case, this means that the user’s session ID is sent to the Ajax script as part of the
JavaScript request. When the session data is updated within the script, it is updated
for the correct session.

the Bidding aJax sCriPt

Another PHP script is used to submit bids via Ajax. The script requires that three
pieces of information be sent in the URL: the item ID, the bid, and the current price.
Like the bid form handling code in view.php, this script will validate those three
pieces of information, and also validate the user ID found in the session. The script
will then add the bid to the database.

This script will return JSON data with two parts: a status code (accepted or
error) and a message. See Chapter 11, Ajax, for the particulars of returning JSON
from a PHP script.

The PHP script assumes that invalid bid information was provided, and initially
creates a corresponding error message for the response:

fiGURe 15 .13 The default
response for the login Ajax
script.

570 ChaPter 15 php and JavaScript together

ptg7799847

$data = array(‘status’ => ‘error’, ‘message’ => ‘An invalid bid was
p submitted.’);

If the data passes the validation and the bid is submitted to the database, this
value is overwritten:

$data = array(‘status’ => ‘accepted’, ‘message’ => ‘Your bid of $’
p. number_format($bid, 2) . ‘ has been accepted.’);

At the end of the script, the data is returned as JSON (Figure 15.14):

echo json_encode($data);

the get Bids aJax sCriPt

The third and final PHP script used as an Ajax resource will return all of the bids
for an item over a certain amount. With that restriction—a minimum bid amount—
this script can provide the view item page with the latest bids, allowing the page to
dynamically update the displayed list. When there are no new bids, no bids will be
returned by this Ajax script. If there are two new bids, only those two are returned.

The script will also return JSON data (Figure 15.15). To do that, an empty array
is first created:

$data = array();

The array is then populated within the loop that fetches the query results:

while ($row = mysqli_fetch_array($r, MYSQLI_NUM)) {

 $data[] = $row;

}

fiGURe 15 .14 The response, in JSON format,
of successfully bidding via the Ajax script.

fiGURe 15 .15 The most recent bids
for an item are returned as an array
of objects, in JSON format.

creating the aJaX reSourceS 571

ptg7799847

If you look at the ajax/getBids.php script in the downloadable code, you’ll
see that the query itself just selects the bid amount and the bid date and time
from the bids table:

SELECT bid, IF($tz > DATE_SUB(UTC_TIMESTAMP(), INTERVAL 24 HOUR),
p DATE_FORMAT($tz,’%l:%i %p’), DATE_FORMAT($tz,’%M %D @ %l:%i %p’))
p AS dateSubmitted FROM bids WHERE itemId={$_GET[‘itemId’]}
p AND bid>{$_GET[‘currentPrice’]} ORDER BY dateSubmitted ASC

As in view.php, the script converts the dates and times to the user’s time zone,
if applicable, and shows bids within the last 24 hours as just the time. (As you can
see in the full getBids.php code, all of the variables will have been validated prior
to this point, making them safe to use in a query.)

Finally, the data is converted to JSON and printed:

echo json_encode($data);

Most of this code was first explained in Chapter 11.

addInG the JavaSCrIpt

With the original functionality in place, and the server-side Ajax scripts written
and tested, too, it’s time to add the JavaScript layer to the application. Only three
JavaScript files are required (although one is quite long):

J utilities.js

J login.js

J view.js

The utilities.js script was first written in Chapter 8, Event Handling.
It originally defined the following functions:

J $(), a shortcut to document.getElementById()

J setText()

J addEvent()

J removeEvent()

572 ChaPter 15 php and JavaScript together

ptg7799847

To this list I’ve added the getXMLHttpRequestObject() function defined in
Chapter 11. I won’t otherwise explain the utilities.js script, as it should be
familiar to you by now, but see the downloadable code if you have any questions.

The view.php script will also have a small block of JavaScript written directly
into the page by PHP itself. I’ll explain the hows and whys of that later.

As you read over these next few pages, remember that the goal of JavaScript
(in this example, at least) is to enhance the user’s experience.

Writing login.Js

The JavaScript in login.js has a simple goal: replicate the form submission via
Ajax. Let’s walk through the whole script in detail.

To write login.js:

1. Create a new JavaScript file in your text editor or IDE, to be named login.js.

2. Begin creating an anonymous function that will be invoked immediately:

(function() {

 ‘use strict’;

To keep the global namespace uncluttered, all of the JavaScript code for this
page will go within this anonymous function that will be executed as soon
as the browser encounters it. This concept was first explained in Chapter
7, Creating Functions.

3. Define a function for showing error messages:

function showErrorMessage(message) {

 var errorDiv = U.$(‘errorDiv’);

 if (errorDiv) { // Already exists; update.

 errorDiv.innerHTML = message;

 } else { // Create and add to the page:

 errorDiv = document.createElement(‘div’);

 errorDiv.id = ‘errorDiv’;

 errorDiv.innerHTML = message;

adding the JavaScript 573

ptg7799847

 var loginForm = U.$(‘loginForm’);

 loginForm.parentNode.insertBefore(errorDiv, loginForm);

 } // End of messageDiv IF-ELSE

}

The JavaScript may or may not ever have to display any errors to the user.
In fact, the large majority of the time, it won’t be necessary, which is why
I chose not to create the DIV in the HTML in the first place. For the times
when errors might be shown—for example, if the user omits a form value
or if the submitted values don’t match those in the database—this func-
tion will be called.

The function begins by looking for the element with an ID of errorDiv. It
uses the $() shortcut function, defined within the U global object, to do
that. If that element exists, then its innerHTML property is updated with
the message value received during the function call.

If the DIV does not yet exist, then it will be created and dynamically added
to the page, just before the login form. See Chapter 9, JavaScript and the
Browser, for the particulars of DOM manipulation (if you’re confused by
any of this code). The end result will look exactly the same as in Figures
15.6 and 15.7.

In terms of the original functionality, the only additional requirement for
this progressive enhancement is that the form and its two elements have
ID values.

4. Begin defining the validateForm() function:

function validateForm(e) {

 if (typeof e == ‘undefined’) e = window.event;

 if (e.preventDefault) {

 e.preventDefault();

 } else {

 e.returnValue = false;

 }

574 ChaPter 15 php and JavaScript together

ptg7799847

This function will be called when the form is submitted. It will receive the
event as its lone argument. The first bit of code makes sure a valid reference
to the event is available (i.e., creating backward compatibility for older IE).
Then, the browser’s default behavior—the submission of the form to the
server—is prevented.

5. Get references to the form elements and validate them:

var username = U.$(‘username’).value;

var userpass = U.$(‘userpass’).value;

if ((username.length > 0) && (userpass.length > 0)) {

The JavaScript will just validate that each form element has a positive length.
If there were restrictions on the allowed characters or length of the user-
name and password—set during the registration process—you could use
regular expressions here.

6. Get an Ajax object:

var ajax = U.getXMLHttpRequestObject();

This code is the same as that in Chapter 11, only now the getXMLHttp
RequestObject() function is defined within the global U object.

7. Begin defining the onreadystatechange anonymous function:

ajax.onreadystatechange = function() {

 if (ajax.readyState == 4) {

 if ((ajax.status >= 200 && ajax.status < 300)

 || (ajax.status == 304)) {

This anonymous function will be called whenever the Ajax object’s
readyState property changes. As explained in Chapter 11, the function
must first confirm the state value and the status code.

adding the JavaScript 575

ptg7799847

8. If the response was VALID, hide the form and the error DIV, and print a message:

if (ajax.responseText == ‘VALID’) {

 U.$(‘loginForm’).style.visibility = ‘hidden’;

 var errorDiv = U.$(‘errorDiv’);

 if (errorDiv) {

 errorDiv.parentNode.removeChild(errorDiv);

 }

 U.setText(‘message’, ‘You are now logged in!’);

 U.$(‘message’).className = ‘good’;

The PHP script should only return one of two words: VALID or INVALID. If
the response equals VALID, the login form’s visibility is set to hidden, to
make it disappear. Then the errorDiv element is removed from the page
entirely, if it exists. That would be the case if the user provided invalid
credentials first, and then provided valid ones.

Finally, the message paragraph, which is part of the PHP script and origi-
nally says Registered users must log in to submit bids. is assigned a new
message and given a class of good (which, according to the CSS, highlights
the paragraph in green, as in Figure 15.6).

9. If the response was INVALID, show an error message:

} else { // Bad response, show an error:

 showErrorMessage(‘<h2>Error!</h2><p class=”error”>
 p The submitted values do not match those on file!</p>’);

}

To display the error message, the showErrorMessage() function is called,
providing it with the HTML version of the message.

10. Clear the Ajax object and complete the anonymous function:

 ajax = null;

 } else { // Invalid status code, submit the form:

 U.$(‘loginForm’).submit();

 }

576 ChaPter 15 php and JavaScript together

ptg7799847

 } // End of readyState IF.

}; // End of onreadystatechange anonymous function.

After the Ajax request has completed, the ajax object is assigned a null value.

The else clause applies if the status code was not good, in which case the
form will actually be submitted as if the JavaScript wasn’t there.

11. Perform the Ajax request:

ajax.open(‘POST’, ‘ajax/login.php’, true);

ajax.setRequestHeader(‘Content-Type’,
p ‘application/x-www-form-urlencoded’);

var data = ‘username=’ + encodeURIComponent(username) +
p ‘&userpass=’ + encodeURIComponent(userpass);

ajax.send(data);

The Ajax request uses the POST method, meaning that the Content-Type
request header has to be set. The data being sent to the page is just the
username and the password, encoded for safety.

12. If the user did not complete the form, show an error message:

} else { // Didn’t complete the form:

 var message = ‘<h2>Error!</h2><p>The following error(s)
 p occurred:’;

 if (username.length == 0) {

 message += ‘<li class=”error”>You forgot to enter
 p your username!’

 }

 if (userpass.length == 0) {

 message += ‘<li class=”error”>You forgot to enter
 p your password!’

 }

 message += ‘</p>’;

 showErrorMessage(message);

} // End of validation IF-ELSE.

adding the JavaScript 577

ptg7799847

The error message is built up as HTML, then the showErrorMessage() func-
tion is called.

13. Complete the validateForm() function:

 return false;

} // End of validateForm() function.

14. Attach a submit event handler to the form:

function init() {

 U.addEvent(U.$(‘loginForm’), ‘submit’, validateForm);

} // End of init() function.

