


JavaScript Unit Testing

<RXU FRPSUHKHQVLYH DQG SUDFWLFDO JXI
performing and automating JavaScript unit testing

Hazem Saleh

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI



JavaScript Unit Testing

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2013
Production Reference: 1040113

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-062-5
www.packtpub.com

Cover Image by Jasmine Doremus (asdoremus@gmail.com )



Credits

Author Project Coordinator
Hazem Saleh 3UL\D 6KDUPD
Reviewer Proofreaders

$O0O0ODQ /\NNH &KULVW HagnhtQA. Herman

o ) Joel Johnson
Acquisition Editor

Jonathan Titmus Indexer

L ) Hemangini Bari
Commissioning Editors

Harsha Bharwani

Graphics
BUL\DQND 6KDK Aditi Gajjar
Technical Editors Production Coordinator
+DUGLN 6RQL OHOZ\Q ' VD
'"HYGXWW . XONDUQL Cover Work
Copy Editors OHOZ\Q " VD

Brandt D'Mello
,QVL\D ORUELZDOD
$0¢,GD 3DLYD



SERXW WKH $XV

Hazem Saleh has 9 years of experience in JEE and open source technologies.
He has worked as a technical consultant for different clients in Europe (Sweden),
North America (USA, Canada), South America (Peru), Africa (Egypt), and Asia
(Qatar, Kuwait). He is an Apache MyFaces committer, and the founder of many
open source projects.

Besides being the co-author of the book7KH "HAQLWLYH *XLGH WR $SDFKH 0\)DFH"
DQG )DEKKEHY VvVDGUIVLQ 0D WIDQN P KG-DNDGHEL V ,9% S HV V

and the author of this book, Hazem is also an author of many technical articles,

a developerWorks contributing author, and a technical speaker at both local and

international conferences, such as the IBM Regional Technical Exchange, CONFESS,

and JavaOne. Hazem is now working for IBM Egypt (Cairo Lab SWG Services) as

an Advisory Software Engineer. He is a Web 2.0 subject matter expert and an IBM

&HUWLAHG ([SHUW ,7 6SHFLDOLVW

| would like to thank my mother, my father, my brother Mohamed,
my sister Omnia, and all my family for endlessly supporting me
while writing this book. | would like to thank the love and best
friend of my life, my wife Naglaa, for encouraging and supporting
me while writing this book. | would like to thank all the people who
have done me a favor; | would like to thank Ahmed Fouad, Tamer
Mahfouz, my dearest brothers Ali AIKahki and Amr Ali, and every
one who has done me any kind of favor.




SERXW WKH 5HYL

Allan Lykke Christensen is the Director of Interactive Media Management

and the Vice President of Danish ICT Management, an international consulting

AUP ZLWK D IRFXV RQ ,&7 LQ GHYHORSLQJ HFRQRPLHV +H LV UHV
management of teams in Uganda, Bangladesh, and Denmark. In his daily work, he is

also responsible for project planning, initiating, and overall implementation. He has

been developing and implementing IT projects for more than 10 years. His expertise

FRYHUV D ZLGH UDQJH KH KDV GHYHORSHG ZRUNARZ V\VWHPV L
e-learning tools, knowledge-management systems, and websites. He has worked

DV 7HDP /HDGHU RQ VHYHUDO PDMRU (XURSHDQ &RPPLVVLRQ AQD
various developing economies. He has co-authored the book 7KH '"HAQLWLYH *XLGH WR
$SDFKH 0\)DFHV ,BQ@G Hhbdhrhd@eltdintless presentations and training

sessions on programming-related topics around the world. Allan is also the Lead

Developer of the CONVERGE project, which aims at implementing an open source,

editorial content management system for media houses. More information on this

can be found at http://www.getconverge.com



/27 3DFNW3XE FR

6XSSRUW (OHV HWRRNV GLVFRXC
and more

You might want to visit www.PacktPub.com |IRU VXSSRUW AOHY DQG GRZQORDGV UHODYV
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub

AOHV DYDLODEOH" <RX FDQ XSJU D\@W.PALRPUYS iKdtn HadRB ApiHUVLRQ DW
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com , you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

'R \RX QHHG LQVWDQW VROXWLRQV WR \RXU ,7 TXHVWLRQV" 3DFNW/LE LV
OLEUDU\ +HUH \RX FDQ DFFHVV UHDG DQG VHDUFK DFURVYV 3DFNW V HQYV

Why Subscribe?

t Fully searchable across every book published by Packt
t Copy and paste, print, and bookmark content
¥ Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www.PacktPub.com , you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.



/DEOH RI &RQW

Preface 1
Chapter 1: Unit Testing JavaScript Applications 7
What unit testing is 7
Why we need unit testing 8
What Test-Driven Development (TDD) is 10
Complexities in testing JavaScript applications 11
Weather forecasting application 13
Exploring the application's HTML and JavaScript code 15
5XQQLQJ WKH ZHDWKHU DSSOLFDWLRQ
Summary 29
Chapter 2: Jasmine 31

&RQ¢IJXUDWLRQ
'ULWLQJ \RXU ¢UVW -DVPLQH WHVW

The nested describe blocks 38
Jasmine matchers 39
The toBe matcher 39

7KH WR%H'H,QHG DQG WR%H8QGH,;QHG PDWFKHUV
7TKH WR%H1XOO PDWFKHU
7TKH WR%H7UXWK\ DQG WR%H)DOV\ PDWFKHUYV
7TKH WR&RQWDLQ PDWFKHU
7KH WR%H/HVV7KDQ DQG WR%H*UHDWHU7KDQ PDWFKHUYV
7KH WRODWFK PDWFKHU
'"HYHORSLQJ FXVWRP -DVPLQH PDWFKHUYV
Testing asynchronous (Ajax) JavaScript code 45
7KH UXQV IXQFWLRQ
7TKH ZDLWYV IXQFWLRQ
7KH ZDLWV)RU IXQFWLRQ
7KH VS\2Q IXQFWLRQ



7DEOH Rl &RQWHQWYV

+70/ ¢[WXUHV
&RQ¢JIXULQJ WKH MDVPLQH MTXHU\N SOXJLQ
7KH ORDG)L[WXUHV PRGXOH

Testing the weather application 55
THVWLQJ WKH /RILQ&OLHQW REMHFW
THVWLQJ WKH 5SHILVWUDWLRQ&OLHQW REMHFW
THVWLQJ WKH :HDWKHU&OLHQW REMHFW
5XQQLQJ WKH ZHDWKHU DSSOLFDWLRQ WHVWYV

Summary 63
Chapter 3: YUI Test 65

:ULWLQJ \RXU ¢UVW <8, WHVW

Assertions 74

7KH DVVHUW DVVHUWLRQ

7KH DUH(TXDO DQG DUH1RW(TXDO DVVHUWLRQV
7KH DUH6DPH DQG DUH1IRW6DPH DVVHUWLRQV
7KH GDWDW\SH DVVHUWLRQV

6SHFLDO YDOXH DVVHUWLRQV

7KH IDLO DVVHUWLRQ

Testing asynchronous (Ajax) JavaScript code 78
7TKH ZDLW DQG UHVXPH IXQFWLRQV
Testing the weather application 79

THVWLQJ WKH /RIJILQ&OLHQW REMHFW
THVWLQJ WKH 5HIJLVWUDWLRQ&OLHQW REMHFW
THVWLQJ WKH :HDWKHU&OLHQW REMHFW
5XQQLQJ WKH ZHDWKHU DSSOLFDWLRQ WHVWYV
*HQHUDWLQJ WHVW UHSRUWYV
Automation and integration with build management tools 95
&RQ¢JIXULQJ <8, 7THVW 6HOHQLXP '"ULYHU
8VLQJ <8, THVW 6HOHQLXP 'ULYHU LQ WKH ZHDWKHU DSSOLF
, OQWHJUDWLRQ ZLWK EXLOG PDQDJHPHQW WRROV
Summary 99
Chapter 4: QUnit 101
&RQ¢JIJXUDWLRQ
cULWLQJ \RXU ¢UVW 48QLW WHVW
Assertions 108
7KH RN DVVHUWLRQ
7KH HTXDO DQG QRW(TXDO DVVHUWLRQV
7KH GHHS(TXDO DQG QRW'HHS(TXDO DVVHUWLRQV
7KH H[SHFW DVVHUWLRQ
Developing custom QUnit assertions 111

i ]




7DEOH Rl &RQWHQWYV

Testing asynchronous (Ajax) JavaScript code 114
7KH VWRS DQG VWDUW $3,V

Testing the weather application 116
THVWLQJ WKH /RIJILQ&OLHQW REMHFW
THVWLQJ WKH 5HIJLVWUDWLRQ&OLHQW REMHFW
THVYWLQJ WKH :HDWKHU&OLHQW REMHFW
5XQQLQJ WKH ZHDWKHU DSSOLFDWLRQ WHVWYV

Summary 129
Chapter 5: JsTestDriver 131
Architecture 131

&RQ¢JIJXUDWLRQ

:ULWLQJ \RXU ¢UVW -67' WHVW

Assertions 139
7KH DVVHUW DVVHUW7UXH DQG DVVHUW)DOVH >PVJ@ H[SU
7KH DVVHUW(TXDOV DQG DVVHUWI1IRW(TXDOV >PVJ@ H[SHFW
DVVHUWLRQV
7KH DVVHUWG6DPH DQG DVVHUW1IRW6DPH >PVJ@ H[SHFWHG
DVVHUWLRQV
7KH GDWDW\SH DVVHUWLRQV
6SHFLDO YDOXH DVVHUWLRQV
7KH IDLO >PVJ@ DVVHUWLRQ

Testing asynchronous (Ajax) JavaScript code 143
$VIQF7THVW&DVH TXHXH DQG FDOOEDFNYV
Testing the weather application 145

THVWLQJ WKH /RILQ&OLHQW REMHFW

THVWLQJ WKH 5HILVWUDWLRQ&OLHQW REMHFW

THVWLQJ WKH :HDWKHU&OLHQW REMHFW

&RQ¢JIXULQJI WKH SURJ\

5XQQLQJ WKH ZHDWKHU DSSOLFDWLRQ WHVWYV

Generating test reports 155
Integration with other JavaScript test frameworks 160

,(QWHJUDWLQJ -67' ZLWK -DVPLQH

,QWHJUDWLQJ -67' ZLWK 48QLW

Integration with build management tools 167

Integration with the IDEs 167
(FOLSVH LQWHJUDWLRQ

Summary 170

Index 171

[iii ]







Preface

One of the biggest challenges of many web applications is being supported

by different browsers with different versions. JavaScript code that runs on

the Safari browser will not necessarily run correctly on Internet Explorer (IE),

Firefox, or Google chrome browsers. This challenge is caused by the lack of unit

testing of the JavaScript code that has lived in the web application from day one.

Without unit testing the JavaScript code, more money will have to be spent for

WHVWLQJ DQG UHWHVWLQJ WKH DSSOLFDWLRQ V ZHE SDJHV DIWH
current, supported browsers (or after updating the JavaScript code of the web

pages with non-trivial features).

The -DYDG6FULSW &apk Watempidhesive practical guide that illustrates

LQ GHWDLO KRZ WR HIAFLHQWO\ FUHDWH DQG DXWRPDWH -DYDG6F
using popular, JavaScript unit testing frameworks, such as Jasmine, YUI Test, QUnit,

and JsTestDriver.

This book explains the concept of JavaScript unit testing and explores the bits of an
interactive Ajax web application (the weather application). Throughout the book,

the JavaScript part of the weather application is tested using different JavaScript unit
testing frameworks. The book illustrates how to generate test and code coverage
reports of developed JavaScript tests. It also explains how to automate the running of
JavaScript tests from build and continuous integration tools. The book shows how to
integrate different JavaScript unit testing frameworks with each other in order to test
ZHE DSSOLFDWLRQV LQ WKH PRVW HIAFLHQW ZD\



BUHIDFH

What this book covers

&KDSWSHQU W 7HVWLQJ -DY D ghelps WurplerSamd wHathitR Q V

testing is, the requirements of a good unit test, and why unit testing is needed.