U.addEvent(window, ‘load’, init);

You’ll notice that this site only uses the DOM Level 2 event handlers, assigned
via the addEvent() method of the U object.

15. Complete the immediately-invoked function:

})(); // End of immediately invoked function.

16. Save the file as login.js, in a js directory next to login.php, and test it in
your Web browser.

Again, the end result should be the same as in Figures 15.6 and 15.7.

Writing JavasCriPt Within vieW.PhP

The view.php script does the bulk of the site’s work: displaying an item, showing
all of its bids, and allowing users to bid on it. Using progressive enhancement, the
view.js file, to be written next, will perform two of these tasks via Ajax: fetching
the most recent bids and submitting new bids. In order to do either, the JavaScript
in that file will need to know the item ID and the current price. The PHP code that
generates the page will have both values represented as variables, but PHP only
exists on the server. Somehow this information needs to get to the JavaScript.
Transmitting data between PHP and JavaScript is a common point of confusion,
and so I wanted to highlight and explain the concept in some detail here.

578 ChaPter 15 php and JavaScript together

ptg7799847

To start, remember that PHP executes on the server and JavaScript executes
within the client (i.e., the browser). PHP cannot reference a JavaScript variable or
call a JavaScript function and JavaScript cannot reference a PHP variable or call
a PHP function. But there are ways to bridge the gap between the two languages.

The first option is to use cookies. Cookies are one of the very rare overlaps
between client-side and server-side technologies. A cookie set by PHP can be read
by JavaScript and vice versa. The primary downside to cookies is that they can
only be read on subsequent requests after they’ve been sent. Getting that timing
right can be tricky.

The second option is one you’ve already seen many times over: use Ajax. As in
the login.js script, an Ajax request can send any JavaScript variable (well, tech-
nically, its value) to a PHP script. An Ajax request can also have the net effect of
invoking a PHP function, if need be. And PHP can pass data back to the JavaScript
in the Ajax response.

The third way to communicate between PHP and JavaScript is to use HTML as
an intermediary. For example, JavaScript could create hidden form elements whose
values will be passed to a server-side PHP script when the form is submitted. Or,
more commonly, PHP can be used to create HTML that is accessible by client-side
JavaScript. More directly, PHP can be used to create the client-side JavaScript itself.
I’ll explain with an example…

To have JavaScript submit and retrieve bids for the view.php script, the JavaScript
code will need access to the item id and its current price. JavaScript could read these
values from HTML created by PHP, such as the hidden inputs in the bid form that
PHP dynamically generates:

echo ‘<input type=”hidden” name=”itemId” id=”itemId”
p value=”’ . $itemId . ‘”>

<input type=”hidden” name=”currentHidden” id=”currentHidden”
p value=”’ . $currentPrice . ‘”>’;

However, since I know JavaScript will need access to this information, why not
just create these values as JavaScript variables? To do that, the view.php script will
have PHP create actual JavaScript code. This is much easier than you might imagine;
just start with the desired goal:

adding the JavaScript 579

ptg7799847

<script>

 var itemId = 1;

 var currentPrice = 4.25;

</script>

Then, have PHP print all or part of this, replacing the values with the PHP
variables that represent those values (Figure 15.16):

echo ‘<script>

 var itemId = ‘ . $itemId . ‘;

 var currentPrice = ‘ . $currentPrice . ‘;

 var minutesRemaining = ‘ . $minutesLeft . ‘;

</script>’;

And that’s all there is to it! PHP variables have been passed to client-side Java-
Script by simply having PHP create the necessary JavaScript code. As you can see
in that example, the PHP in view.php is creating a third variable, which represents
the number of minutes left in the auction. This will also be used by view.js.

One thing to be aware of with this approach is that it does result in global
variables. Global variables aren’t the end of the world, but you should be prudent
about creating them. A slightly better solution would be to create one global object
that represents the three values:

echo ‘<script>

 var item = {itemId: ‘ . $itemId . ‘, currentPrice: ‘ .
 p $currentPrice . ‘, minutesRemaining: ‘ . $minutesLeft . ‘};

</script>’;

fiGURe 15 .16 This JavaScript
code was created by PHP.

580 ChaPter 15 php and JavaScript together

ptg7799847

You should also be careful when writing PHP and JavaScript together that you
don’t generate parse errors within the JavaScript (which is easy enough to do). Also
remember to terminate each JavaScript line with a semicolon, which is not to be
confused with the semicolon that terminates each PHP line. And remember that
JavaScript uses the plus sign for string concatenation while PHP uses the period.
Using the wrong one in the wrong code results in a parse error, too.

Writing vieW.Js

The view.js script is included by view.php, but only if the auction is still open (see
the PHP code in view.php). The view.js script will do three things:

J Submit bids via Ajax

J Update the list of bids as new bids come in

J Update the display of minutes remaining, closing the auction when time
is up

Accomplishing all this requires 240 lines of spaced-out, documented JavaScript
code. If it’s not the most complex script in the book, then it’s certainly the longest.
I’ll walk through the script in detail in the next sequence of steps, but you’ll prob-
ably want to download the code from the book’s Web site, too.

To get a sense of the script, its general structure is:

(function() {

 // Three closure variables.

 function showMessage() {}

 function handleBidAjaxResponse() {}

 function submitBid() {}

 function handleGetBidsAjaxResponse() {}

 function getBids() {}

 function init() {}

 U.addEvent(window, ‘load’, init);

})();

adding the JavaScript 581

ptg7799847

As you can see, the entire script uses an immediately invoked function. Within
it, there are six function definitions. Three variables will need to be accessed by
the functions, and have a persistent value, so those will be closure variables (see
Chapter 14, Advanced JavaScript, for more on closures).

To write view.js:

1. Create a new JavaScript file in your text editor or IDE, to be named view.js.

2. Begin creating an anonymous function that will be immediately invoked:

(function() {

 ‘use strict’;

3. Declare three variables:

var bidAjax = null;

var getBidsAjax = U.getXMLHttpRequestObject();

var messageDiv = null;

Two Ajax objects are needed by this script. One will handle submission
of bids; the other will retrieve new bids. Both variables are declared here,
making them available within any of the following functions. This also
means that the same Ajax object can be reused time and again (each for
its respective purpose). The bidAjax object is not initialized here, as some
people will view the auction but not bid. It will be initialized when the first
bid is submitted.

The messageDiv is where JavaScript will display messages. That variable is
declared here, but cannot be assigned a reference to the DIV on the page,
as the page has not yet fully loaded at this point.

4. Begin defining a function for showing messages:

function showMessage(message, messageClass) {

 if (!messageDiv) {

 messageDiv = U.$(‘messageDiv’);

 }

582 ChaPter 15 php and JavaScript together

ptg7799847

This function can be called any number of times. The function takes two
arguments: the message itself, which could contain HTML, and the class to
apply to the DIV (some messages will be errors; others will not be).

The first time this function is called, the messageDiv variable will have a
null value and the function should get a reference to the DIV on the page.

5. If the DIV still does not exist, create it:

if (!messageDiv) {

 messageDiv = document.createElement(‘div’);

 messageDiv.id = ‘messageDiv’;

 var itemHeading = U.$(‘itemHeading’);

 itemHeading.parentNode.insertBefore(messageDiv,
 p itemHeading);

} // End of messageDiv IF-ELSE

If messageDiv still has a FALSE value, that means the DIV doesn’t yet exist
in the DOM and it must be created.

6. Update the DIV with the class and message, then complete the function:

 messageDiv.className = messageClass;

 messageDiv.innerHTML = message;

} // End of showMessage() function.

7. Start defining the handleBidAjaxResponse() function:

function handleBidAjaxResponse() {

 if (bidAjax.readyState == 4) {

 if ((bidAjax.status >= 200 && bidAjax.status < 300)

 || (bidAjax.status == 304)) {

This function will be called when the Ajax request that submits a bid returns
its result.

adding the JavaScript 583

ptg7799847

8. Parse and handle the response:

var bidResponse = JSON.parse(bidAjax.responseText);

if (bidResponse.status == ‘accepted’) {

 showMessage(bidResponse.message, ‘good’);

 getBids();

} else { // Error!

 showMessage(bidResponse.message, ‘error’);

}

The Ajax response will be in JSON format (see Figure 15.14), which must be
parsed. The resulting object will have two properties: status and message. If
status equals accepted, the bid was accepted. Otherwise an error occurred.

If the bid was accepted, the message, something like Your bid of $22.40 has
been accepted., will be shown in the message DIV, using a CSS class of good
(Figure 15.17). If an error occurred, the error message, such as An invalid bid
was submitted., will be shown in the message DIV, using a CSS class of error.

If the bid was accepted, the getBids() function is also called, in order to
immediately update the list of bids to include this new bid.

9. Complete the function:

 } else { // Bad status, formally submit the form:

 U.$(‘bidForm’).submit();

 }

 } // End of readyState IF.

} // End of handleBidAjaxResponse() function.

If the Ajax request returned a bad status code, then the form will be formally
submitted.

fiGURe 15 .17 An accepted bid
message, shown within the
added DIV.

584 ChaPter 15 php and JavaScript together

ptg7799847

10. Begin defining the submitBid() function:

function submitBid(e) {

 if (typeof e == ‘undefined’) e = window.event;

 if (e.preventDefault) {

 e.preventDefault();

 } else {

 e.returnValue = false;

 }

This function will be called with each form submission. It begins by prevent-
ing the default behavior, the form’s actual submission.

11. Validate the bid:

var bid = U.$(‘bid’).value;

if (bid > currentPrice) {

The bid will only be submitted to the server if it’s greater than the current
price. The currentPrice variable is global, as it will be created by PHP, as
just explained. (As you’ll see, the currentPrice variable will be updated
for each new bid.)

12. Create the Ajax object, if necessary:

if (!bidAjax) {

 bidAjax = U.getXMLHttpRequestObject();

 bidAjax.onreadystatechange = handleBidAjaxResponse;

}

If bidAjax still has a FALSE value, then it needs to be created as an
XMLHttpRequest object and the object’s onreadystatechange property needs
to be associated with the handleBidAjaxResponse() function.

adding the JavaScript 585

ptg7799847

13. Perform the Ajax request:

bidAjax.open(‘GET’, ‘ajax/bid.php?bid=’ + bid + ‘&itemId=’ +
p itemId + ‘¤tPrice=’ + currentPrice, true);

bidAjax.send(null);

The request is of ajax/bid.php, passing to that PHP script the bid amount,
the item ID, and the current price.