You will also learn the difference between Test-Driven Development and traditional

unit testing. You will understand the complexities of testing JavaScript code, and

the requirements of good, JavaScript unit testing tools. In this chapter, we will

H[SORUH WKH ZHDWKHU ZHE DSSOLFDWLRQ V -DYD6FULSW VHFWLR(
in the next chapters.

& KD S WHDY/ P he®@siyou learn what Jasmine is and how to use it for testing

synchronous JavaScript code. You will learn how to test asynchronous (Ajax)

JavaScript code using the Jasmine Spies, waitsFor, and runs mechanisms. You will

learn how to perform mock Ajax testing using Jasmine. You will learn about the

YDULRXV PDWFKHUV SURYLGHG E\ WKH IUDPHZRUN DQG KRZ WR (
your Jasmine tests. In this chapter, you will learn how to use Jasmine for testing the

ZHDWKHU DSSOLFDWLRQ V -DYD6FULSW VHFWLRQ

& KD SWH8J) 7,Hh&W you to learn what YUI Test is and how to use this

JavaScript unit testing framework for testing synchronous JavaScript code. You will

OHDUQ KRZ WR WHVW DV\QFKURQRXV $MD[ -DYD6FULSW FRGH X\
resume mechanisms. You will learn about the various assertions provided by the

framework, how to display XML and JSON test reports using framework reporter

APIs, and how to generate test reports automatically using the YUl Test Selenium

Driver. You will learn how to automate running YUI tests using the YUI Test

Selenium Driver, and how to integrate an automation script with build management

and continuous integration tools. In this chapter, you will learn how to use YUI Test

IRU WHVWLQJ WKH ZHDWKHU DSSOLFDWLRQ V -DYD6FULSW VHFWL

& K D S WA Lhelps you to understand what QUnit is and how to use it for

testing synchronous JavaScript code. You will learn how to test asynchronous

(Ajax) JavaScript code using the QUnit test mechanism and the QUnit asyncTest

mechanism. You will also learn the different assertions provided by the framework,

and how to develop your own assertion in order to simplify your test code. You will

OHDUQ KRZ WR ORDG +70/ A[WXUHV LQ \RXU 48QLW WHVWV ,Q WK
KRZ WR XVH WKH IUDPHZRUN IRU WHVWLQJ WKH ZHDWKHU DSSOLF

& K D SW-HAT H V Whelgsyéulo learn what JsTestDriver (JSTD) is, the JSTD

DUFKLWHFWXUH WKH -67' FRQAJXUDWLRQ DQG KRZ WR XVH -67" |
JavaScript code. You will learn how to test asynchronous (Ajax) JavaScript code

using the JSTD AsyncTestCase object. You will learn the various assertions provided

by the framework, and how to generate test and code coverage reports using the

IUDPHZRUN V FRGH FRYHUDJH SOXJLQ <RX ZLOO OHDUQ KRZ WR .
for the other JavaScript unit testing frameworks mentioned in the book, such as

[2]



SUHIDFH

Jasmine and QUnit, in order to enable the execution of the tests of these frameworks
from the command-line interface. You will learn how to integrate the tests of

JSTD (and the tests of the JavaScript frameworks on top of JSTD) with build and
continuous integration tools. You will learn how to work with the JSTD framework

in one of the most popular integrated development environments (IDEs) which

is Eclipse. In this chapter, you will learn how to use JSTD for testing the weather
DSSOLFDWLRQ V -DYD6FULSW VHFWLRQ

What you need for this book

You will need the following software in order to run all of the examples in this book:

T Apache Tomcat 6, which can be found athttp://tomcat.apache.org/
download-60.cgi

T Java Development Kit (JDK) Version 5.0 or later, which can be found at
http://www.oracle.com/technetwork/java/javase/downloads/index.
html

¥ The Selenium Server version 2.25.0 (for& K D S W< 7 oMy which can
be found at http://seleniumhg.org/download/

¥ Eclipse IDE (for & KD SWN @ H V Wokh),YvHith can be found at
http://www.eclipse.org/downloads/packages/release/indigo/sr2

Who this book is for

The target audience for this book is developers, designers, and architects of
web applications.

Conventions

,Q WKLV ERRN \RX ZLOO AQG D QXPEHU RI VW\OHV RI WH[W WKDW
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The validateLoginForm function
calls the LoginClient ~ JavaScript object, which is responsible for validating the
login form."

A block of code is set as follows:

function validateLoginForm() {
var loginClient = new weatherapp.LoginClient();

[3]



BUHIDFH

var loginForm ={

"userNameField" : "username”,
"passwordField" : "password",
"userNameMessage" : "usernameMessage”,
"passwordMessage" : "passwordMessage"

g

return loginClient.validateLoginForm(loginForm);

}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>QUnit test runner</title>
<link rel="stylesheet" href="lib/qunit-1.10.0.css">
</head>
<body>
<div id="qunit"></div>
<div id="qunit-fixture"></div>
<script src="lib/qunit-1.10.0.js"></script>

...The test code here...
</body>
</html>

Any command line input or output is written as follows:

java -jar JsTestDriver-1.3.4.b.jar --port 9876 --browser [firefoxpath],
[iepath],[chromepath]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes, for example, appear in the text like this: "In this
application, the user enters his/her name and then clicks on the Welcome button.”

Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

[4]




SUHIDFH

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail tofeedback@packtpub.com
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

<RX FDQ GRZQORDG WKH H[DPSOH FRGH AOHV IRU DOO 3DFNW ER
from your account at http://www.PacktPub.com . If you purchased this book

elsewhere, you can visit http://www.PacktPub.com/support and register to have

WKH AOHV H PDLOHG GLUHFWO\ WR \RX

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
GR KDSSHQ ,I \RX AQG D PLVWDNH LQ RQH RI RXU ERRNV3PD\EH C

the code—we would be grateful if you would report this to us. By doing so, you can

save other readers from frustration and help us improve subsequent versions of this

ERRN ,1 \RX AQG DQ\ HUUDWD SO H Byt ideskipubW WKHP E\ YLVLWLC
com/support , selecting your book, clicking on the errata submission form link, and

HOWHULQJ WKH GHWDLOV RI \RXU HUUDWD 2QFH \RXU HUUDWD D
will be accepted and the errata will be uploaded on our website, or added to any list

of existing errata, under the Errata section of that title. Any existing errata can be

viewed by selecting your title from http://www.packtpub.com/support

[5]



BUHIDFH

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us atopyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us atquestions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]



Unit Testing JavaScript
Applications

Before going into the details of unit testing JavaScript applications, we need to

XQGHUVWDQG AUVW ZKDW XQLW WHVWLQJ LV DQG ZK\ ZH QHHG W
This chapter also shows the complexities of testing JavaScript applications and

why it is not as simple as desktop applications. Finally, the chapter illustrates the

functionality and the JavaScript code of a sample weather application. We will unit

test its JavaScript code in the following chapters of the book.

What unit testing is

Unit testing is not a new concept in the software development world. Thanks to Kent

Beck, the concept of unit testing was introduced in Smalltalk , then the concept was

transferred to many other programming languages, such as C, C++, and Java. The

FODVVLFDO GHAQLWLRQ RI XQLW WHVWLQJ LV WKDW LW LV D SLH
invokes another piece of code and later checks the correctness of some assumptions.

7KH GHAQLWLRQ LV WHFKQLFDOO\ FRUUHFW KRZHYHU LW GRHV QI
a really good unit test. In order to write a good unit test, we need to understand
the requirements of a good unit test.



Unit Testing JavaScript Applications

$V VKRZQ LQ WKH IROORZLQJ AJXUH D JRRG XQLW WHVW VKRXOG I
easy to understand, incremental, easy to run, and fast.

Automated

Good unit test

Repeatable

Easy to
understand

A good unit test should be automated and repeatable, which means that other
WHDP PHPEHUY FDQ UHSHDW UXQQLQJ WKH DSSOLFDWLRQ XQLW W
code change automatically. It should also be easy to understand so that other team
members can understand what your test means and can continue adding more test
cases or updating an existing test case. A good unit test should be incremental; this
means that the unit test should be updated if a new relevant defect is detected in the
code, which means that this defect will not happen again as long as this unit test is
running periodically. Finally, a good unit test should be easy to run; it should run

by executing a command or by clicking a button and should not take a long time

for execution because fast unit tests can help in increasing the development
WHDP V SURGXFWLYLW\

6R OHW V JR EDFN WR WKH GHAQLWLRQ DQG UHAQH LW 8QLW WH
(usually a method) that invokes another piece of code and checks the correctness

of some assumptions later. Unit testing should be automated, repeatable, easy to

understand, incremental, easy to run, and fast.

Why we need unit testing

Unit testing applications is not something nice to have. It is actually a mandatory

activity for having a successful software solutions that can cope with different

changes across time with high stability. There is no excuse to skip unit testing of

applications even for projects with a tight schedule. The importance of unit testing

may not appear in the early stages of the project; however, its advantages are visible

LQ WKH PLGGOH DQG WKH AQDO VWDJHV RI WKH SURMHFW ZKHQ
more features are required, and more regression defects appear (defects that appear

again after a major code change).

[8]



&KDSWHU

Without unit testing, the integration of the different components in the system

becomes complicated. This complexity results from the tracing of the defects of not

only the integration between the components but also each "buggy" component. This

FRPSOLFDWHY WKH OLIH RI WKH GHYHORSHUV E\ PDNLQJ WKHP V¢
order to meet the schedule.

The number of new defects and the regression defects becomes unmanageable when

the code base becomes complicated and unit testing is not available. The developer

FDQ UHVROYH D VSHFLAF GHIHFW DQG DIWHU D VHW RI FRGH FKELC
again because there is no repeatable test case to ensure that the defect will not

happen again.

+DYLQJ PRUH QXPEHU RI GHIHFWV SHU OLQHV RI FRGH DIIHFWV W
badly, and this means that more time has to be spent on testing the application.

Bad quality applications have a longer test cycle for each project deployment

(or phase), because they have a high probability of having more defects for every

code change, which leads to more pressure on the project management, the project

developers, and the project testers.

Having good unit testing can be a good reference for the system documentation

because it contains the test scenarios of the system use cases. In addition to this,

XQLW WHVWLQJ VKRZV KRZ WKH VA\VWHP $3,V DUH XVHG ZKLFK UFL
of the system. This means that unit testing is a powerful basis of code and design

refactoring for having more enhancements in the system.

Having good unit testing minimizes the number of regression defects because in good

unit testing the system has a repeatable number of test cases for every relevant defect.

Having a continuous integration job that runs periodically on the application unit tests

ZLOO HQVXUH WKDW WKHVH GHIHFWYV ZLOO QRW KDSSHQ DJDLQ EF
DIJDLQ GXH WR D FKDQJH LQ WKH DSSOLFDWLRQ FRGH WKHQ WKH (
the defect and ensure that the test case of this defect passes successfully.

Continuous integration (Cl) is a practice that ensures automating
the build and the test process of the application. In continuous

sl . . . N

~ integration testing, the tests of the application source code run
periodically (for example many times per day) in order to identify
WKH DSSOLFDWLRQ V SRWHQWLDO SUREOHPY DQG WR UHGXFl
time of the application components.

As a result of reducing the regression defects, having good unit testing reduces the
test cycle for each phase (or system deployment). In addition to this, the application
can have more and more features per iterations or phases peacefully without
worrying if these features shall break an existing module that has good unit tests.

[9]



Unit Testing JavaScript Applications

What Test-Driven Development (TDD) is

There are two known approaches in writing unit tests for applications.

7KH AUVW DSSURDFK SUHIHUV ZULWLQJ XQLW WHVWV DIWHU ZULYV
and this approach is called traditional unit testing . The second approach prefers

writing unit tests before writing the actual application code, and this approach is

called Test-Driven Development (TDD ) or the Test-First approach.