14. Complete the submitBid() function:

 } else {

 showMessage(‘Your bid must be greater than $’ +
 p currentPrice.toFixed(2) + ‘.’, ‘error’);

 }

 return false;

} // End of submitBid() function.

If the submitted bid amount is not greater than the current price, an error
message is shown (Figure 15.18). The currentPrice is formatted as a number
with two decimal places thanks to the toFixed() method.

15. Begin defining the handleGetBidsAjaxResponse() function:

function handleGetBidsAjaxResponse() {

 if (getBidsAjax.readyState == 4) {

 if ((getBidsAjax.status >= 200 && getBidsAjax.status
 p < 300)

 || (getBidsAjax.status == 304)) {

This function will be called when the Ajax request that fetches new bids
returns a response. It starts by checking the readyState value and status code.

fiGURe 15 .18 Bids not greater
than the current price will
result in an error message.

586 ChaPter 15 php and JavaScript together

ptg7799847

16. Parse the JSON data and check its length:

var bids = JSON.parse(getBidsAjax.responseText);

if (bids.length > 0) {

The returned response will be in JSON format as an array of objects (see
Figure 15.15). If the length of that array is not greater than 0, that means
there have been no new bids, and nothing needs to be done.

17. Update the current price:

currentPrice = parseFloat(bids[bids.length-1].bid).toFixed(2);

U.setText(‘currentSpan’, currentPrice.toString());

U.setText(‘currentHidden’, currentPrice.toString());

The bids are always returned in order from oldest to newest. Thus, the very
last bid returned will be the current high price. To find that value, refer to
one less than the length of the array: bids[bids.length-1]. This will be
a string, so the construct is converted to a float for internal use, and then
fixed to two decimals.

Next, the span that shows the current price is updated with this value, as is
the hidden form input. Updating the hidden form input will only be neces-
sary should a subsequent Ajax bid request return a bad status code, in which
case the form itself will be submitted.

18. Update the bids HTML table with the new bids:

var tb = U.$(‘tableBody’);

for (var i = 0, count = bids.length; i < count; i++) {

 var tr = document.createElement(‘tr’);

 var td1 = document.createElement(‘td’);

 var td2 = document.createElement(‘td’);

 td1.appendChild(document.createTextNode(‘$’ + bids[i].bid));

 td2.appendChild(document.createTextNode
 p (bids[i].dateSubmitted));

 tr.appendChild(td1);

adding the JavaScript 587

ptg7799847

 tr.appendChild(td2);

 var trs = document.getElementsByTagName(‘tr’);

 tb.insertBefore(tr, trs[1]);

} // End of FOR loop.

Chapter 9, which covered DOM manipulation, did not put forth an HTML
table example. There are many ways to dynamically create table rows, but
creating actual elements and adding them is the most reliable (an alterna-
tive would be to clone a row, update its values, and add the modified clone
to the table).

The for loop goes through every new bid returned by the Ajax call. Within
the loop, a new table row element is created, along with two new table cells.
The table cells are given child text nodes of the bid amount (prefaced by a
dollar sign) and the bid date. Then the table cells are appended to the table
row and the table row is added to the table.

Older versions of Internet Explorer require that new table rows be added
to the table body element, not to the table itself, so a reference to the table
body is created before the loop. Each new row should be inserted as the top
row in the table, after the heading row. The document.getElementsByTag-
Name() method will return all table rows; the first non-header row will be
indexed at 1. Thus, tb.insertBefore(tr, trs[1]) will add this new row
before the second row in the table. Because the list of table row elements
is fetched within the loop, this list will always reflect the row just added.

19. Complete the handleGetBidsAjaxResponse() function:

 } // End of FOR loop.

 } // End of bids.length IF.

 } // End of status IF.

 } // End of readyState IF.

} // End of handleGetBidsAjaxResponse() function.

As an additional check, if the status code was not good, you could add a
message to the page indicating an inability to retrieve the latest bids.

588 ChaPter 15 php and JavaScript together

ptg7799847

20. Define the getBids() function:

function getBids() {

 getBidsAjax.open(‘GET’, ‘ajax/getBids.php?currentPrice=’ +
 p currentPrice + ‘&itemId=’ + itemId, true);

 getBidsAjax.send(null);

}

This function performs the Ajax request, sending the item ID and the cur-
rent price along in the request.

21. Begin defining the init() function:

function init() {

 U.$(‘refreshMessage’).style.display = ‘none’;

 U.addEvent(U.$(‘bidForm’), ‘submit’, submitBid);

 getBidsAjax.onreadystatechange = handleGetBidsAjaxresponse;

Finally, there’s the init() function, which establishes all the initial func-
tionality. First, it hides the Refresh the page to update. message that the PHP
script creates, as JavaScript will now perform the updating.

Second, a submit event handler is added to the bid form.

Third, the getBidsAjax object’s onreadystatechange property is associated
with the handleGetBidsAjaxResponse() function.

22. Create a timer that fetches the new bids every 10 seconds:

var getBidsTimer = setInterval(getBids, 10000);

This timer will call the getBids() function every 10 seconds (or thereabouts;
see Chapter 9 for the particulars of how timers work).

23. If there are fewer than 60 minutes remaining in the auction, start defining
a timer to update the minutes remaining display:

if (minutesRemaining < 60) {

 var span = U.$(‘minutesRemainingSpan’);

 var closingTimer = setInterval(function() {

adding the JavaScript 589

ptg7799847

With less than an hour to go in the auction, the PHP code will create a span
that shows the minutes remaining (see Figure 15.9). The JavaScript code in
this file will automatically update that span using a timer. (As a reminder,
minutesRemaining is a global JavaScript variable created by PHP.)

I will admit that this system does not address the possibility that someone
opens an auction with 61 minutes to go, and leaves the browser open until the
auction closes, therefore never seeing the timer. To address that possibility,
you could create another timer that checks the number of minutes remaining
(using a new Ajax script) every 30 minutes or so. Or, you could create a timer
that reloads the browser every 30 minutes or so, which would have the same
net effect (but be more obvious to the user, for better or for worse).

24. Subtract a minute and update the span:

minutesRemaining--;

if (minutesRemaining > 0) {

 U.setText(‘minutesRemainingSpan’, minutesRemaining +
 p ‘ minute(s) left’);

25. When the auction is over, perform the necessary cleanup:

} else { // Auction is over!

 clearInterval(closingTimer);

 clearInterval(getBidsTimer);

 bidAjax = null;

 getBidsAjax = null;

 U.removeEvent(U.$(‘bidForm’), ‘submit’, submitBid);

 var bidForm = U.$(‘bidForm’);

 bidForm.parentNode.removeChild(bidForm);

 span.parentNode.removeChild(span);

 showMessage(‘The auction is now closed.’, ‘error’);

}

590 ChaPter 15 php and JavaScript together

ptg7799847

Once minutesRemaining is no longer greater than 0, the auction is over and
several things should happen. First, both timers are removed. Second, both
Ajax objects are cleared. Third, the form’s submission handler is removed,
as is the form itself. Next, the span that showed the number of minutes
remaining is removed. Finally, a message indicates that the auction is over.

To make the JavaScript result more closely emulate the result when a user
views a closed auction (see Figure 15.10), you could have the JavaScript also
create a message that clearly indicates the final price.

26. Complete the timer and the init() function:

 }, 60000);

 } // End of minutesRemaining IF.

} // End of init() function.

27. Attach a load handler to the window:

U.addEvent(window, ‘load’, init);

28. Complete the immediately-invoked function:

})(); // End of immediately invoked function.

29. Save the file as view.js, in a js directory next to view.php, and test it in
your Web browser.

adding the JavaScript 591

ptg7799847

CompletInG this eXample

As I explained at the start of this chapter, the goal for this example was to create a
relatively real-world site that made use of PHP and JavaScript together. The example
had to strike the balance between being useful while not being too complex for the
book or what you should be comfortable with at this point. I hope that I’ve found
that balance, although I expect some of you thought it too complicated and others
wish that it had done more.

Some of the functionality required to complete this site depends upon more
PHP code, including having a regularly scheduled PHP script—one that executes
automatically every minute—that closes auctions. Aside from that, here are some
things you would want to do next:

J Create a user registration script, validated with JavaScript.

J Create logout functionality, with or without Ajax.

J Add the ability to create new auctions.

J Minify the JavaScript code.

J Have the PHP code in both versions of view.php only allow bids if the auc-
tion hasn’t closed (as written, with JavaScript disabled, a person could submit
the bid form after the auction has closed, thereby winning the auction).

As for this last suggestion, if you were to write a maintenance script that is run
every minute, it would wipe out any bids that occurred after an auction’s closing
date and time. It would also assign to the items table’s finalPrice column the
highest (valid) bid received.

Once you’ve expanded your JavaScript comfort and abilities, you may want to
start looking into JavaScript performance. There are tools that help with this area,
and certain coding standards make a difference. For example, combining all vari-
able declarations within a function into a single line is recommended:

var bidAjax = null, getBidsAjax = U.getXMLHttpRequestObject(),
p messageDiv = null;

I’ve only avoided this approach in the book in order to promote legibility and
discrete steps while learning the language.

592 ChaPter 15 php and JavaScript together

ptg7799847

revIeW and purSue

w

J What are the standard steps for debugging PHP-MySQL problems?

J Why is it important to store all dates and times in UTC?

J After creating a script that will be the target of an Ajax request, what’s the
next step you should take?

J What are some of the ways that PHP and JavaScript can pass data back and
forth?

J How do you create new HTML table rows using JavaScript?

Pursue

J As a big and broad suggestion, implement any of the proposed changes or
additions found within the chapter.

J Modify header.html so that it shows a login link if the user is not logged in
and a logout link if the user is logged in.

J If you’re not comfortable with the subject, look into time zone manage-
ment in MySQL.

J If you want more precision, have the time remaining on the view page reflect
the minutes and seconds. Terminate the auction when its seconds are up.

J If you’re still not comfortable with closures, read as much as you can on
the subject.

J Update view.js to clear the current bid amount when a successful bid
goes through.