Asshown LQ WKH IROORZLQJ AJXUH WUDGLWLRQDO XQLW WHVWLQJ
DSSOLFDWLRQ FRGH AUVW ,W FDQ VLPSO\ EH D FODVV RU D PHWI
of code, the unit tests, which test the functionality of the code, are written. Then the
XQLW WHVWV UXQ ,I WKH XQLW WHVWY IDLO WKHQ WKH GHYHORS
unit tests again. If the unit tests succeed then the developer can either refactor the
code and run the tests again or continue to write the next piece of code and so on.

Write class(es) or method(s)

v

A 4

No
Write unit tests
Refactor Run the tests. Fail?
Yes
\ 4 v

Refactor code Fix the defects

$V VKRZQ LQ WKH IROORZLQJ AJXUH 7" VWDUWYV E\ ZULWLQJ D ID
that the functionality is missing. After writing the unit test, the unit test must be run

to ensure that it fails. After that, the developer writes the application code that meets

the unit test expectation. The unit test must be run again to ensure that it succeeds.

| LW IDLOV WKHQ WKH GHYHORSHU A[HV WKH EXJV DQG LI LW VXF
refactor the application code or continue writing the next test case.

[10]



&KDSWHU

% Write a failing test case

Run the tests. Fail?

Yes

No

No

’ Write application code

|

Run the tests. Success?

No

Refactor?

Refactor code

TDD is a powerful technique, as it can give you more control on the application code

and design; however, it is a double-edged sword because if it is done incorrectly,

writing the tests can waste a lot of time and the schedule of the project can slip.

JLQDOO\ HLWKHU \RX DUH XVLQJ 7'" RU WUDGLWLRQDO XQLW WHYV\
to make your tests automated, repeatable, easy to understand, incremental, easy to

run, and fast.

Complexities in testing JavaScript
applications

Testing JavaScript applications is complex and requires a lot of time and

effort. Testing JavaScript applications requires the tester to test the application

on different browsers (Internet Explorer, Firefox, Safari, Chrome, and so on).

7KLV LV EHFDXVH WKH -DYD6FULSW FRGH WKDW UXQV RQ D VSHFL
necessarily work on another browser.

Testing existing JavaScript web applications (with many web pages) on new

EURZVHUV WKDW DUH QRW VXSSRUWHG E\ WKH DSSOLFDWLRQ FR(
Supporting a new unsupported browser means allocating more time for testing the

DSSOLFDWLRQ DJDLQ RQ WKLV QHZ EURZVHU DQG IRU WKH QHZ U
E\ WKH GHYHORSHUV /HW V VHH D VLPSOH %URNHQ -DYD6FULSW
this idea. In this example, the user enters his/her name and then clicks on the

Welcome button. After that the welcome message appears.

[11]




Unit Testing JavaScript Applications

The following code snippet shows the broken JavaScript example:

<IDOCTYPE html>
<html>
<head>
<title>Broken JavaScript Example</title>
<script type=»text/javascript»>
function welcome() {
var userName = document.getElementByld(«userName»).value;
document.getElementByld(«welcomeMessage»).innerText = «Welcome «
+ userName + «!»;
}
</script>
</head>
<body>
<h1>Broken JavaScript Example</h1>

<label>Please enter your name:</label>

<input id=»userName» type=»text» /><br/>

<input type=»button» onclick=»welcome()» value=»Welcome»></
input><br/><br/>

<div id=»welcomeMessage»/>

</body>
</html>

Downloading the example code

M <RX FDQ GRZQORDG WKH H[DPSOH FRGH AOHV]IRU DOO 3DFNW E
Q purchased from your account at http://www.PacktPub.com . If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support DQG UHJLVWHU WR KDYH WKH AOHV H PDLOHG GLUHFV

fyourun WKH FRGH VKRZQ LQ WKH SUHYLRXVY FRGH VQLSSHW 1\RX Z
AQH LQ ,QWHUQHW ([SORUHU ,( DQG 6DIDUL ZKLOH LW GRHV QRYV
VSHFLAF WKLV H[DPSOH ZRUNV RQ ,QWHUQHW ([SORUHU DQG 6L
work on Firefox 3.6). The reason behind this problem is that the innerText  property
is not supported in Firefox. This is one of the hundreds of examples that show a code
WKDW ZRUNV LQ D VSHFLAF EURZVHU ZKLOH LW GRHV QRW ZRUN |

As a result of these complexities, testing JavaScript code requires a good unit

testing tool, which provides mechanisms to overcome these complexities. The JRR G

JavaScript unit testing tool should be able to execute the test cases across all of the

EURZVHUV VKRXOG KDYH DQ HDV\ VHWXS VKRXOG KDYH DQ HDV\
be fast in executing the test cases.

[12]



&KDSWHU

Weather forecasting application

1R Z OrHowe tg the weather forecasting application. The weather forecasting
application is a Java web application that allows the users to check the current
weather in different cities in the world. The weather forecasting application contains
both synchronous and asynchronous (Ajax) JavaScript code, which we will test in the
later chapters of the book using the different JavaScript unit testing frameworks.

The weather forecasting application mainly contains three use cases:

T Log in to the application
¥ Register a user in the application
t &KHFN WKH FXUUHQW ZHDWKHU LQ D VSHFLAF FLW\

The weather forecasting application is a Java web application. The server-side part of
the application is written using Java servlets (http:/docs.oracle.com/javaee/6/
tutorial/doc/bnafd.html ). If you are not familiar with Java servlets, do not

worry. This book focuses only on JavaScript unit testing; all you need to know about
these servlets is the functionality of each one of them, not the code behind it. The
functionality of each application servlet will be explained during when the JavaScript
code is explained, to show you the complete Ajax request life cycle with the server.

Another thing that needs to be mentioned is that the weather application pages
arejsp AOHV KRZHYHU SHUFHQW RI WKHLU FRGH LV SXUH +70/ FR
understand (the application pages code will be explained in detalil in the next section).

7KH AUVW VFUHHQ Rl WKH DSSOLFDWLRQ LV WKH ORJLQ VFUHHQ |
username and password, as shown in the following screenshot:

[13]



Unit Testing JavaScript Applications

When the user clicks on thelLogin button, there is a JavaScript login client that
ensures that the username and the password are entered correctly. If the username
and the password are correct, they are submitted to the server, which validates them
if the user is registered in the application. If the user is registered in the application
then the user is redirected to the weather checking page; otherwise an error message
appears to the user.

The XVHUQDPH AHOG PXVW QRW EH HPSW\ DQG KDV WR EH LQ D YD
7KH SDVVZRUG AHOG DOVR PXVW QRW EH HPSW\ DQG KDV WR FRQ
capital, one small character, and at least one special character. The password length

has to be six characters or more.

In the weather checking page, the user can select one of the available cities from the
combobox, then click on the Get weather condition button to get the current weather
information of the selected city, as shown in the following screenshot:

In the user registration page, the user can register in the application by entering
KLV XVHUQDPH DQG FRQAUPHG SDVVZRUG DV VKRZQ LQ WKH IRO!

[14]



&KDSWHU

When the user clicks on theRegister EXWWRQ WKH UHJLVWUDWLRQ FOLHQW V -
ensures that the username and the passwords are entered correctly. The registration

client uses the same rules of the login client in username and password validations.

,W DOVR HQVXUHV WKDW WKH FRQAUPHG SDVVZRUG LV WKH VDPH

.1 WKH beyistration information is correct, the username and passwords are
submitted to the server. The user information is registered in the system after
performing server-side validations and checking that the user has not already
registered in the application. If the user is already registered in the system then
an error message appears to the user.

Exploring the application's HTML and
JavaScript code

The following code snippet shows the HTML code of the login form in the login.
jsp AOH ,W LV D VLPSOH IRUP WKDW KDV XVHUQDPH DQG SDVVZRL
messages, a registration link, and a login button.

<form class="box login" action="/weatherApplication/LoginServlet"
method="post">
<fieldset class="boxBody">
<label for="username">Username <span id="usernameMessage"
class="error"></span></label>
<input type="text" id="username" name="username"/>

<label for="password">Password <span id="passwordMessage"
class="error"></span></label>
<input type="password" id="password" name="password"/>
<[fieldset>
<div id="footer">

[15]



Unit Testing JavaScript Applications

<label><a href="register.jsp">Register</a></label>
<input id="btnLogin" class="btnLogin" type="submit" value="Login"
onclick="return validateLoginForm();"/>
</div>
</form>

When the Login button is clicked, the validateLoginForm JavaScript function is
called. The following code snhippet shows the validateLoginForm function in the
login.jsp AOH

function validateLoginForm() {
var loginClient = new weatherapp.LoginClient();

var loginForm = {
"userNameField" : "username",
"passwordField" : "password",
"userNameMessage" : "usernameMessage",
"passwordMessage" : "passwordMessage"

}

return loginClient.validateLoginForm(loginForm);

}

The validateLoginForm function calls the LoginClient ~ JavaScript object that

is responsible for validating the login form. It constructs a JavaScript Object
Notation (JSON) object that includes the username, password, username message,
and password message IDs, and then passes the constructed JSON object to the
validateLoginForm function of the LoginClient  object.

The weather application customizes a CSS3 based style from the

blog CSS Junction:
/S http://www.cssjunction.com/freebies/simple-login-

from-html5css3-template-free/

The following code snippet shows the validateLoginForm method of the
LoginClient  object in the LoginClient.js AOH ,W YDOLGDWHY WKDW WKH XVHU(
DQG WKH SDVVZRUG AHOGY DUH QRW HPSW\ DQG DUH FRPSOLDQW

if (typeof weatherapp == "undefined" || 'weatherapp) {
weatherapp = {};

}
weatherapp.LoginClient = function() {};

weatherapp.LoginClient.prototype.validateLoginForm =

[16]




&KDSWHU

The following code snippet shows the validateEmptyFields

function(loginForm) {
if (this.validateEmptyFields(loginForm) &&
this.validateUserName(loginForm) &&

this.validatePassword(loginForm)) {

return true;

}
return false;
2
2QH RI WKH UHFRPPHQGHG -DYD6FULSW V EHVW SUDFWLFHV LV
QDPHVSDFHV WKH DSSOLFDWLRQ GHAQHV D -PYD6FULSW QDPH
N to avoid collisions with other JavaScript objects of similar names. The

if (typeof weatherapp == "undefined" || lweatherapp) {
weatherapp = {};

}

~ IROORZLQJ FR GudatBarbpmQ Hhamdspace if it is not already
GHAQHG

method of the

LoginClient  object in the LoginClient.js AOH ,W YDOLGDWHV WKDW WKH XVHU
DQG WKH SDVVZRUG AHOGY DUH QRW HPSW\ DQG LI DQ\ Rl WKHVH
an error message appears:

weatherapp.LoginClient.prototype.validateEmptyFields =
function(loginForm) {

var passwordMessagelD = loginForm.passwordMessage;
var userNameMessagelD = loginForm.userNameMessage;

var passwordFieldID = loginForm.passwordField;
var userNameFieldID = loginForm.userNameField;

document.getElementByld(passwordMessagelD).innerHTML =",

1

document.getElementByld(userNameMessagelD).innerHTML ="";

1

if (! document.getElementByld(userNameFieldID).value) {

document.getElementByld(userNameMessagelD).innerHTML = “(field is
required)";

return false;

}

[17]



Unit Testing JavaScript Applications

if (! document.getElementByld(passwordFieldID).value) {
document.getElementByld(passwordMessagelD).innerHTML = "(field is
required)";

return false;

}
return true;
I3
The following code snippet shows the validateUserName  method of the
LoginClient  object in the LoginClient.js AOH ,W YDOLGDWHY WKDW WKH XVHU(

is in the form of a valid e-mail:

weatherapp.LoginClient.prototype.validateUserName =
function(loginForm) {

/I the username must be an email...
var userNameMessagelD = loginForm.userNameMessage;
var userNameFieldID = loginForm.userNameField;

var userNameRegex = /"[_A-Za-z0-9-]+(\.[_A-Za-z0-9-]+)*@
[A-Za-z0-9]+(\.[A-Za-z0-9]+)*(\.[A-Za-z]{2,})$/;
var userName = document.getElementByld(userNameFieldID).value;

if(! userNameRegex.test(userName)) {

document.getElementByld(userNameMessagelD).innerHTML = "(format is
invalid)";

return false;

}
return true;
b
Using the regular expression /"_A-Za-z0-9-]+(\.[ _A-Za-z0-9-]+)*@
[A-Za-z0-9]+(\.[A-Za-z0-9]+)*(\.[A-Za-z]{2, )%/ , the username is validated

against a valid e-mail form. If the username is not in a valid e-mail form then an
error message appears in the username message span.

The following code snippet shows the validatePassword method of the

LoginClient  object in the LoginClient.js AOH ,W YDOLGDWHV LI WKH SDVVZRUC
at least one digit, one capital character, one small character, at least one special

character, and also if it contains six characters or more:

weatherapp.LoginClient.prototype.validatePassword =

[18]



&KDSWHU

function(loginForm) {

I/l the password contains at least one digit, one capital and small
character

/I and at least one special character, and 6 characters or more...

var passwordMessagelD = loginForm.passwordMessage;

var passwordFieldID = loginForm.passwordField;

var passwordRegex = /((?=.9\d)(?=.*[a-z])(?=.*[A-Z])(?=[@#$%)).
{6,20})/;
var password = document.getElementByld(passwordFieldID).value;

if (! (passwordRegex.test(password) && password.length >= 6)) {
document.getElementByld(passwordMessagelD).innerHTML = "(format is
invalid)";

return false;

}

return true;

h

If the password is not compliant with the mentioned rules then an error message
appears in the password message span.

,| WKH XVHUQDPH DQG WKH SDVVZRUG AHOGV SDVV WKH -DYDG6FU
login form submits its content to LoginServiet , which makes another server-side

validation and then redirects the user to the weather checking page if the validation

goes OK.

\ It is very important not to rely on the JavaScript client-side validation
~ only, because JavaScript can be disabled from the browser. So itis a
Q must to always make a server-side validation besides the client-side

validation.

The following code snippet shows the weather checking form of the weather

application located in the welcomejsp AOH ,W FRQWDLQV D FRPERER[ AOOHG Z
<DKRR :HDWKHU :KHUH 2Q (DUWK ,'V WKH :2(," LV D XQLTXH UHIH
assigned by Yahoo! to identify any place on Earth) of different cities in the world.

<h1>Welcome to the weather application</h1>
<FORM method="post">
<label class="label" for="postalCode">Select the Location: </label>

<option value="1521894">Cairo, Egypt</option>

[19]



Unit Testing JavaScript Applications

<option value="906057">Stockholm, Sweden</option>

<option value="551801">Vienna, Austria</option>

<option value="766273">Madrid, Spain</option>

<option value="615702">Paris, France</option>

<option value="2459115">New York, USA</option>

<option value="418440">Lima, Peru</option>
</select>

<input type="button" class="button" onclick="invokeWeatherClient();"
value="Get weather condition"/>
<br/><br/>

<div id="weatherInformation" class="weatherPanel">
</div>
</[FORM>

When the Get weather condition button is clicked, the invokeWeatherClient
function is called. The following code snippet shows the invokeWeatherClient
function code in the welcome.jsp AOH

function invokeWeatherClient() {
var weatherClient = new weatherapp.WeatherClient();
var location = document.getElementByld("w").value;

weatherClient.getWeatherCondition({
'location': location,
‘resultDivID": ‘weatherinformation’
h
weatherClient.displayWeatherinformation,
weatherClient.nandleWeatherInfoError);

}

The invokeWeatherClient function calls the getWeatherCondition method of the

WeatherClient REMHFW 7KH AUV WgSWeatiz/bhtitichU Rrhethdd H

is the weatherForm object, which is a JISON object containing the location WOEID

and the ID of the DIV element that receives the weather information HTML result

of the Yahoo! Weather Representational State Transfer (REST) service. The second

SDUDPHWHU UHSUHVHQWV W K H didplaynsatien@@&EidhFN ZKLFK LV WKH
method that is called if the getWeatherCondition call succeeds. The last parameter

represents the second callback, which is thehandleweatherinfoError method that

is called if the getweatherCondition call fails.

The following code snippet shows getWeatherCondition of the
WeatherClient  object in the WeatherClient.js AOH WKDW VHQGY DQ $MD[ UHTXHV'
to WeatherProxyServlet with the w parameter that represents the WOEID .

[20]



&KDSWHU

WeatherProxyServlet interacts with the Yahoo! Weather REST service in order to
fetch the current weather information:

if (typeof weatherapp == "undefined" || 'weatherapp) {
weatherapp = {};

}

weatherapp.WeatherClient = function() {};
weatherapp.WeatherClient.xmlhttp;
weatherapp.WeatherClient.weatherForm;
weatherapp.WeatherClient.endpointURL = "";

weatherapp.WeatherClient.prototype.getWeatherCondition =
function(weatherForm, successCallBack, failureCallBack) {

if (window.XMLHttpRequest) {
this.xmlhttp = new XMLHttpRequest();
}else {
this.xmlhttp = new ActiveXObject("Microsoft XMLHTTP");

}

var successCallBackLocal = successCallBack;
var failureCallBackLocal = failureCallBack;
var weatherClientLocal = this;

this.xmlhttp.onreadystatechange = function() {
weatherClientLocal.weatherinformationReady(successCallBackLocal,
failureCallBackLocal);

}
this.weatherForm = weatherForm;

if (typeof this.endpointURL == "undefined") {
this.endpointURL =",

}

this.xmlhttp.open("GET",
this.endpointURL +
"lweatherApplication/WeatherProxyServlet?w=" + weatherForm.
location + "&preventCache=" + new Date().getTime(),

true);

this.xmlhttp.send();
3

[21]



Unit Testing JavaScript Applications

weatherapp.WeatherClient.prototype.weatherinformationReady =
function(successCallBack, failureCallBack) {

if (this.xmlhttp.readyState != 4) {
return;

}

if (this.xmlhttp.status != 200) {
failureCallBack(this);

return;

}

if (this.xmlhttp.readyState == 4 && this.xmlhttp.status == 200) {
successCallBack(this);
}
b

weatherapp.WeatherClient.prototype.displayWeatherinformation =
function(weatherClient) {
var resultDivID = weatherClient.weatherForm.resultDivID;

document.getElementByld(resultDivID).innerHTML = weatherClient.
xmlhttp.responseText;

h

weatherapp.WeatherClient.prototype.handleWeatherInfoError =
function(weatherClient) {
var resultDivID = weatherClient.weatherForm.resultDivID;

alert ("Error: " + weatherClient.xmlhttp.responseText);
document.getElementByld(resultDivID).innerHTML = "Error: " +
weatherClient.xmlhttp.responseText;

h

The getWeatherCondition PHWKRG AUVW FUHDWHYV DQ ;0/ +773 UHTXHVW R
new XMLHttpRequest() in case of IE7+, Firefox, Chrome, and Opera. In the case of

IE5 and IE6, the XML HTTP request object is created using an ActiveX objechew

ActiveXObject("Microsoft. XMLHTTP")

The getWeatherCondition method then registers both, the success callback
(successCallBack ) and the failure callback (failureCallBack ) using the
weatherlnformationReady method that is called for every Ajax readyState  change.

[22]



&KDSWHU

Finally, the getWeatherCondition method sends an asynchronous Ajax request

to WeatherProxyServlet . When the Ajax response comes from the server and

the operation is done successfully then the success callback is called, which is the
displayWeatherinformation method. In the case of operation failure (which can
happen, for example, if the passed WOEID is invalid or the Yahoo! Weather service is
down), the failure callback is called, which is the handleWeatherinfoError method.

The displayWeatherinformation method displays the returned weather
information HTML result from WeatherProxyServlet (which fetches the weather
information from the Yahoo! Weather REST service) in the weatherInformation div
element while the handleWeatherInfoError method displays the error message in
the same div element and also displays an alert with the error message.

. It is assumed that you are familiar with Ajax programming. If you are
> not familiar with Ajax programming, it is recommended to check the
Q following introductory Ajax tutorial on w3schools:

http://www.w3schools.com/ajax/default.asp

In order to prevent IE from caching Ajax GET requests, a random parameter is
appended using new Date().getTime() . In many JavaScript libraries, this can
be handled through the framework APIs. For example, in Dojo the preventCache
attribute of the dojo.xhrGet  API can be used to prevent the IE Ajax GET caching.

The following code snippet shows the HTML code of the registration form in the
register.jsp AOH ,W FRQVLVWV RI D XVHUQDPH DQG WZR SDVVZRUG
corresponding labels, messages, login link, and a register button:

<form class="box register" method="post">
<fieldset class="boxBody">

<label for="username">Username (Email) <span id="usernameMessage"
class="error"></span></label>

<input type="text" id="username" name="username"/>

<label for="password1">Password <span id="passwordMessagel"
class="error"></span></label>

<input type="password" id="passwordl" name="password1"/>

<label for="password2">Confirm your password</label>
<input type="password" id="password2" name="password2"/>

<[fieldset>
<div id="footer">
<label><a href="login.jsp">Login</a></label>

[23]



Unit Testing JavaScript Applications

<input id="btnRegister" class="btnLogin" type="button"
value="Register" onclick="registerUser();" />
</div>

</form>

When the Register button is clicked, the registerUser JavaScript function is called.
The following code snippet shows the code of the registerUser  function in the
register.jsp AOH

function registerUser() {
var registrationClient = new weatherapp.RegistrationClient();

var registrationForm = {
"userNameField" : "username",
"passwordField1" : "passwordl1",
"passwordField2" : "password2",
"userNameMessage" : "usernameMessage",
"passwordMessagel" : "passwordMessagel"”

h
if (registrationClient.validateRegistrationForm(registrationForm)) {

registrationClient.registerUser(registrationForm,
registrationClient.displaySuccessMessage,
registrationClient.handleRegistrationError);
}
}

The registerUser function is calling the RegistrationClient JavaScript object
that is responsible for validating and submitting the registration form using Ajax

to RegistrationServlet . registerUser constructs the registrationForm

JSON object, which includes the username, passwordl, password2, username
message, and passwordl message IDs, and then passes the object to the
validateRegistrationForm method of the RegistrationClient object.

If the validation passes, it calls the registerUser method of the

RegistrationClient REMHFW 7KH AUV WregifddseP H WhiethbdRd W K H
the registrationForm JSON object. The second parameter is the success callback,
which is the displaySuccessMessage method, while the last parameter is the failure
callback, which is the handleRegistrationError method.

The following code snippet shows the code of the validateRegistrationForm
method of the RegistrationClient object in the RegistrationClient.js AOH W
uses the validation methods of LoginClient  in order to validate the empty username

[24]



&KDSWHU

DQG SDVVZRUG AHOGY DQG WR YDOLGDWH LI WKH XVHUQDPH DQG
to the validation rules. In addition to this, the validateRegistrationForm method
validates if the two entered passwords are identical:

if (typeof weatherapp == "undefined" || 'weatherapp) {
weatherapp = {};

}

weatherapp.RegistrationClient = function() {};
weatherapp.RegistrationClient.xmlhttp;
weatherapp.RegistrationClient.endpointURL = "";

weatherapp.RegistrationClient.prototype.validateRegistrationForm =
function(registrationForm) {

var userNameMessage = registrationForm.userNameMessage;
var passwordMessagel = registrationForm.passwordMessagel,;

var userNameField = registrationForm.userNameField,;
var passwordFieldl = registrationForm.passwordField1;
var passwordField2 = registrationForm.passwordField2;

var passwordl = document.getElementByld(passwordFieldl).value;
var password2 = document.getElementByld(passwordField2).value;

/I Empty messages ...
document.getElementByld(userNameMessage).innerHTML ="";

)

document.getElementByld(passwordMessagel).innerHTML =",
/I create the loginClient object in order to validate fields ...
var loginClient = new weatherapp.LoginClient();

var loginForm = {};

loginForm.userNameField = userNameField,;
loginForm.userNameMessage = userNameMessage;
loginForm.passwordField = passwordField1;
loginForm.passwordMessage = passwordMessagel;

/l validate empty username and password fields.
if (! loginClient.validateEmptyFields(loginForm)) {
return false;

}

// validate that password fields have the same value...