J Revel in how much you’ve learned!

review and purSue 593

www.LarryUllman.com/forums/
www.LarryUllman.com/forums/

ptg7799847

WraPPing up

Congratulations! You’ve made it through the book and a somewhat complex exam-
ple. Hopefully, you were able to follow along well enough and perhaps even foresaw
some of the site’s shortcomings before they were pointed out. While many details
were glossed over or omitted, this project really does represent what you can expect
to do as a JavaScript-conversant Web developer. Those steps are:

J Identify the goals of a project

J Create the database

J Set up the site’s core structure

J Establish the basic functionality

J Write the scripts to be used as Ajax resources (if applicable)

J Test the Ajax resources (ditto)

J Add the JavaScript layer

J Debug, debug, and debug

Of course, the debugging step wasn’t written into the chapter, as I had to do it
while writing the code (truly, I did), and you probably had to do some of it while
testing the example. Now it’s up to you to expand upon and improve this project
as you think best.

As the final chapter in the book, this marks the end of the lessons. You can learn
the most from here on by doing: trying new things, seeing what does work and
what doesn’t, and debugging the problems that will inevitably occur. I also recom-
mend that you continue researching and reading more on the subject of JavaScript,
whether that means what else I have to say or is written by others.

You can find out what other knowledge I have to share through my Web site
(www.LarryUllman.com), through my newsletter (to which you can subscribe at the
Web site), or by posting questions in my forum.

Thanks for reading this book and good luck with your future JavaScript
endeavors!

594 ChaPter 15 php and JavaScript together

www.LarryUllman.com

ptg7799847

indeX 595

x

sYMBols
+ (addition) operator, 100, 102
&& (And) operator, 102, 136, 138
| (alternatives) meta-character, 407
\ (backslash), using with escape

sequences, 121–122
^ (beginning of string) meta-

character, 407, 411
?; (conditional) operator, 102
-- (decrement) operator, 102
/ (division) operator, 100, 102
“ (double quote), using with strings,

98–99
] (end of class) meta-character, 407
} (end of quantifier)

meta-character, 407
$ (end of string) meta-character, 407
) (end of subpattern)

meta-character, 407
== (equal to) operator, 131
\ (escape) meta-character, 407
() (function call) operator, 102
> (greater than) operator, 102, 133
>= (greater than or equal to) operator,

102, 133
=== (identical to) operator, 131
++ (increment) operator, 102
< (less than) operator, 102, 133
<= (less than or equal to) operator,

102, 133
! (logical not) operator, 102
|| (logical or) operator, 102, 136, 138
[] (member) operator, 102
% (modulus) operator, 100, 102
* (multiplication) operator, 100, 102
! (Not) operator, 136, 138
!= (not equal to) operator, 131
!== (not identical to) operator, 131
.. (periods), using with relative

paths, 38
% (remainder) operator, 100, 102

; (semicolon), using with
statements, 95

. (single character)
meta-character, 407

‘ (single quote), using with strings, 4,
98–99

// (slashes), using with comments,
99, 132

[(start of class) meta-character, 407
{ (start of quantifier)

meta-character, 407
 ((start of subpattern)

meta-character, 407
- (subtraction) operator, 100, 102
- (unary negative) operator, 104
+ (unary positive) operator, 102
_ (underscore), using with

variables, 97

A
absolute vs. relative paths, 38
accessible pop-up, creating, 323–324,

338–339
ActionScript, 5–6, 20
addEvent() function, defining,

275–277
addEventListener() method, 272, 274
addition (+) operator, 100, 102
addTask() function, using with

arrays, 196
addToSomething() function, 325
Adobe BrowserLab Web site, 75
Adobe Dreamweaver IDE, 67–68
Ajax

append() method, 438
asynchronous requests, 430
client-side JavaScript, 12
contact form, 456–460
FormData object, 438
GET method, 437–438
GET request, 429

impact on JavaScript, 7–13
incorporating, 12
JSON data, 444–447
link click handler, 463
login example, 453–456
maintaining state, 457
making requests, 429–431
onclick anonymous function, 464
onload anonymous function, 464
onreadystatechange function,

435–436
open() method for requests, 430
overview, 426
performing in jQuery framework,

501–502
performing in YUI framework, 515
popularity of, 12
POST request, 429, 437–438
preloading data, 461–465
progressive enhancement, 427
readyState property, 431–432, 434
registration form example, 8–9
result handler, 429
send() method, 438
sending data, 436–439
sending files, 453
server HTTP codes, 432
server response, 431–436
server-side requests, 12–13
server-side script, 447–450
statusText property, 433
stock quotes with timer, 465–469
synchronous requests, 430
testing, 434
URLs (Uniform Resource

Locators), 430
XML data, 442–444
XMLHttpRequest object, 428–429

Ajax debugging, 439–441
disabling cache, 441
network monitor, 440
PHP script, 439

ptg7799847

x

Ajax object
creating, 426, 428–429, 434
creating for login form, 453–454
setRequestHeader() method, 437

Ajax processes
delaying, 452
progress event, 452
showing progress, 451–453
starting, 451–452

Ajax request, invoking, 460
Ajax resources

bidding script, 570–571
creating for auction site, 569–572
get bids script, 571–572
login script, 570

ajax.js script, 457–460
including in login.html file, 453
try...catch block example,

478–479
Ajaxload Web site, 451
alert() method

using, 310
using in debugging, 85
using wit arrays, 192

altKey property, 297
anonymous functions, using,

257–258, 260–261
Apple Safari browser. See Safari

browser
Aptana Studio IDE, 68
arithmetic operators. See also

assignment operators
+ (addition), 100, 102
comparison, 104
?; (conditional), 102
-- (decrement), 102
/ (division), 100, 102
() (function call), 102
> (greater than), 102
>= (greater than or equal to), 102
++ (increment), 102
< (less than), 102

<= (less than or equal to), 102
&& (logical and), 102
! (logical not), 102
|| (logical or), 102
[] (member), 102
% (modulus), 100, 102
* (multiplication), 100, 102
new, 102
order of precedence, 101
% (remainder), 100, 102
- (subtraction), 100, 102
typeof void delete, 102
unary, 101–102, 104

array elements
accessing, 192–195, 198–199
removing, 200

array functions. See also functions
addTask(), 196
alert(), 192
concat(), 201–202
console.log(), 192
every(), 248–249
filter(), 249
forEach(), 248
indexOf(), 194
join(), 206
lastIndexOf(), 194
LIFO (Last-In, First-Out) data type,

202
map(), 249, 252
pop(), 202
push(), 200
queues, 202
reduce(), 249
shift(), 202
slice() method, 203–204
some(), 248
splice(), 202–203
split(), 207
stacks, 202
unshift(), 200

array notation, using with object
properties, 210

arrays
converting between strings,

206–207
converting strings to, 207, 252
converting to strings, 206
creating, 190–192
event listener, 197–198
global variable, 196
indexes, 193
inner, 201
length property, 194
literal syntax, 191, 194
multidimensional, 201
new operator, 190–191
.vs objects, 216–217
in operator, 199
passing by reference, 231
sorting with user-defined

functions, 251–253
sparsely populated, 199
to-do list, 195–198
updating To-Do Manager, 204–206

assertion methods
creating, 479–481
using in jsUnity, 483

assignment operators, 98, 100,
102, 104. See also arithmetic
operators

bugs caused by, 134
using, 100–101

asynchronous events, handling, 8
attachEvent() method, 274–275
auction site. See also JavaScript for

auction site; PHP for auction site
Ajax resources, 569–572
configuration file, 558–559
database, 556–557
encrypting passwords, 557
establishing, 558–559
index.php page, 554–555
login.php page, 554–555
PHP scripts, 558–559

ptg7799847

indeX 597

SHA1() function, 557
structure, 558
view.php page, 554–555

autocomplete, implementing,
388–389

B
Back button, linking text to, 343–344
backslash (\), using with escape

sequences, 121–122
BBEdit text editor, 67
Blackbird library, 523
Boolean values, using with

variables, 99
boundaries, using, 414
branching statements, 130
break control statement, using, 167
breakpoints, using in Firebug, 88
Brosera Web site, 76
browser events, 284–285

copy, 285
cut, 285
paste, 285
resize, 285
unload, 284–285

browser improvements, 14–15
browser mode, confirming, 30
browser support, 22–23
browser window, moving, 316–317
BrowserCam Web site, 76
BrowserLab Web site, 75
browserling Web site, 76
browsers

Apple Safari, 73–75
Chrome, 15, 69–70, 90
as development tools, 69
elements, 314
Firefox, 15, 69, 71, 90
hash example, 330
history property, 326–328
inner height, 314

Internet Explorer (IE), 15, 69, 72
mobile usage, 69
“modern,” 22
object detection, 75
online services for testing, 76
Opera, 69, 72–73, 90
outer height, 314
outer width, 314
print option, 333
redirecting, 329–330
Safari, 15, 69
same origin security, 327
Spoon software, 76
statistics, 69
status bar, 314
testing on, 75–77
toolbar, 314
using virtualization software, 76
window.location property, 330

Browsershots Web site, 75
bugs

caused by assignment operator, 134
occurrence of, 5–6

C
calculate() function

creating for switch conditional, 147
defining, 104

calculation, performing, 100–101
calculators. See also numbers

creating, 103–107
discounts, 105
event listener, 106–107
init() function, 106
references to form values, 104
returning false, 106
storing order total, 104
with switch conditional, 146–150
tax rates, 105
total calculation, 105

calendar, date-picking, 15

camel-case
use in OOP, 5
using with variables, 97

Cascading Style Sheets (CSS). See CSS
(Cascading Style Sheets)

case of characters, changing, 118
catching errors, 474–476
<![CDATA[]]> wrapper, using with

script, 39
change events, handling, 287
character classes

[] (square brackets), 411
[0-9], 413
[^0-9], 413
[A-Za-zo-9_], 413
[^A-Za-zo-9_], 413
boundaries, 414
[f\r\t\n\v], 413
[^f\r\t\n\v], 413
meta-characters, 411
using, 411–414

characters, referencing in strings, 113.
See also meta-characters

charAt() method, using with
strings, 113

checkboxes
creating, 396–399
on e-commerce sites, 397
taking action, 397
value property, 396

Chrome browser, 15. See also Google
extensions, 70
features, 70
Firebug extension, 70
JavaScript Tester extension, 70
Pendule extension, 70
Speed Tracer extension, 70
usage statistic, 69
Validity extension, 70
Web Developer extension, 70
Web site, 90

circle, calculating area of, 109–110

ptg7799847

x

class, start and end of, 407
client-server model, registration form

in, 9
ClosureCompiler, 549
closures

creating, 542
creating faders, 545–546
functions returning functions, 544
using, 541–546