[25]



Unit Testing JavaScript Applications

if (passwordl != password?2) {

document.getElementByld(passwordMessagel).innerHTML = "(Passwords must
be identical)";

return false;

}

/I check if the username is correct...
if (! loginClient.validateUserName(loginForm) ) {

document.getElementByld(userNameMessage).innerHTML = "(format is
invalid)";

return false;

}

/I check if the password is correct...
if (! loginClient.validatePassword(loginForm) ) {

document.getElementByld(passwordMessagel).innerHTML = "(format is
invalid)";

return false;

}
return true;
2
The following code snippet shows the registerUser method code of the
RegistrationClient object in the RegistrationClient.js AOH ,W FUHDWHYV

DQ $MDJ[ 3267 UHTXHVW ZLWK WKH XVHUQDPH DQG WKH SDVVZRUG
DQG FRQAUPHG SDVVZRUG GDWD DQG VHQGVY WKHP DV\QFKURQR?
to RegistrationServlet

weatherapp.RegistrationClient.prototype.registerUser =
function(registrationForm, successCallBack, failureCallBack) {
var userNameField = registrationForm.userNameField,;
var passwordFieldl = registrationForm.passwordField1;
var passwordField2 = registrationForm.passwordField2;

var userName = document.getElementByld(userNameField).value;
var passwordl = document.getElementByld(passwordFieldl).value;
var password2 = document.getElementByld(passwordField2).value;

if (window.XMLHttpRequest) {

this.xmlhttp = new XMLHttpRequest();
}else {

this.xmlhttp = new ActiveXObject("Microsoft. XMLHTTP");
}

[26]



&KDSWHU

var successCallBackLocal = successCallBack;
var failureCallBackLocal = failureCallBack;
var registrationClientLocal = this;

this.xmlhttp.onreadystatechange = function() {
registrationClientLocal.registrationReady(successCallBackLocal,
failureCallBackLocal);

h

if (typeof this.endpointURL == "undefined") {
this.endpointURL = "";

}

this.xmlhttp.open("POST",
this.endpointURL +
"lweatherApplication/RegistrationServlet",
true);

this.xmlhttp.setRequestHeader("Content-type","application/x-www-form-
urlencoded");

this.xmlhttp.send(userNameField + "=" + userName + "&" +
passwordFieldl + "=" + passwordl + "&" +
passwordField2 + "=" + password?2);

h

weatherapp.RegistrationClient.prototype.registrationReady =
function(successCallBack, failureCallBack) {
if (this.xmlhttp.readyState != 4) {
return;

}

if (this.xmlhttp.status != 200) {
failureCallBack(this);
return;

}

if (this.xmlhttp.readyState == 4 && this.xmlhttp.status == 200) {
successCallBack(this);

}
h

weatherapp.RegistrationClient.prototype.displaySuccessMessage =
function(registrationClient) {

alert("User registration went successfully ...");

I

weatherapp.RegistrationClient.prototype.handleRegistrationError =

[27]



Unit Testing JavaScript Applications

function(registrationClient) {
alert(registrationClient.xmlhttp.responseText);

I3

RegistrationServiet validates the user data and ensures that the user did not
already register in the application. When the Ajax response comes from the server,
and the registration operation is completed successfully, the displaySuccessMessage
method is called. If the registration operation failed (for example, if the user ID is
already registered in the application), the handleRegistrationError method is
called. Both the displaySuccessMessage and the handleRegistrationError

methods display alerts to show the success and the failure registration messages.

Running the weather application

Inorderto UXQ WKH ZHDWKHU DSSOLFDWLRQ \RX AUVW QHHG WR GR2:
weatherApplication.war AOH IURP WKH E RvRWpacktgubl.&om L)W H

7KHQ \RX QHHG WR GHSOR\ WKH :$5 AOH RQ $SDFKH 7RPFDW ,Q
Apache Tomcat 6, you need to download it from http://tomcat.apache.org/

download-60.cgi . Apache Tomcat 6.0 requires the Java 2 Standard Edition

Runtime Environment (JRE) Version 5.0 or later.

In order to install JRE, you need to download and install the J2SE Runtime
Environment as follows:

1. Download the JRE, release Version 5.0 or later, fronmhttp://www.oracle.
com/technetwork/java/javase/downloads/index.html

2. Install the JRE according to the instructions included with the release.

Set an environment variable named JRE_HOMEO the pathname of the
directory in which you installed the JRE, for example, c:\jre5.0 or /ust/
local/javaljre5.0

After you download the binary distribution of Apache Tomcat 6, you need to
unpack the distribution in a suitable location on the hard disk. After this, you need
WR G HAQHAMNK HHOMEenvironment variable, which refers to the location of
the Tomcat distribution.

Now, you can start Apache Tomcat 6 by executing the following command
on Windows:

$CATALINA_HOME\bin\startup.bat

[28]



&KDSWHU

Start as while in Unix, you can execute the following command:

$CATALINA_HOME/bin/startup.sh

In order to make sure that the Apache Tomcat 6 starts correctly, you need to type the
following URL in the browser:

http://localhost:8080/

After making sure that the Apache Tomcat 6 is running correctly, you can stop it by
executing the following command on Windows:

$CATALINA_HOME\bin\shutdown.bat

Start as while in Unix, you can execute the following command:

$CATALINA_HOME/bin/shutdown.sh

Now, we come to the step of the weather application deployment where you need to

get the weatherApplication.war AOH IURP WKH ERRN UHVRXUFHV $IWHU JHW
FRS\ WKH :$5 ASCATAMIRA W \webapps folder, then start the Apache

Tomcat 6 again.

In order to access the weather application, you can access it using the following URL:
http://localhost:8080/weatherApplication/login.jsp

JRU WKH VDNH RI VLPSOLFLW\ WKHUH LV D SUHGHAQHG XVHUQ
o that can be used to access the weather application; the username is
~ admin@123.com and the password is Admin@123. Another thing
Q that has to be mentioned is that the registered users are not stored in a
database; they are stored in the application scope, which means they
will be available as long as the application is not restarted.

Summary

In this chapter, you learned what unit testing is, the requirements of a good unit

test, and why we need unit testing. You got to know the difference between the
Test-Driven Development and the traditional unit testing. In the JavaScript world,
you understood the complexities of testing JavaScript code, and the requirements of
good JavaScript unit testing tools. At the end of this chapter, | explored with you the
weather web application use cases and its JavaScript code in detail, which we will
unit test in the later chapters. In the next chapter, you will learn how to work with

the Jasmine framework and how to use it for testing the weather application.

[29]







Jasmine

Jasmine is a powerful JavaScript unit testing framework. It provides a clean

mechanism for testing synchronous and asynchronous JavaScript code. Jasmine is

a behavior-driven development framework that provides descriptive test cases that

focus more on the business value than on the technical details. Because it is written

in a simple natural language, Jasmine tests can be read by non-programmers and can
provide a clear description when a single test succeeds or fails and also the reason

behind its failure. In this chapter, the framework will be illustrated in detail and will

be used to test the weather application that is discussed in & KD SWBHQU. W 7HVWLQJ
-DYD6FULSW $SSOLFDWLRQV

Behavior-driven development (BDD) is an agile software development
technique introduced by Dan North that focuses on writing descriptive
. tests from the business perspective. BDD extends TDD by writing
% test cases that test the software behavior (requirements) in a natural
L language that anyone (not necessarily a programmer) can read and

understand. The names of the unit tests are sentences that usually
start with the word "should" and they are written in the order of their
business value.

&RQ:;IJXUDWLRQ

Inorderto FRQAJXUH -DVPLQH WKH AUVW VWHS tofWR GRZQORDG WK
https://github.com/pivotal/jasmine/downloads +HUH \RX ZLOO AQG WKH ODWH
releases of the framework. At the time of this writing, the latest release is v1.2.0,

which has been used in this book.



Jasmine

After unpacking jasmine-standalone-1.2.0.zip RU ODWHU \RX ZLOO AQG WKH Il
structure shown in the following screenshot:

Thesrc IROGHU LQ WKH SUHFHGLQJ VFUHHQVKRW FRQWDLQV WKH -I
that you want to test, the spec IROGHU FRQWDLQV WKH -DYD6FULSW WHVWLQ.

SpecRunner.html LV WKH WHVW FDVH U XiQ Jéider soitainsAt@ H 7 K H
IUDPHZRUN AOHV

In order to make sure that everything is running OK, click on the SpecRunner.html
AOH \RX VKRXOG VHH SDVVLQJ VSHFV DV VKRZQ LQ WKH IROORZ

This structure is not rigid; you can modify it to serve the organization of your
application. For the purpose of testing the weather application, we will modify
it to cope with the structure of the application.

'ULWLQJ \RXU ¢UVW -DVPLQH WHV\

Before ZULWLQJ WKH AUVW -DVPLQH WHVW ZH ZLOO QHHG WR XQGH
EHWZHHQ D VXLWH DQG D VSHF WHVW VSHtEISRFDWLRQ LQ -DVPLC
JURXS RI WHVW FDVHV WKDW FDQ EH XVHG WR WHVW D VSHFLAF [

[32]



&KDSWHU

code (a JavaScript object or function). In Jasmine, the test suite begins with a call

to the Jasmine global function describe =~ ZLWK WZR SDUDPHWHUV 7KH AUVW SDUI
represents the title of the test suite, while the second parameter represents a function

that implements the test suite.

A Jasmine spec represents a test case inside the test suite. In Jasmine, a test case

begins with a call to the Jasmine global functionit ZLWK WZR SDUDPHWHUV 7KH AUV
parameter represents the title of the spec and the second parameter represents a

function that implements the test case.

A Jasmine spec contains one or more expectations. Every expectation represents

an assertion that can be eithentrue or false . In order to pass the spec, all of the
expectations inside the spec have to be true. If one or more expectations inside a spec
is false, the spec fails. The following code snippet shows an example of a Jasmine test
suite and a spec with an expectation:

describe("A sample suite”, function() {
it("contains a sample spec with an expectation", function() {
expect(true).toEqual(true);
D
b

1RZ OHW V P BimpleMstR Yaw&Sicript object, which is described in the
following code snippet. The SimpleMath JavaScript object is a simple mathematical
utility that performs factorial, signum, and average mathematical operations.

SimpleMath = function() {
2

SimpleMath.prototype.getFactorial = function (number) {

if (number < 0) {
throw new Error("There is no factorial for negative numbers");

}

else if (number == 1 || number == 0) {

/I If number <= 1 then number! = 1.
return 1,
}else {

/I'1f number > 1 then number! = number * (number-1)!
return number * this.getFactorial(number-1);
}
}

[33]



Jasmine

SimpleMath.prototype.signum = function (number) {
if (number > 0) {
return 1,
} else if (number == 0) {
return O;
}else {
return -1;
}
}

SimpleMath.prototype.average = function (numberl, number2) {
return (numberl + number2) / 2;

}

In the preceding code snippet, the SimpleMath object is used to calculate the factorial
of numbers. In mathematics, the factorial function of a nonnegative integer Qwhich
is denoted by Q, is the product of all positive integers less than or equal to QFor
example, [ [ [ .Accordingto Wikipedia, the factorial function has the
IROORZLQJ PDWKHPDWLFDO GHAQLWLRQ

N ifn=0,
(n-Dlxn ifn>o0.

The SimpleMath object calculates the factorial of the number using the
getFactorial recursive function. It throws an Error exception when the passed
parameter to the getFactorial method is a negative number because there is no
factorial value for negative numbers.

In addition to calculating the factorial of numbers, it can get the signum of any
number using the signum method. In mathematics, the signum function extracts
the sign of a real number. According to Wikipedia, the signum function has the
IROORZLQJ PDWKHPDWLFDO GHAQLWLRQ

-1 ifx <O,
sgn(x) = 0 ifx=0,

1 ifx>0.

Finally, SimpleMath can calculate the average of two humbers using theaverage
method. The average value of two numbers can be calculated by dividing the sum
of the two numbers by 2.

[34]




&KDSWHU

1R Z Odtawwyiting the specs using Jasmine. First of all, in order to test the
getFactorial PHWKRG OHW V KDYH WKH WKUHH IROORZLQJ WHVW VFI

calculating the factorial of:

1 A positive number
t Zero
t A negative number

Boundary testing is a kind of testing that focuses on the boundary
. orthe limit conditions of the objects to be tested. These boundary
% conditions can include the maximum value, minimum value, error
S values, and inside/outside boundary values. In the factorial testing
example, the test scenarios apply this kind of testing by testing the
factorial API with a positive number, a negative number, and zero.

The following code snippet shows how to test the calculation of the factorial
of a positive number (3), 0, and a negative number (-10 ):

describe("SimpleMath", function() {
var simpleMath;

beforeEach(function() {
simpleMath = new SimpleMath();

i

describe("when SimpleMath is used to find factorial", function() {
it("should be able to find factorial for positive number",
function() {
expect(simpleMath.getFactorial(3)).toEqual(6);

b

it("should be able to find factorial for zero", function() {
expect(simpleMath.getFactorial(0)).toEqual(1);

b

it("should be able to throw an exception when the number is
negative", function() {
expect(
function() {
simpleMath.getFactorial(-10)
B.toThrow("There is no factorial for negative numbers");

b
h;
b

[35]



Jasmine

The describe  keyword declares a new test suite called"SimpleMath" . beforeEach
is used for initialization of the specs inside the suite, that is, beforeEach is called
once before the run of each spec in thedescribe  function. In the beforeEach
function, the simpleMath object is created usingnew SimpleMath()

. In Jasmine, it is also possible to execute JavaScript code after the run
~ of each spec in thedescribe  function, using the afterEach  global
Q function. Having beforeEach and afterEach in Jasmine allows the
GHYHORSHU QRW WR UHSHDW VHWXS DQG AQHOL]DWLRQ FRGH

After initializing the simpleMath object, you can either create a direct spec using
theit keyword or create a child test suite using the describe  keyword. For the
purpose of organizing the example, a new test suite is created for each group of tests
with similar functionalities. This is why an independent test suite is created to test

the functionality of the getFactorial test suite provided by the SimpleMath object
using the describe  keyword.

,Q WKH AUVW W H VatratoliQ D testRuikRe ) the 8pic title is"should

be able to find factorial for positive number" , and the expect function
calls simpleMath.getFactorial(3) and expects it to be equal to6. If simpleMath.

getFactorial(3) returns a value other than 6, the test fails. We have many other
options (matchers) to use instead oftoEqual . These matchers will be discussed in
more detailinthe -DVPLQH RBe&cWwrKHUV

In the second test scenario of thegetFactorial test suite, theexpect function

calls simpleMath.getFactorial(0) and expects it to be equal tol. In the last test
scenario of the getFactorial test suite, theexpect function calls simpleMath.
getFactorial(-10) and expects it to throw an exception with the message"There is
no factorial for negative numbers" , using the toThrow matcher. ThetoThrow
matcher succeeds if the function expect throws an exception when executed.

$IWHU A QD QuetFac®rial W Kikist suite, we come to a new test suite that tests
the functionality of the signum method provided by the SimpleMath object. The
following code snippet shows the signum test suite:

describe("when SimpleMath is used to find signum"”, function() {
it("should be able to find the signum for a positive number",
function() {
expect(simpleMath.signum(3)).toEqual(1);
»;

it("should be able to find the signum for zero", function() {
expect(simpleMath.signum(0)).toEqual(0);
D

[36]




&KDSWHU

it("should be able to find the signum for a negative number",
function() {

expect(simpleMath.signum(-1000)).toEqual(-1);
D
D

We have three test scenarios for thesgnum PHWKRG WKH AUVW WHVW VFHQDULR LV
getting the signum value for a positive number, the second test scenario is about

getting the signum value for zero, and the last test scenario is about getting the signum

YDOXH IRU D QHIJDWLYH QXPEHU $V LQGLFDWHG LQ WKH GHAQLWLI
LW KDV WR UHWXUQ IRU DQ\ SRVLWLYH QXPEHU IRU JHUR DQG
number. The following code snippet shows the average test suite:

describe("when SimpleMath is used to find the average of two
values", function() {

it("should be able to find the average of two values",
function() {

expect(simpleMath.average(3, 6)).toEqual(4.5);
)
D

In the average spec, the test ensures that the average is calculated correctly by trying
to calculate the average of two numbers, 3 and 6, and expecting the result to be4.5 .

Now, after writing the suites and the specs, it is the time to run the tests. In order to
run the tests, we need to do the following steps:

1. Place thesimpleMath.js AOH Ls@ WideH

2. Place thesimpleMathSpec.js AOH ZKLFK F R@mbahQ Wnivekts|
in the spec folder.

3. Edit the SpecRunner.html AOH DV VKRZQ LQ WKH IROORZLQJ FRGH VvVQl

<html>
<head>
<title>Jasmine Spec Runner</title>

<link rel="shortcut icon" type="image/png"
href="lib/jasmine-1.2.0/jasmine_favicon.png">

<link rel="stylesheet" type="text/css" href="lib/jasmine-
1.2.0/jasmine.css">

<script type="text/javascript" src="lib/jasmine-
1.2.0/jasmine.js"></script>

<script type="text/javascript" src="lib/jasmine-
1.2.0/jasmine-html.js"></script>

[37]




Jasmine

<l--include spec files here... -->

<script type="text/javascript"
src="spec/simpleMathSpec.js"></script>

<!--include source files here... -->

<script type="text/javascript"
src="src/simpleMath.js"></script>

As shown in the preceding code snippet, in the highlighted lines, <script

type="text/javascript" src="spec/simpleMathSpec.js"></script> is

added under the <!-- include spec files here... --> section, while <script
type="text/javascript" src="src/simpleMath.js"></script> is added under
the <!-- include source files here... --> section. After double-clicking on

SpecRunner.html , you will see the test results passed.

The nested describe blocks

-DVPLQH LV AHJ[LE O HesktriBe Q HO¢ky With 3p&esatiany level. This
means that, before executing a spec, Jasmine walks down executing eacheforeEach
function in order, then executes the spec, and lastly walks up executing each
afterEach  function.

7KH IROORZLQJ FRGH VQLSSHW LV DQ Hddsdrfe O bloéks: WKH -DVPLQH V

describe("MyTest", function() {
beforeEach(function() {
alert("beforeEach levell");
i
describe("MyTest level2", function() {
beforeEach(function() {
alert("beforeEach level2");
i
describe("MyTest level3", function() {
beforeEach(function() {
alert("beforeEach level3");
N
it("is a simple spec in level3", function() {
alert("A simple spec in level3");
expect(true).toBe(true);
N
afterEach(function() {
alert("afterEach level3");
b
i

[38]




&KDSWHU

afterEach(function() {
alert("afterEach level2");
B

»;

afterEach(function() {

alert("afterEach levell");

M
b

This test will result in the following messages on the alert boxes:

T beforeEach levell
beforeEach level2
beforeEach level3

A simple spec in level3
afterEach level3
afterEach level2

H + H+ H+ +H+ +H

afterEach levell

Jasmine matchers

, Q W K Hadntiné Wkample, we used thaoEqual and toThrow Jasmine matchers.
In this section, the other different built-in matchers provided by Jasmine will be
illustrated and will explain how to write a custom Jasmine matcher to have more
powerful and descriptive testing code.

/KH WR%H PDWFKHU

The toBe matcher is passed if the actual value is of the same type and value as that
of the expected value. It uses=== to perform this comparison. The following code
shippet shows an example of thetoBe matcher:

describe("the toBe Matcher", function() {
it("should compare both types and values", function() {
var actual = "123";
var expected = "123";

expect(actual).toBe(expected);
D
D;

[39]




Jasmine

You might question the difference between the toBe and toEqual matchers.

The answer to this question would be that the toEqual matcher provides a powerful
mechanism for handling equality; it can handle array comparisons, for example, as
shown in the following code snippet:

describe("the toEqual Matcher", function() {
it("should be able to compare arrays", function() {
var actual = [1, 2, 3];
var expected =[1, 2, 3];

expect(actual).toEqual(expected);
i
Pk

The following code snippet shows how the toBe matcher is unable to compare two
equivalent arrays:

describe("the toBe Matcher", function() {
it("should not be able to compare arrays", function() {
var actual = [1, 2, 3];
var expected =[1, 2, 3];

expect(actual).not.toBe(expected);

B
M

As you may have noticed in the preceding code snippet, the not keyword is used

for making the test passes because theoBe matcher will not be able to know that

the actual and expected arrays are the same. The Jasmineot keyword can be used

ZLWK HYHU\ PDWFKHU V FULWHULD IRU LQYHUWLQJ WKH UHVXOW

/KH WR%H'H;QHG DQG WR%HB8QGH¢QH

matchers

The toBeDefined matcher LV XVHG WR HQVXUH WKDW D SURSHUW\ RU D YD(
while the toBeUndefined matcher is used to ensure that a property or a value is
XQGHAQHG 7KH IROORZLQJ FRGH VQLSSHW VKRZV DQ H[DPSOH RI

describe("the toBeDefined Matcher", function() {
it("should be able to check defined objects”, function() {
var object = [1, 2, 3];

expect(object).toBeDefined();

[40]



&KDSWHU

s
b

describe("the toBeUndefined Matcher", function() {
it("should be able to check undefined objects", function() {
var object;

expect(object).toBeUndefined();
B
D

You can achieve the behavior of thetoBeUndefined = matcher by using the not
keyword and the toBeDefined matcher, as shown in the following code snippet:

describe("the toBeUndefined Matcher using the not keyword and the
toBeDefined matcher", function() {

it("should be able to check undefined objects", function() {
var object;
expect(object).not.toBeDefined();
b
D

/KH WR%H1XOO PDWFKHU

ThetoBeNull matcher is used to ensure that a property or a value is null.
The following code snippet shows an example of the toBeNull matcher:

describe("the toBeNull Matcher", function() {

it("should be able to check if an object value is null",
function() {

var object = null;

expect(object).toBeNull();
i
D

7KH WR%H7UXWK\ DQG WR%H)DOV\

The toBeTruthy matcher is used to ensure that a property or a value istrue while
the toBeFalsy matcher is used for ensuring that a property or a value is false
The following code snippet shows an example of both matchers:

describe("the toBeTruthy Matcher", function() {

it("should be able to check if an object value is true",
function() {

[41]

PD\



Jasmine

var object = true;
expect(object).toBeTruthy();
»;
D

describe("the toBeFalsy Matcher", function() {
it("should be able to check if an object value is false",
function() {
var object = false;

expect(object).toBeFalsy();
»;
D

The toContain matcher

ThetoContain  matcher is used to check whether a string or array contains
a substring or an item. The following code snippet shows an example of the
toContain  matcher:

describe("the toContain Matcher", function() {
it("should be able to check if a String contains a specific
substring”, function() {
expect("Hello World from Cairo").toContain("Cairo");

b

it("should be able to check if an Array contains a specific
item", function() {
expect(["TV", "Watch", "Table"]).toContain("Watch");
D
D

7KH WR%H/HVV7KDQ DQG WR%H*UHDWI
matchers

The toBeLessThan and the toBeGreaterThan ~ matchers are used to perform
the simple mathematical less-than and greater-than operations, as shown in
the following code snippet:

describe("the toBeLessThan Matcher", function() {
it("should be able to perform the less than operation”,
function() {
expect(4).toBeLessThan(5);

s

[42]



&KDSWHU

b

describe("the toBeGreaterThan Matcher", function() {

it("should be able to perform the greater than operation",
function() {

expect(5).toBeGreaterThan(4);
B
D

The toMatch matcher

The toMatch matcher is used to check whether a value matches a string or a regular
expression. The following code snippet shows an example of thetoMatch matcher,
which ensures that the expect parameter is a digit:

describe("the toMatch Matcher", function() {

it("should be able to match the value with a regular expression",
function() {

expect(5).toMatch("[0-9]");
i
»;

Developing custom Jasmine matchers

In addition to all of the mentioned built-in matchers, Jasmine enables you to develop

FXVWRP PDWFKHUV WR KDYH PRUH SRZHUIXO DQG GHVFULSWLYH
two custom matchers, toBePrimeNumber and toBeSumOf, to understand how to

develop custom matchers in Jasmine.