Cloud Testing Web site, 76
code, downloading, 44
code minification, 548–549

ClosureCompiler, 549
JSMin command-line tool, 549
YUI Compressor, 549

comments, creating, 99, 132
comparison operators, 104, 133–136

equal vs. identical values, 135–136
== (equal to), 131
> (greater than), 133
>= (greater than or equal to), 133
=== (identical to), 131
< (less than), 133
<= (less than or equal to), 133
!= (not equal to), 131
!== (not identical to), 131
TRUE vs. FALSE conditions,

135–136
concat() method

using with arrays, 201–202
using with strings, 118

concatenating strings, 118
conditional breakpoints, setting in

Firebug, 89
conditional operator, using, 102,

150–151
conditionals. See also switch

conditionals
branching statements, 130
checking for positive radius value,

138–139
comparing numbers, 153–154

comparing strings, 155–159
comparison operators, 133–136
cryptic, 150–152
else clause, 140
if, 130–131
if-else, 140
if-else if, 141
logical operators, 136–138
nesting, 142
and and or operators, 151–152
switch, 143–150
TRUE vs. FALSE, 131, 133
typeof operator, 159–160
using, 138–139

configuration object, creating, 529
confirm() function, using, 311
console, writing messages to, 85
console.log() method, using with

arrays, 192
console.trace() function, using in

debugging, 86
constants

creating, 118
using with Math object, 109

contact form. See also forms
creating in Ajax, 456–460
processing, 157–159

contact.js file, 157–159, 457–460
content.js file, creating, 461
content.php script, creating, 465
context and this variable, 254–257
control statements

break, 167
return, 167

control structures
nesting, 142
using, 131

cookie library
creating, 361–364
using, 364–368

cookies
click handlers, 367–368

contents, 358
creating, 359–360
deleting, 361
expiration date and time, 358
limitations, 359
name=value pairs, 360
overview, 358–359
reading, 360
retrieving, 360
separating, 360
setting, 367
using, 365–368

cookies.js file, 361–364
Coordinated Universal Time (UTC),

180–181
Crockford, Douglas, 90, 444
CrossBrowserTesting Web site, 76
CSS (Cascading Style Sheets)

creating modal windows, 351–356
customizing, 365–368
display property, 350–351
hiding elements, 350–351
and HTML vs. JavaScript, 18
modal windows, 351–356
referencing style sheets, 356–357
showing elements, 350–351
style property, 349–350
visibility property, 350–351

CSS selectors
querySelector() method, 342
querySelectorAll() method, 342
using, 341–342
using with jQuery, 496–497
.vs XPath expressions, 341

ctrlKey property, 297
cursor and mouse properties, 297
custom objects. See also objects

completing, 533
configuration object, 529
creating, 530
creating and using, 534–537
multiple instances, 530–532

ptg7799847

indeX 599

passing to functions, 532
tasks management application,

534–537
toString() method, 533, 535
valueOf() method, 533

D
data, preloading in Ajax, 461–465
date and time, showing, 178–180
date arithmetic

calculating intervals, 185, 188
getX(), 184–185
setX(), 184–185
timestamps, 182–184

date methods
atomic value retrieval, 176
get*() and to*(), 176–177
getTime(), 175
using, 175–180

Date objects, creating, 172, 174, 178,
180, 187

date-picking calendar, 15
dates

atomic values, 173
changing, 181–182
creating, 172–175
errors as messages, 189
event listeners, 189
process() function, 186
RFC822/IETF format, 175
set*() methods, 181–182
start and end for events, 186–190
using strings, 174–175
using timestamps, 174
validating for events, 187

debugging. See also Firebug
Ajax, 439–441
JavaScript, 17
with text editor vs. IDE, 63

debugging techniques
alert() method, 85

browser console, 83
browsers, 84
coding, 85
console.trace() function, 86
development browser, 83
external files, 84
IDEs (Integrated Development

Environments), 83
JavaScript validator, 83
log() method, 85
network monitor, 86
rubber duck, 84
saving and refreshing, 84
text editors, 83
writing messages to console, 85

decrement (--) operator, 102
default behavior, preventing, 297–301
development approaches

graceful degradation, 39–41
noscript element, 39–41
progressive enhancement,

41–42, 45
unobtrusive JavaScript, 43, 52

dialog windows. See also windows
alerts, 310
confirmations, 311
customizing, 312
\n (newline) character, 312
prompts, 312
using, 310–312

discount, including in calculator, 105
division (/) operator, 100, 102
do...while loop, using, 166
DOCTYPE

benefits, 30
choosing, 28–30
HTML 4.01, 28
Transitional option, 28–30
triggering Quirks mode, 30
XHTML 1.0, 28

document, requesting from server, 48
document object

using, 333–334
write() method, 333–334
writeln() method, 333–334

document.compatMode, 334
document.createElement()

method, 344
The Dojo Toolkit framework, 16
DOM (Document Object Model), 29

adding elements to, 345
changing elements, 342–344
copying elements, 346
creating, 48
creating elements, 344–348
creating print button, 347–348
CSS selectors, 341–342
Level 0 specification, 272
Level 2 specification, 271, 273
manipulation, 338–339
nodes, 336–337
nodeType property, 337
overview, 335–337
removeChild() method, 346
replacing elements, 345
shortcuts, 337–338
tree representation, 335–336

DOM elements, referencing, 48
DOM methods, 340
dot notation, chaining, 5
double quote (“), using with strings,

98–99
Dreamweaver IDE, 67–68
duck typing, using to test value

types, 548
dynamically typed language, 6

E
Eclipse IDE, 68
ECMAScript, 6, 22
EditPlus text editor, 66
Edwards, Dean, 90
Eich, Brendon, 90

ptg7799847

x

else clause, using, 140
Emacs text editor, 67
email address, validating, 414
employee.html page, 212–213
employee.js file

creating, 213
opening, 256
saving, 215, 257

epoch.js file, creating, 280
equal to (==) operator, 131
error causes

= instead of ==, 82
angle brackets, 82
curly braces, 82
function names, 81
object names, 81
object references, 82
object types, 82
parentheses, 82
quotation marks, 82
reserved words, 82
variable names, 81

error management
assertions, 479–481
unit testing, 481–485

error messages
adding, 380–383
creating for forms, 379–383
removing, 380–383
span, 381

error types
logical, 80–81
run-time, 80–81
syntactical, 80

errorMessages.js file
creating, 380
saving, 383

errors
catching, 474–476
finally clause, 476
in try block, 475

escape (\) meta-character, 407
escape sequences, 121–122
eval() function, using with

windows, 371
event assigner, creating, 273–274
event handlers

inline, 269, 272
naming, 270

event handling
delegating, 304
event phases, 302–304
event properties, 291–295
finding key pressed, 296–297
IE (Internet Explorer), 273
preventing default behavior,

297–301
progressive enhancement, 269
referencing events, 290–291
traditional, 269–272
W3C (World Wide Web

Consortium), 271–273
event listeners

addEventListener() method, 272
adding for dates, 189
adding to calculator, 106–107
adding to forms, 46–47, 49–50,

118, 121
adding to page elements, 274
adding to random.js file, 165
creating, 268–274
using with arrays, 197–198
using with objects, 215

event phases
advantages, 304
bubbling, 302–303
capturing, 302–303
relatedTarget property, 304

event types
browsers, 284–285
forms, 286–287
input devices, 278–282
keyboards, 282–284

event-driven language, explained, 46
event.js file, 186–190
events

accessibility, 287–288
associating with functions, 268
asynchronous, 8
handling, 46–50
pairing, 288
progressive enhancement,

288–289
reliability, 287
reporting on, 292–295
this variable, 295

events.html page, 292
events.js file, creating, 292
every() array function, 248–249
exceptions, throwing, 475, 477–478
execution context and this variable,

254–257
expressions .vs statements, 245
Extensible Markup Language (XML).

See XML (eXtensible Markup
Language)

ExtJS framework, 16

F
fader, creating with closure, 545–546
fallthroughs, performing, 144
FALSE

determining for control structures,
131, 133

vs. TRUE conditions, 135
false and true values, 99
file uploads, handling, 401–402
filter() array function, 249
finally clause, adding to try...

catch, 476
Firebug. See also debugging

applying to Web pages, 87
assertions in, 481
breakpoints, 88–89
clear() function, 87

ptg7799847

indeX 601

conditional breakpoints, 89
Console tab, 87
Continue in Script panel, 88–89
executing lines of JavaScript, 87
inspect() function, 87
opening, 87
Rerun in Script panel, 88–89
Script panel for debugging, 88
Step Into in Script panel, 88–89
Step Out in Script panel, 88–89
Step Over in Script panel, 88–89
using, 86–89
watch expressions, 89–90
Wiki, 89

Firefox browser, 6, 15
Console2 extension, 71
extensions, 71
features, 71
Firebug extension, 71
Greasemonkey extension, 71
JS View extension, 71
Total Validator extension, 71
usage statistic, 69
View Source Chart extension, 71
Web Developer extension, 71
Web site, 90
YSlow! extension, 71

Flash vs. JavaScript, 20
focus, changing, 321
for loop

defining in random.js file, 163
executing, 161–162
program flow, 161
syntax, 161–162
using, 163
using with arrays, 201

for...in loop, using with object
properties, 211

forEach() array function, 248
form data, problems with, 8

form events
blur, 286
change, 286–287
focus, 286
reset, 286
select, 286

form input, assigning values to, 106
form submission

handling, 378
preventing default behavior,

378–379
forms. See also contact form;

login form
accessibility, 378
action attribute, 378
autocomplete, 388–389
baseline functionality for, 42
checkboxes, 396–399
client-side validation, 9–10
disabling submit button, 386
error messages, 379–383
file uploads, 401–402
preventing submission of, 106
radio buttons, 400–401
register.js example, 416–420
registration page example, 415–420
select menus, 389–396
server-side validation, 10–11
text inputs, 387–388
textareas, 387–388
tooltips, 383–385
validation, 379

frames, iframe, 328
frameworks, 15–16. See also jQuery

framework; YUI framework
arguments against use of, 16
choosing, 16
considering, 493
The Dojo Toolkit, 16
ExtJS framework, 16
jQuery, 16

MooTools, 16
overview, 492, 494
Prototype, 16
script.aculo.us, 16
YUI (Yahoo! User Interface), 16