The purpose of the toBePrimeNumber matcher is to check whether the actual number
(the number in the expect function) is a prime number, while the toBeSumOf
matcher checks whether the sum of its two arguments is equal to the actual number.

,Q RUGHU WR GHAQH D FXVWRP PDWFKH lhdiiMatchBr PLQH \RX VKRXO
$3, WR GHAQH WKH PDWFKHU V SDVVLQJ DQ REMHFW SDUDPHWHL
parameter is represented as a set of key-value pairs. Every key in the object

UHSUHVHQWY WKH PDWFKHU V QDPH ZKLOH WKH YDOXH UHSUHVF
IXQFWLRQ WKH PDWFKHU V LPSOHPHQWDWLRQ 7KH GHAQLWLRQ
placed in either the beforeEach or theit block. The following code snippet shows

the toBePrimeNumber and toBeSumOf custom matchers:

beforeEach(function(){
this.addMatchers({
toBeSumOf: function (firstNumber, secondNumber) {
return this.actual == firstNumber + secondNumber;

[43]



Jasmine

b

toBePrimeNumber: function() {
if (this.actual < 2) {
return false;

}

var n = Math.sqrt(this.actual);

for (vari=2;i<=n; ++i){
if (this.actual % i == 0) {
return false;

}

}

return true;
}
b
b

$IWHU GHAQLQJ WKH FXVWRP PDWFKHUV WKH\ FDQ EH XVHG OLNI
in the test code, as shown in the following code snippet:

describe("Testing toBeSumOf custom matcher”, function() {
it("should be able to calculate the sum of two numbers",
function() {
expect(10).toBeSumOf(7, 3);
B
D

describe("Testing toBePrimeNumber custom matcher", function() {
it("should be able to know prime number", function() {
expect(13).toBePrimeNumber();
B

it("should be able to know non-prime number", function() {
expect(4).not.toBePrimeNumber();
b
D

As shown in the preceding code snippet, you can use thenot keyword with your
GHAQHG FXVWRP PDWFKHUV

[44]




&KDSWHU

Testing asynchronous (Ajax) JavaScript
code

Now, the question that comes to mind is how to test asynchronous (Ajax) JavaScript
code using Jasmine. What was mentioned in the chapter so far is how

to perform unit testing for synchronous JavaScript code. Jasmine fortunately includes
powerful functions ( runs() ,waits() , and waitsFor() ) for performing real Ajax
testing (which requires the backend server to be up and running in order to complete
the Ajax tests), and it also provides a mechanism for making fake Ajax testing (which
does not require the availability of the backend server in order to complete the

Ajax tests).

The runs() function

The code inside theruns() block runs directly as if it were outside the block.
The main purpose of the runs()  block is to work with the waits()  and waitsFor()
blocks to handle the testing of the asynchronous operations.

The runs() EORFN KDV VRPH FKDUDFWHULVWLFVY WKDW DUH LPSRUWDEL
is that, if you have multiple runs() blocks in your spec, they will run sequentially, as
shown in the following code snippet:

describe("Testing runs blocks", function() {
it("should work correctly", function() {
runs(function() {
this.x = 1;
expect(this.x).toEqual(1);
Pk

runs(function() {
this.x++;
expect(this.x).toEqual(2);
DB

runs(function() {
this.x = this.x * 4;
expect(this.x).toEqual(8);
D

b
b

[45]



Jasmine

In the preceding code snippet, theruns) EORFNV UXQ LQ VHTXHQFH ZKHQ WKH A
runs() block completes, the value ofthis.x  is initialized to 1. Then, the second

runs()  block runs, and the value of this.x is incremented by 1 to be 2. Finally,

the lastruns() block runs, and the value of this.x  is multiplied by 4 to bes.

The second important point here is that the properties between the runs()
blocks can be shared using thethis keyword, as shown in the next code snippet.

The waits() function

The waits()  function pauses the execution of the next block until its timeout period
parameter is passed, in order to give the JavaScript code the opportunity to perform
some other operations. The following code snippet shows an example of the waits()
functionality with the runs() blocks:

describe("Testing waits with runs blocks", function() {
it("should work correctly”, function() {
runs(function() {
this.x = 1;

var localThis = this;

window.setTimeout(function() {
localThis.x += 99;
}, 500);
i

runs(function() {
expect(this.x).toEqual(1);
i

waits(1000);

runs(function() {
expect(this.x).toEqual(100);
b

M
b

, Q W K Humd()J VBlgck, the this.x  variable is set to1 and a JavaScriptsetTimeout
method is created to increment the this.x  variable by 99 after 500 milliseconds.
Before 500 milliseconds, the secondruns() E ORFN Y H UHiskH \is &4iab W
to 1. Then,waits(1000)  pauses the execution of the nextruns() block by 1000

[46]



&KDSWHU

milliseconds, which is enough time for setTimeout to complete its execution and
incrementing this.x by 99 to be 100. After the 1000 milliseconds, the last runs()
EORFN YHUL Athissk Wsriame igvikcH

In real applications, we may not know the exact time to wait for until the
asynchronous operation completes its execution. Fortunately, Jasmine provides
a more powerful mechanism to wait for the results of asynchronous operations,
the waitsFor()  function.

The waitsFor() function

The waitsFor()  function provides a more powerful interface that can pause the

HIHFXWLRQ RI WKH QH[W EORFN XQWLO LWV SURYLGHG IXQFWLRC
timeout period passes. The following code snippet shows an example of the

waitsFor()  functionality with the runs() blocks:

describe("Testing waitsFor with runs blocks", function() {
it("should work correctly”, function() {
runs(function() {
this.x = 1;

var localThis = this;

var intervallD = window.setInterval(function() {
localThis.x +=1;

if (localThis.x == 100) {
window.clearInterval(intervallD);
}
} 20);
i

waitsFor(function() {

return this.x == 100;
}, "Something wrong happens, it should not wait all of this
time", 5000);

runs(function() {
expect(this.x).toEqual(100);

hE

b
b

[47]



Jasmine

, Q W K Humd()J VBlgck, the this.x  variable is set to1, and a JavaScript

setinterval method is created to continuously increment the this.x  variable with
1 every 20 milliseconds, and stop incrementing this.x  once its value becomesl100;
that is, after 2000 milliseconds are up,setinterval stops execution. Before 2000
milliseconds are complete, the secondwaitsFor()  function pauses executing the
next runs block until either this.x  reaches100 or the operation times out after 5000
milliseconds. After 2000 milliseconds, the value of thisx ~ becomes100, which
results in a true condition result in the return of the waitsFor()  provided function.
This will result in executing the next runs block, which checks that this.x is equal
to 100.

The waitsFor()  function is mostly used for testing real Ajax requests; it waits for the
completion of the execution of the Ajax callback with the help of Jasmine Spies.

A Jasmine Spy is a replacement for a JavaScript function that can
either be a callback, an instance method, a static method, or an object
tad constructor.

The following code snippet shows how to test a real Ajax request:

describe("when waitsFor is used for testing real Ajax requests”,
function() {

it("should do this very well with the Jasmine Spy", function() {

var successCallBack = jasmine.createSpy();
var failureCallBack = jasmine.createSpy();

asyncSystem.doAjaxOperation(inputData, successCallBack,
failureCallBack);

waitsFor(function() {
return successCallBack.callCount > 0;
}, "operation never completed”, 10000);

runs(function() {
expect(successCallBack).toHaveBeenCalled();
expect(failureCallBack).not.toHaveBeenCalled();
D
b

bl

[48]



&KDSWHU

In the preceding code snippet, two Jasmine Spies are created usingasmine.
createSpy()  to replace the Ajax operation callbacks (the success callback and the
failure callback), and then the asynchronous system is called with the input data and
the success and failure callbacks (the two Jasmine Spies). ThwaitsFor()  provided
function waits for the calling of the success callback by using the callCount

property of the spy. If the success callback is not called after10000 milliseconds,

the test fails.

_In addition to the callCount property, Jasmine Spy has two other
% properties. mostRecentCall.args returns an array of the arguments
o from the last call to the Spy and argsForCall[i] returns an array of

the arguments from the call number i to the Spy.

YLQDOO\ W@k AlQek énsures that the success callback is called using the
spy matcher toHaveBeenCalled() (you can omit this line because it is already
known that the success callback is called from thewaitsFor  provided function;
however, | like to add this check for increasing the readability of the test) and
ensures that the failure callback is not called using the not keyword with the
toHaveBeenCalled() matcher.

. In addition to the toHaveBeenCalled() matcher,
% Jasmine Spies has another custom matcher, the
i toHaveBeenCalledWith(arguments) matcher, which
FKHFNV LI WKH VS\ LV FDOOHG ZLWK WKHJVSHFLAHG DUJXPHC(

The spyOn() function

In the previous section, we learned how to create a spy using thejasmine.

createSpy() APl in order to replace the Ajax callbacks with the spies for making a

complete real Ajax testing. The question that may come to mind now is whether it

is possible to make a fake Ajax testing using Jasmine if there is no server available

and you want to check that things will work correctly after the response comes

IURP WKH VHUYHU ,Q RWKHU ZRUGY LV LW SRVVLEOH WR PRFEN
The answer to this question is yes. The Ajax fake testing can be simulated using the

JasminespyOn() function, which can spy on the asynchronous operation and routes

LWV FDOOV WR D IDNH IXQFW L BogDn() LWbkk®V siyOnD Ccé&n sgyHW V VHH KRZ
on a callback, an instance method, a static method, or an object constructor.

[49]



Jasmine

The following code snippet shows how spyOn() can spy on an instance method
of the SimpleMath object:

SimpleMath = function() {
2

SimpleMath.prototype.getFactorial = function (number) {
/...

}
describe("Testing spyOn", function() {
it("should spy on instance methods", function() {
var simpleMath = new SimpleMath();

spyOn(simpleMath, 'getFactorial’);
simpleMath.getFactorial(3);

expect(simpleMath.getFactorial).toHaveBeenCalledWith(3);

Pk
D
The spyOn() method spies on the getFactorial method of the SimpleMath object.
The getFactorial method of the SimpleMath object is called with number 3.
Finally, the simpleMath.getFactorial spy knows that the instance method has

been called with number 3 using the toHaveBeenCalledWith matcher.

Spies‘are automatically removed after each spec. So make sure that you
e GHAQH W K Hoefote@Qadh K fdnction or within every spec separately.