Fuchs, Thomas, 90
function call (()) operator, 102
function keyword, using, 50
function parameters, 226, 228–229,

241–242
functionality, developing, 44–45
functions. See also array functions

anonymous, 257–258, 260–261
applying to variables, 4
as argument values, 246–248
arguments variable, 227
associating events with, 268
context and this variable, 254–257
creating and calling, 232–234,

236–238
defined, 4, 49
defining, 222–223
design theory, 243
immediately invoked, 257–261
lack of default values, 228–229
lack of parameter checking, 228
lack of type checking, 226
local scope, 239
nested, 258–261
as objects, 244–248
passing objects to, 231
passing values, 230–234
passing values to, 223–225
recursion, 261–262
returning objects, 235
returning values from, 234–238
sort() method, 246–248
user-defined, 251–253
variable scope, 238–243
as variable values, 245–246

ptg7799847

x

G
getElementById() method, using

with form, 47
getRandomNumber() function,

calling, 238
getTime(), using with dates, 175
getTimeZoneOffset() method, 181
getX(), using with dates, 184–185
Git version control software, 62
global variables, 95. See also variables

in functions, 239–240
namespace pollution, 243
problem with, 243
using with arrays, 196

GMT (Greenwich Mean Time), 180
Google, browser support, 22. See also

Chrome browser
graceful degradation, 39–41
Graded Browser Support, 23
greater than (>) operator, 102, 133
greater than or equal to (>=) operator,

102, 133

H
handling events, 46–50
hash example, 330
hash property, 330–332
hash value, watching for changes

in, 372
Head JS library, 522–523
Heilmann, Christian, 90
history property

back() method, 326–327
forward() method, 326–327
go() method, 326–327

HTML (HyperText Markup Language)
avoiding use of dummy links, 43
and CSS vs. JavaScript, 18
DOCTYPE, 28
Semantic, 41–42
vs. XHTML, 28

HTML buttons, using, 289
HTML document, loading, 48
HTML elements

adding to DOM, 345
changing, 343
cloneNode() method, 346
copying, 346
creating, 344–348
customizing, 344
innerHTML property, 343
placing text in, 163
replacing, 345

HTML forms
example of, 8
validating, 46

HTML pages
adding JavaScript to, 37–39
path/to part, 37
script element, 37
testing looks of, 75
tree representation, 335
validating, 28

HTML5
explained, 31
form elements, 34–35
pattern attribute, 36
template, 31–33
vs. XHTML, 36

I
identical to (===) operator, 131
IDEs (Integrated Development

Environments)
Adobe Dreamweaver, 67–68
Aptana Studio, 68
Eclipse, 68
features, 65
IntelliJ IDEA, 68
JetBrains, 68
Komodo IDE, 67
NetBeans, 68

PhpStorm, 68
price range, 64
WebStorm, 68

IE versions, testing HTML pages on, 76
if conditional

FALSE, 130
omitting curly braces ({}), 130
syntax, 130–131
TRUE, 130

if-else conditionals, using, 140
if-else if conditionals, using, 141
iframe, using, 328
images, preloading in Ajax, 464
in operator

using with arrays, 199
using with object properties, 210

increment (++) operator, 102
indexes

using with arrays, 193
using with methods for strings, 113

indexOf() method
using with arrays, 194
using with strings, 114, 155, 408

index.php page, in auction site,
554–555

Infinity value, returning, 102
init() function

calling, 49–50, 52–53
using with calculators, 106

innerText property, using, 163
input device events, 278–282

click, 278
contextmenu, 279
double-click, 279
input button, 278–279
input movement, 279–282
mousedown, 278
mousemove, 279
mouseout, 279
mouseover, 279–282
mouseup, 278
touch devices, 281

ptg7799847

indeX 603

Integrated Development
Environments (IDEs). See
IDEs (Integrated Development
Environments)

IntelliJ IDEA IDE, 68
Internet Explorer (IE) browser, 15

event handling, 273
features, 72
usage statistic, 69

intervals, calculating for dates,
185, 188

Irish, Paul, 90
isFinite() function, using with

numbers, 154
isNan() function, using with

numbers, 154
iteration .vs recursion, 262

J
JavaScript

vs. ActionScript, 20
adding to HTML pages, 37–39
benefits, 21
browser improvements, 14–15
browser support, 22–23
case-sensitivity of, 81
current version of, 22
debugging, 17
dynamically typed, 6
ECMAScript implementation, 6
execution of, 40
features, 17
vs. Flash, 20
founders, 90
frameworks, 15–16
as Good Thing, 21
vs. HTML and CSS, 18
impact of Ajax, 7–13
vs. Java, 17
learning curve, 14, 17
as object-oriented language, 4–5
original uses of, 7

overview, 4–6
vs. PHP, 18–19
programming goals, 24–25
progressive enhancement, 24
prototype-based, 5
putting between in script tags, 43
scripting language, 6
security concern, 17
testing, 77–79
unobtrusive, 24, 43
versions, 22–23
weakly-typed, 5, 95

JavaScript 1.0, release of, 6
JavaScript alert, appearance of, 52
JavaScript code, executing, 77
JavaScript for auction site. See also

auction site; view.js file for
auction site

completing, 592
login.js file, 572–578
utilities.js file, 572

JavaScript layer, adding, 45–46
JetBrains IDEs, 68
join() method, using with arrays and

strings, 206
jQuery framework, 16. See also

frameworks
CDN (Content Delivery Network)

version, 495
changing CSS classes, 498
creating effects, 501
CSS selectors, 496–497
DOM manipulation, 498–499
downloading, 494
features, 494
handling events, 500–501
manipulating elements, 497–498
performing Ajax, 501–502
selecting page elements, 496–497
UI library, 503
using, 495–496

jQuery() function, using, 495

jQuery Mobile library, 523
jQuery plug-ins

Autocomplete widget, 504–507
DataTables, 507–508
date-picker widget, 503
using, 503–504

JS Bin tool
keyboard shortcuts, 79
using, 78–79

JScript implementation, 6
jsFiddle Web site, 79
JSHint validator, using, 83
JSLint validation service, using, 83
JSMin command-line tool, 549
JSON data

returning, 450
sending to server, 445
using with Ajax, 444–447
validating, 440

jsUnity library
assertion methods, 483
using in unit testing, 482

K
key pressed, finding, 296–297
keyboard events, 282–284

handling, 283–284
keydown, 282
keypress, 282
keyup, 282

Komodo Edit text editor, 66
Komodo IDE, 67

L
lastIndexOf() method

using with arrays, 194
using with strings, 114–115

length property, using with
arrays, 194

less than (<) operator, 102, 133

ptg7799847

x

less than or equal to (<=) operator,
102, 133

libraries
Blackbird, 523
Head JS, 522–523
jQuery Mobile, 523
MediaElement.js, 523
Modernizr, 522
RequireJS, 523
Sencha Touch, 523
SWFObject, 522
VideoJS, 523
Zepto, 523

LIFO (Last-In, First-Out) data type, 202
literal syntax, using with arrays,

191, 194
literals vs. objects, 94, 124
local scope, explained, 239
log() method, using in debugging, 85
logical operators, 102, 136–138
login form. See also forms

adding JavaScript layer, 45–46
base functionality, 44–45
getElementById() method, 47
init() function, 49, 52–53
JavaScript alert, 52
submission event, 47
validateForm() function, 52–53
validating, 50–54

loginForm object, onsubmit
property, 49

login.html file, 44
including ajax.js script in, 453
readyState change handling

function, 454–455
login.js file, 45, 54

creating Ajax object, 453–454
saving, 455
writing for auction site, 573–578

login.php script
in auction site, 554–555
creating, 455–456
submitting login form to, 45

loops
do...while, 166
for, 161–165
for...in, 211
nesting, 166
while, 166

M
MAMP for Mac OS X, 430
map() array function, 249, 252
math, performing with strings, 123
Math object

abs() method, 110
ceil() method, 110
constants, 109
cos() method, 110
floor() method, 110
max() method, 110
min() method, 110
pow() method, 110
predefined methods, 110
random() method, 110
round() method, 110
sin() method, 110
using, 109–112

MediaElement.js library, 523
member ([]) operator, 102
membership cost calculation, 299
membership.html file, using, 145–150
membership.js file, preventing default

behavior, 300–301
meta-characters. See also characters

| (alternatives), 407
^ (beginning of string), 407, 411
in character classes, 411
] (end of class), 407
} (end of quantifier), 407
$ (end of string), 407
) (end of subpattern), 407
\ (escape), 407
. (single character), 407

[(start of class), 407
((start of subpattern), 407
{ (start of quantifier), 407
using with patterns, 406–407

methods. See functions
Microjs Web site, 523
Minify JavaScript Web Site, 548
mobile browsers, usage of, 69
modal windows, creating, 351–356.

See also windows
modal.css file, 353–355
modal.html file, 351–353
modal.js file

closeModal() function, 355
creating, 355
openModal() function, 355
saving, 356

Modernizr library, 522
modulus (%) operator, 100, 102
Mogotest Web site, 76
MooTools framework, 16
mouse and cursor properties, 297
mouseover event, handling, 280–282
Mozilla Firefox. See Firefox browser
multiplication (*)operator, 100, 102

N
\n (newline) character, using with

dialogs, 312
namespace pollution, 243
namespaces, defining, 528–529
NaN value, returning, 102
nested functions, using, 258–261
nesting

conditionals, 142
control structures, 142
loops, 166

NetBeans IDE, 68
network monitor

for Ajax debugging, 440
using, 63
using in debugging, 86

ptg7799847

indeX 605

new operator
explained, 102
using with arrays, 190–191

noscript element, using, 39–41
not equal to (!=) operator, 131
not identical to (!==) operator, 131
Notepad text editor, 66
null value, using, 99, 125
Number object type, 108
numbers. See also calculators

adding to strings, 122–123
arithmetic operators, 100–103
comparing, 153–154
comparing to strings, 156
converting strings to, 123–124
creating years to, 147
formatting, 107–109
Infinity value, 102
isFinite() function, 154
isNan() function, 154
NaN value, 102
toFixed() method, 108
toPrecision() method, 108

O
object detection, using, 42, 50, 75
object event properties, 49
object inspectors, using, 211
object methods

creating, 256–257
using this keyword with, 256

object notation, using, 4
object properties

accessing, 209–211
array notation, 210
creating, 208
events, 49
for...in loop, 211
in operator, 210
removing, 212–215
testing for, 210
typeof operator, 211

object-oriented language, 4–5
objects. See also custom objects

.vs arrays, 216–217
associating with functions, 268
components of, 207
creating, 207–209
event listener, 215
functions as, 244–248
vs. literals, 94, 124
mutable and immutable, 212
passing by reference, 231
passing to functions, 231
process() function, 213
returning from functions, 235
using, 213–215

Opera browser, 72–73
Dragonfly development tool, 73
usage statistic, 69
Web site, 90

order of precedence, 101, 137
os.js file, 392–396

P
parent directory, moving up to, 38
parseFloat() method, 123, 125
parseInt() method, 123, 125
passing

by reference, 230
by value, 230

passwords, encrypting, 557
paths, absolute vs. relative, 38
patterns

defining, 406–408
literals, 406
meta-characters, 406–407
using, 408, 410

periods (..), using with relative
paths, 38

phone number, validating, 418
PHP

vs. JavaScript, 18–19
Web site, 90

PHP for auction site. See also
auction site

bid form submission, 568–569
creating bid form, 567–568
current bids, 569
displaying item details, 565–566
listing auctions, 560–563
logging in, 563–564
validating item ID, 564–565
viewing auctions, 564–569

PhpStorm IDE, 68
pizza.js file, checkbox example,

398–399
plain text, returning, 447–448. See

also text
pop() method, using with arrays, 202
popup.js file

creating, 323
opening, 338
saving, 324, 339

pop-ups
accessible solution, 323–324,

338–339
customizing, 319–321

postfix vs. prefix versions, 101
prefix vs. postfix versions, 101
preloading

data in Ajax, 461–465
images in Ajax, 464

print button, creating, 347–348
printing pages, 333
procedural language vs. object-

oriented language, 4
process() function, using with

objects, 213
progressive enhancement

Ajax, 427
and events, 288–289
explained, 24
limitation, 269
overview, 41–42

prompt() function, using, 312
properties, defined, 4

ptg7799847

x

Prototype framework, 16
prototype-based language, 5
prototypes

changing, 540
inheritance, 538
methods, 539–540
overview, 537
trim() method, 539

push() method, using with arrays, 200

Q
quantifiers, 409
Quirks mode, triggering, 30
quotation marks, using with

variables, 98–99
quote.js file, 466–468
quote.php script, creating, 468

R
radio buttons

dynamic effects, 401
flag variable, 400
using, 400–401

random numbers
generating, 164–165
returning, 237

random.html page, 163–165
random.js file

creating, 164
saving, 165
showNumbers() function, 164

recursion
.vs iteration, 262
performing, 261–262

reduce() array function, 249
register.js file, 416–420
registration form example, 8–9,

415–420
regular expressions

creating, 404
defining patterns, 406–408

exec() function, 405–406
functions, 405–406
literals, 406
match() function, 405–406
meta-characters, 406–407
overview, 403–404
performance issues, 412
RegExp object type, 404
replace() method, 406
rules for, 411
search() function, 405
split() method, 406
test() function, 405

relatedTarget property, 304
relative vs. absolute paths, 38
remainder (%) operator, 100, 102
removeEvent() method, defining, 277
reportEvent() function, creating, 292
RequireJS library, 523
Resig, John, 90
resize event, triggering, 285
return statement, using, 167, 236
RFC822/IETF format, using with

dates, 175
RIAs (Rich Internet Applications), 20
Ruby Web site, 90

S
Safari browser, 15, 73–75

Develop menu, 74
disabling JavaScript, 74
usage statistic, 69
Web Inspector, 74

Sauce Labs Web site, 76
screen properties, using with

windows, 317
script element

<![CDATA[]]> wrapper, 39
parsing data in, 39
using, 37–39

script tags, putting JavaScript
between, 43

script.aculo.us framework, 16
scripting language, JavaScript as, 6
scripts, organizing, 107
select menus

creating, 389–390
dynamic select boxes, 390–396
linking, 392–396
validating, 390

Semantic HTML, using, 41–42
semicolon (;), using with

statements, 95
Sencha Touch library, 523
server-side requests, 12–13
server-side script

returning JSON, 450
returning plain text, 447–448
returning XML, 449–450

server-side validation, 10–11
setHandlers() function, defining, 293
setText() function

defining, 237, 251
for utility library, 276

setX(), using with dates, 184–185
Sexton, Alex, 90
SHA1() function, using with

passwords, 557
Sharp, Remy, 78, 90
shift() method, using with

arrays, 202
shiftKey property, 297
shopping.html page, creating, 103
shopping.js file, 107–109
single quote (’), using with strings, 4,

98–99
slashes (//), using with comments,

99, 132
slice() method

using with arrays, 203–204
using with strings, 115–116

some() array function, 248
sort() method, using with functions,

246–248

ptg7799847

indeX 607

sortWords() function
completing, 253
defining, 252

span, adding to DOM for errors, 381
sphere, calculating volume of, 111–112
sphere.js file, 110, 138–139
splice() method, using with arrays,

202–203
split() method, using with arrays

and strings, 207
Spoon software, using, 76
srcElement event property, 291–292
state, maintaining in Ajax, 457
statements .vs expressions, 245
stock ticker, creating, 466–469
strict mode, invoking, 53
strings

adding to numbers, 122–123
beginning and end of, 407
changing case, 118, 155
charAt() method, 113
comparing, 155–159
comparing to numbers, 156
concatenating, 118
converting arrays to, 206
converting to arrays, 207, 252
converting to numbers, 123–124
creating, 112–113
deconstructing, 113–118
empty, 99
escape sequences, 121–122
example of, 4
indexes for methods, 113
indexOf() method, 114, 155, 408
lastIndexOf() method, 114–115
length property, 113
manipulating, 120–121
matching, 408
performing math with, 123
processing contact form, 157–159
referencing characters, 113
slice() method, 115–116
substr() method, 115

substring() method, 115
toLowerCase() function, 118, 155
toUpperCase() function, 118, 155
trim() method, 118
using with dates, 174–175

strongly typed language, 5
style sheets

addRule() method, 357
createElement() method, 357
deleteRule() method, 357
disabled property, 356
insertRule() method, 357
referencing, 356–357

submission event, watching for, 47
submit button, disabling, 386
substr() method, using with

strings, 115
substring() method, using with

strings, 115
subtraction (-) operator, 100, 102
Subversion version control

software, 62
SWFObject library, 522
switch conditionals. See also

conditionals
calculator, 146–150
default case, 144
expressions, 145
fallthroughs, 144
identity matches, 144
membership.html file, 145–146
parentheses in, 143
quotes in, 143
using, 143–150

syntax highlighting, 60–61

T
tasks.js file

closure example, 540
creating, 196
custom objects example, 535–537
saving, 198

tax rate, including in calculator, 105
ternary operator, using, 150–151
testing

on browsers, 75–77
JavaScript, 77–79

test.js file, 434–436
tests

creating for utilities library,
485–488

defining for unit testing, 482–483
log() function, 487
preparing for, 484–485
running, 487
running for unit testing, 483–484
setUp() function, 484–485

tests.js file, 485–488
text, placing in HTML elements, 163.

See also plain text
text editor vs. IDE (Integrated

Development Environment)
choosing between, 66
code completion, 61
code intelligence, 61–62
common features, 60–64
comparing, 64–65
debugging, 63
file management, 62
HTML and CSS, 64
network monitor, 63
project management, 62
syntax highlighting, 60–61
unit testing, 63
version control software, 62
vi editor, 64

text editors, 64–65
BBEdit, 67
EditPlus, 66
Emacs, 67
features, 65
hardware resources, 64
Komodo Edit, 66
Notepad, 66
price range, 64

ptg7799847

x

text editors (continued)
TextMate, 66
TextWrangler, 66
UltraEdit, 66
Vim, 67

text form input, assigning values
to, 106

text inputs
retrieving contents of, 387
value attribute, 387

textareas
retrieving contents of, 387
value attribute, 387

textContent property, using, 163
text.html page, 116–117
text.js file

for change events, 287
creating, 283
saving, 284, 287
using, 116–118

TextMate text editor, 66
TextWrangler text editor, 66
theme.js file, using with cookies and

CSS, 365–368
this variable

using with context, 254–257
using with events, 295

throwing exceptions, 477–478
time and date, showing, 178–180
time zones

getTimeZoneOffset() method, 181
using, 180–181

timers
changes in hash values, 372
clearInterval() function,

369–370
clearTimeout() function, 370
setInterval() function, 369
setTimeout() function, 369–370
stock quotes example, 465–469
using, 369–372

times, creating dates for, 172–173
timestamps, using, 174
today.js file

creating, 178
opening, 232
saving and testing, 234

to-do list, creating with arrays,
195–198

To-Do Manager, updating, 204–206
toLowerCase() function, using with

strings, 155
tooltips

creating, 383–385
hideTooltip() function, 385
hiding, 384
showTooltip() function, 385
visibility property, 384

toString() method, using in type
conversions, 125

touch devices, input events, 281
toUpperCase() function, using with

strings, 155
tree structure, 288–289
trim() method

using with prototype, 539
using with strings, 118

trinary operator, using, 150–151
TRUE

determining for control structures,
131, 133

vs. FALSE conditions, 135
true and false values, 99
try block

errors in, 475
throwing exception in, 477–478

try...catch block
finally clause, 476
syntax, 474
using, 478–479

type conversions
parseFloat() method, 123, 125
parseInt() method, 123, 125

performing, 122–125
toString() method, 125

type identification, alternative,
547–548

typeof operator
alternative, 547–548
Array type, 159–160
Boolean type, 159
NaN value, 159
Null type, 159–160
Number type, 159
Object type, 159
return values, 159
String type, 159
Undefined type, 159
using, 159–160
using with object properties, 211

typeof void delete operator, 102

U
U object

creating, 275
finishing declaration of, 277

UltraEdit text editor, 66
unary operators, 101–102, 104
undefined value, using, 99, 125
underscore (_), using with

variables, 97
Unicode character, returning, 296
unit testing, 481–482

defining tests, 482–483
logging results, 484
on multiple browsers, 487
performing, 485–488
setting up jsUnity library, 482
support for, 63

unload event, triggering, 284
unobtrusive JavaScript, 43, 52
unshift() method, using with

arrays, 200

ptg7799847

indeX 609

URLs (Uniform Resource Locators)
part of, 331
creating, 331–332
deep linking, 331
parsing hash in, 331–332

user experience, improving, 24
UTC (Coordinated Universal Time),

180–181
utilities library

creating, 275–277
creating unit tests for, 485–488

utilities.js file, 275–277

V
validateForm() function, using, 47,

50–53
validating

HTML forms, 46
HTML pages, 28–29
JSON, 440
phone number, 418
XML, 440

validation, performing, 50–54
validation services, using, 83
validators, W3C Markup Validation

Service, 91
value attribute

using, 105–106
using with text inputs, 387
using with textareas, 387

value types
Booleans, 98
duck typing, 548
exponential notation, 98
Infinity value, 102
NaN value, 102
null, 99
numbers, 98
quotation marks, 98–99
strings, 98
testing, 548–549

true and false, 99
undefined, 99

values
assigning to variables, 98
equal vs. identical, 135
literals .vs objects, 94
passing to functions, 223–225
returning from functions, 234–238

var keyword, using, 95–96
variable scope

explained, 239
function parameters, 241–242

variables. See also global variables
applying functions to, 4
camel-case, 97
declaring, 94–96, 136
declaring outside of functions, 96
global scope, 95–96
hoisting, 96
identifiers, 97
local .vs global, 239–240
names, 97
undeclared, 95
use of underscore (_), 97
value types, 98–99
values, 98

version control software, using, 62
vi editor, using, 64
VideoJS library, 523
view.js for auction site. See also

JavaScript for auction site
getBids() function, 589
handleBidAjaxResponse()

function, 583
handleGetBidsAjaxResponse()

function, 586, 588
init() function, 589, 591
load handler, 591
structure, 581
submitBid() function, 585–586
writing for auction site, 581–591

view.php page
in auction site, 554–555
writing for auction site, 578–581

Vim text editor, 67
virtualization software, using, 76

W
W3C event handling, 271–273
W3C Markup Validation Service, 91
watch expressions, creating in

Firebug, 89–90
weakly-typed language, 5, 95
Web browsers. See browsers
Web sites

Adobe BrowserLab, 75
Adobe Dreamweaver IDE, 67–68
Ajaxload, 451
Apple Safari browser, 73
Aptana Studio IDE, 68
BBEdit, 67
Blackbird, 523
Brosera, 76
BrowserCam, 76
browserling, 76
browsers, 90
Browsershots, 75
Chrome, 70
Cloud Testing, 76
Crockford, Douglas, 90
CrossBrowserTesting, 76
The Dojo Toolkit, 16
Eclipse IDE, 68
ECMAScript 5, 22
EditPlus, 66
Edwards, Dean, 90
Eich, Brendon, 90
Emacs, 67
ExtJS framework, 16
Firebug Wiki, 89
Firefox browser, 6, 71

ptg7799847

x

Web sites (continued)
Fuchs, Thomas, 90
Git version control software, 62
Google Chrome, 70
Graded Browser Support, 23
Head JS library, 522–523
Heilmann, Christian, 90
IntelliJ IDEA, 68
Internet Explorer, 72
Irish, Paul, 90
JetBrains IDEs, 68
jQuery framework, 16, 494
jQuery Mobile, 523
JS Bin tool, 78
jsFiddle, 79
JSHint validator, 83
JSLint validation service, 83
Komodo Edit, 66
Komodo IDE, 67
MAMP for Mac OS X, 430
MediaElement.js library, 523
Microjs, 523
Minify JavaScript, 548
Modernizr library, 522
Mogotest, 76
MooTools, 16
Mozilla Firefox browser, 6, 71
NetBeans IDE, 68
Notepad, 66
Opera browser, 72–73
PHP, 90
PhpStorm, 68
Prototype, 16
RequireJS library, 523
Resig, John, 90
Ruby, 90
Safari browser, 73
Sauce Labs, 76
script.aculo.us, 16
Sencha Touch, 523

Sexton, Alex, 90
Sharp, Remy, 90
Spoon software, 76
Subversion version control

software, 62
SWFObject library, 522
TextMate, 66
TextWrangler, 66
UltraEdit, 66
validation services, 83
version control software, 62
VideoJS library, 523
Vim, 67
W3C Markup Validation Service,

28, 91
WebStorm, 68
XAMPP for Windows, 430
YUI (Yahoo! User Interface), 16
Zepto, 523

WebStorm IDE, 68
while loop, using, 166
window object

close() method, 319
focus() method, 321
global, 313–315
height property, 320
innerHeight property, 316
innerWidth property, 316
left property, 320
location property, 320
members, 314
menubar property, 320
moveTo() method, 316–317
open() method, 318–320
outerHeight property, 316, 320
outerWidth property, 316, 320
print() method, 333
properties, 315
resizable property, 320
screen properties, 317

screenX property, 316
screenY property, 316
scrollbars property, 320
status property, 320
toolbar property, 320
top property, 320
width property, 320
window.navigator property, 315

window properties, document object,
333–334

window.frames property, 328
window.history.back() method,

343–344
window.location property

hash property, 330–332
search property, 330
using with browsers, 330

windows, 371. See also dialog
windows; modal windows

accessible solution, 322–324
addToSomething() function, 325
browser’s history, 326–328
changing focus, 321
communicating between, 325–326
creating, 318–319, 322
customizing pop-ups, 319–321
document object, 333–334
eval() function, 371
global window object, 313–315
printing pages, 333
redirecting browsers, 329–330
repositioning, 315–317
representative URLs, 331–332
resizing, 315–317
screen properties, 317
target attribute, 322

words.html page, 250–251
words.js file, 251–253

ptg7799847

indeX 611

X
XAMPP for Windows, 430
XHTML

vs. HTML, 28
vs. HTML5, 36

XML (Extensible Markup Language)
documentElement, 442–443
fetching, 442
getAttribute() method, 443
getElementsByTagName()

method, 443
returning, 449–450
sending to server, 445
using with Ajax, 442–444
validating, 440

XMLHttpRequest object, 428–429
XPath expressions vs. CSS

selectors, 341

Y
Yahoo!, Graded Browser Support, 23
Yahoo! Query Language (YQL) utility,

using, 518–522
years, converting to numbers, 147
YQL (Yahoo! Query Language) utility,

using, 518–522
YUI (Yahoo! User Interface), 15–16
YUI Compressor, 549
YUI framework. See also frameworks

Autocomplete widget, 516–517
creating effects, 514–515

DOM manipulation, 513–514
handling events, 514
manipulating elements, 512–513
overview, 509
performing Ajax, 515
selecting elements, 511–512
skinning widgets, 516
using, 509–511
widgets and utilities, 516–522
YQL (Yahoo! Query Language)

utility, 518–522

Z
Zepto library, 523

ptg7799847

	Contents
	Introduction
	Welcome to JavaScript
	PART 1 GETTING STARTED
	CHAPTER 1 (RE-)INTRODUCING JAVASCRIPT
	What Is JavaScript?
	JavaScript’s History
	JavaScript Isn’t...
	How JavaScript Compares to...
	Why JavaScript Is a Good Thing
	JavaScript Versions and Browser Support
	JavaScript Programming Goals
	Wrapping Up

	CHAPTER 2 JAVASCRIPT IN ACTION
	Choosing a Doctype
	An HTML5 Primer
	Adding JavaScript to HTML
	Key Development Approaches
	Cobbling Together Some Code
	Steal this JavaScript
	Wrapping Up

	CHAPTER 3 TOOLS OF THE TRADE
	The Great Debate: Text Editor or IDE?
	The Browser: Your Friend, Your Enemy
	Testing on Multiple Browsers
	Testing JavaScript
	Errors and Debugging
	Online Resources
	Wrapping Up

	PART 2 JAVASCRIPT FUNDAMENTALS
	CHAPTER 4 SIMPLE VARIABLE TYPES
	Basics of Variables
	Working with Numbers
	Working with Strings
	Performing Type Conversions
	Review and Pursue
	Wrapping Up

	CHAPTER 5 USING CONTROL STRUCTURES
	Basics of Conditionals
	More Conditionals
	More Complex Conditions
	Basics of Loops
	Review and Pursue
	Wrapping Up

	CHAPTER 6 COMPLEX VARIABLE TYPES
	Generating Dates and Times
	Working with Arrays
	Working with Objects
	Arrays Versus Objects
	Review and Pursue
	Wrapping Up

	CHAPTER 7 CREATING FUNCTIONS
	The Fundamentals
	Functions as Objects
	The Fancier Stuff
	Review and Pursue
	Wrapping Up

	CHAPTER 8 EVENT HANDLING
	The Premise of Event Handling
	Creating Event Listeners
	Creating a Utility Library
	Event Types
	Event Accessibility
	Events and Progressive Enhancement
	Advanced Event Handling
	Review and Pursue
	Wrapping Up

	CHAPTER 9 JAVASCRIPT AND THE BROWSER
	Using Dialog Windows
	Working with the Window
	Manipulating the DOM
	JavaScript and CSS
	Working with Cookies
	Using Timers
	Review and Pursue
	Wrapping Up

	CHAPTER 10 WORKING WITH FORMS
	General Form Considerations
	Text Inputs and Textareas
	Select Menus
	Checkboxes
	Radio Buttons
	Handling File Uploads
	Regular Expressions
	Putting It All Together
	Review and Pursue
	Wrapping Up

	CHAPTER 11 AJAX
	Ajax Basics
	Working with Other Data
	The Server-Side Script
	Ajax Examples
	Review and Pursue
	Wrapping Up

	PART 3 NEXT STEPS
	CHAPTER 12 ERROR MANAGEMENT
	Catching and Throwing Errors
	Using Assertions
	Unit Testing
	Review and Pursue
	Wrapping Up

	CHAPTER 13 FRAMEWORKS
	Choosing a Framework
	Introducing jQuery
	Introducing YUI
	Libraries
	Review and Pursue
	Wrapping Up

	CHAPTER 14 ADVANCED JAVASCRIPT
	Defining Namespaces
	Creating Custom Objects
	Understanding Prototypes
	Working with Closures
	Alternative Type Identification
	Minifying Code
	Review and Pursue
	Wrapping Up

	CHAPTER 15 PHP AND JAVASCRIPT TOGETHER
	Identifying the Goal
	Creating the Database
	Establishing the Site
	Coding the Non-JavaScript Version
	Creating the Ajax Resources
	Adding the JavaScript
	Completing this Example
	Review and Pursue
	Wrapping Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