In order to simulate the fake Ajax testing behavior, the spy has a powerful method,
which is the andCallFake(function) method that calls its function parameter when
the spy is called. The following code snippet shows you how to perform a fake Ajax
testing using Jasmine:

describe("when making a fake Ajax testing", function() {
it("should be done the Jasmine Spy and the andCallFake
function", function() {
var successCallBack = jasmine.createSpy();
var failureCallBack = jasmine.createSpy();
var successFakeData = "Succcess Fake Data ...";

spyOn(asyncSystem,

'‘doAjaxOperation’).andCallFake(function(inputData,

successCallBack, failureCallBack) {
successCallBack(successFakeData);

s

[50]



&KDSWHU

asyncSystem.doAjaxOperation(inputData, successCallBack,
failureCallBack);

expect(successCallBack).toHaveBeenCalled();
expect(failureCallBack).not.toHaveBeenCalled();

M
b

A spy is created on the doAjaxOperation ~ method of the asyncSystem object, and an
order is given to the spy through the andCallFake method to call the fake function
that has the same parameters of readoAjaxOperation ~ when a call is done to
original asyncSystem.doAjaxOperation . The fake function calls successCallBack
to simulate a successful Ajax operation. After calling asyncSystem.

doAjaxOperation, which does not go to the server anymore, thanks to the spy, as
LW H[HFXWHV WKH IDNH duc@sc0allBRIQ i e&kdd@Hatd Gas
been called while failureCallBack is checked that it has never been called during
the spec. Notice we are not using thewaits() , waitsFor() , orruns() functions
anymore in the fake testing because this test is fully performed on the client side so
there is no need to wait for a response from the server.

Besides theandCallFake(function) method, there are other

WKUHH XVHIXO PHWKRGV LQ WKH VS\ WKDW \RX PD\ XVH 7KH

is the andCallThrough() method, which calls the original

= function that the spy spied on when the spy was called. The
second one is theandReturn(arguments) method, which
returns the arguments parameter when the spy is called. Finally,
the andThrow(exception) method throws an exception when
the spy is called.

+70/ ¢ [WXUHV

+70/ A[W XaceHhe input HTML code that is needed for executing one or

more tests that require manipulating Document Object Model (DOM) elements.

-DVPLQH GRHV QRW SURYLGH DQ $3, IRU KDQGOLQJ +70/ A[WXUHV
However, fortunately, there are some extensions of the framework that provide this

functionality. One of the best plugins that provide this functionality is the jasmine-

jquery  plugin. Although jasmine-jquery JRHVY EH\RQG WKH +70/ A[WXUHV ORDGI
(it has a powerful set of matchers for the jQuery framework), | will focus only on its

+70/ A[WXUH IXQFWLRQDOLW\ DV WKLV LV ZKDW ZH QHHG DV -DYI
Jasmine in order to test our JavaScript applications even though the applications

are using a JavaScript library such as Dojo or jQuery or are not using any JavaScript

library at all.

[51]



Jasmine

&RQ¢JIXULQJ WKH MDVPLQH MTXHU\ SO

Inorderto FR Q A J X Yalsmiviétrery plugin with Jasmine we need to perform
the following steps:

1. '"RZQORDG WKH SO XJ Lh@psz/github @velesR/P
jasmine-jquery/downloads

2. Unpack the velesin-jasmine-jquery.zip (at the time of writing this
chapter, the version of jasmine-jquery plugin was 1.3.2).
3. Get thejasmine-jquery.js AOH IURP foldéHHand the jquery.js AOH
from the vendor\jquery folder.
4. Group the jasmine-jquery.js and jquery.js AOHV XQGHU D IROGHU

/HW V PDNH WKHijakRiaegttly Q D Rddally place the
jasmine-jquery folder under a plugins folder in the lib folder of Jasmine.
The following screenshot shows the structure of the Jasmine tests in the
weather application:

[52]




&KDSWHU

5. )LQDOO\ LQFOXGH WKﬁchNnﬁdRhtAnDH)@(OJQ DWKHWMKRZQ LQ WKH
highlighted lines of the following code snippet:
<script type="text/javascript" src="lib/jasmine-
1.2.0/jasmine.js"></script>

<script type="text/javascript" src="lib/jasmine-
1.2.0/jasmine-html.js"></script>

<l-- The plugin files -->

<script type="text/javascript" src="lib/plugins/jasmine-
jquery/jquery.js"></script>

<script type="text/javascript" src="lib/plugins/jasmine-
jquery/jasmine-jquery.js"></script>

<l--include spec files here... -->

The loadFixtures module

This AW X UH P Rj&sXiGehkyuRy allows loading the HTML content to be

XVHG E\ WKH WHVWV 6LPSO\ \RX FDQ SXW WKH A[WXUHV \RX ZDC
the spec\javascripts\fixtures conventional folder and use the loadFixtures

$3, WR ORDG WKH A[WXUH V 7KH IROORZLQJ FRGH VQLSSHW VKR
loadFixtures module:

beforeEach(function() {
loadFixtures("registrationFixture.html");

b

In the spec\javascripts\fixtures folder, the registrationFixture.html AOH LV
as shown in the following code snippet:

<label for="username">Username (Email) <span id="usernameMessage"
class="error"></span></label>

<input type="text" id="username" name="username"/>

<label for="password1">Password <span id="passwordMessagel"
class="error"></span></label>

<input type="password" id="password1l" name="password1"/>

<label for="password2">Confirm your password</label>
<input type="password" id="password2" name="password2"/>

[53]



Jasmine

<RX FDQ FKDQJH WKH GHIDXOW A[WXUHV SDWK LQVWHDG RI ZR

. spec\javascripts\fixtures conventional folder using:
~ jasmine.getFixtures().fixturesPath = '[The new path]’;
The loadFixtures $3, FDQ EH XVHG IRU ORDGLQJ PYOWLSOH A[WXUH®

the same test. You can use thdoadFixtures API as follows:
loadFixtures(fixtureUrl[, fixtureUrl, ...])

Once you use theloadFixtures $3, WR ORDG WKH A[WXUH V WKH A[WXUH LV
<div id="jasmine-fixtures"></div> container and added to the DOM using the

A[WXUH P Rxiuxe® d&te automatically cleaned up between tests so you do not

have to clean them up manually. For speeding up the tests,jasmine-jquery makes

DQ LQWHUQDO FDFKLQJ IRU WKH +70/ A[WXUHV LQ RUGHU WR DYR
GHFLGH WR ORDG WKH VDPH A[WXUH AOH PDQ\ WLPHV LQ WKH WH

M The loadFixtures(...) API is a shortcut for the jasmine.
Q getFixtures().load(...) so you can freely use any of
WKHP WR ORDG WKH +70/ A[WXUHV IRU WKH WHVWYV

In jasmine-jquery you have the option to write the HTML code inline without
KDYLQJ WR ORDG LW IURP DQ H[WHUQD®mALOH <RX FDQ GR WKLV
getFixtures().set(...) API as follows:

jasmine.getFixtures().set('<div id="someDiv">HTML code ...</div>");

While testing the weather application, both the load and set APIs will be used for
ORDGLQJ WKH WHVW A[WXUHYV

, UHFRPPHQG XVLQJ WKH LQOLQH DSSURDFK LI WKH +70/ A[WXL
OLQHV RI +70/ FRGH +RZHYHU LI WKH +70/ AfJWXUH LV ODUJH
EHWWHU WR ORDG LW IURP DQ H[WHUQDO AOH LQ RUGHU WR K
testing code.

~

This is all what we need to know from jasmine-jquery in order to load the
QHHGHG A[WXUHV IRU RXU WHVWV 7KH QH[W VWHS LV WR ZULWH
the weather application.

[54]




&KDSWHU

Testing the weather application

Now, we come to write the Jasmine tests for our weather application. Actually,

after you know how to write Jasmine tests for both synchronous and asynchronous

-DYD6FULSW FRGH DQG KRZ WR ORDG WKH +70/ A[WXUHV LQ \RXU
the previous sections, testing the weather application is an easy task. As you may

remember we have three major JavaScript objects in the weather application that

we need to write unit tests for: the LoginClient , RegistrationClient ,and

WeatherClient  objects.

One of the best practices that | recommend is to separate the JavaScript source and
testing code as shown in the preceding screenshot. There are two parent folders, one
for the JavaScript source, which | calljs-src ~ folder, and the other for the JavaScript
tests, which | call js-test ~ folder. The js-test  folder contains the tests written by
the testing frameworks that will be used in this book; for now, it contains a jasmine
folder that includes the Jasmine tests.

As indicated inthe & RQAJX UDMFIVWRICRQ -DVPLQH VWUXFWXUH FDQ EH PRGL
the organization of every web application. The preceding screenshot shows the

customized Jasmine structure for our weather application, under the jasmine folder;

we have two subfolders, the spec and thelib folders, while the src folder is now

represented in thejs-src  folder, which is directly under the js folder.

7KH IROORZLQJ FRGH VQLSSHW VKRZV WKH -DYD6FULSW AOHV LQ!
WKH MDVPLQH MTXHU\ AOHV WKH VSHPRBpARuinérhiniQ G WKH VRXUFH A
of the weather application according to the preceding screenshot:

<l-- The Jasmine files -->

<link rel="shortcut icon" type="image/png" href="lib/jasmine-1.2.0/
jasmine_favicon.png">

<link rel="stylesheet" type="text/css" href="lib/jasmine-1.2.0/
jasmine.css">

<script type="text/javascript" src="lib/jasmine-1.2.0/jasmine.js"></
script>

<script type="text/javascript" src="lib/jasmine-1.2.0/jasmine-html.
js"></script>

<l-- The jasmine-jquery files -->

<script type="text/javascript" src="lib/plugins/jasmine-jquery/jquery.
js"></script>

<script type="text/javascript" src="lib/plugins/jasmine-jquery/
jasmine-jquery.js"></script>

<l--include spec files here... -->
<script type="text/javascript" src="spec/LoginClientSpec.js"></script>
<script type="text/javascript" src="spec/RegistrationClientSpec.js"></

[55]




Jasmine

script>
<script type="text/javascript" src="spec/WeatherClientSpec.js"></
script>

<l--include source files here... -->

<script type="text/javascript" src="../../js-src/LoginClient.js"></
script>

<script type="text/javascript" src="../../js-src/RegistrationClient.
js"></script>

<script type="text/javascript" src="../../js-src/WeatherClient.js"></
script>

Testing the LoginClient object

In the LoginClient  object, we will unit test the following functionalities:

¥ Validation of empty username and password
t Validating that the username is in e-mail address format

T Validating that the password contains at least one digit, one capital
and small letter, at least one special character, and six characters or more

7KH IROORZLQJ FRGH VQLSSHW VIORNen®déd AUVW WHVW VXLWH RI
which tests the validation of empty username and password:

describe("LoginClientSpec", function() {
var loginClient;
var loginForm;

beforeEach(function() {
loadFixtures("loginFixture.html");

loginClient = new weatherapp.LoginClient();

loginForm = {
"userNameField" : "username",
"passwordField" : "password",
"userNameMessage" : "usernameMessage",
"passwordMessage" : "passwordMessage"
I3
»;

describe("when validating empty username and password",
function() {
it("should be able to display an error message when username
is not entered", function() {

[56]



&KDSWHU

document.getElementByld("username").value = ""; /* setting
username to empty */
document.getElementByld("password").value = "Admin@123";

loginClient.validateLoginForm(loginForm);

expect(document.getElementByld("usernameMessage").innerHTML).
toEqual("(field is required)");
i

it("should be able to display an error message when password

is not entered", function() {
document.getElementByld("username").value =
"someone@yahoo.com”;
document.getElementByld("password").value = "™; /*
setting password to empty */

loginClient.validateLoginForm(loginForm);

expect(document.getElementByld("passwordMessage").innerHTML).
toEqual("(field is required)");

D
Pk
/...
D
In the preceding code snippet, beforeEach ORDGV WKH +70/ A[WXUH RI WKH ORJLC
client test, creates an instance fromweatherapp.LoginClient, and creates the

loginForm  object, which holds the IDs of the login form that will be used in the test.
7KH IROORZLQJ FRGH VQLSSHW VKRZV WKH +70/ A[WXUH RI WKH O
loginFixture.html AOH

<label for="username">Username <span id="usernameMessage"
class="error"></span></label>

<input type="text" id="username" name="username"/>
<label for="password">Password <span id="passwordMessage"
class="error"></span></label>

<input type="password" id="password" name="password"/>

7KH AUVW VSHF Wdgh®liehy Vehfeptwhomdie able to display an error

message when username is not entered. It sets an empty value in theusername”

AHOG DQG WK vhi@atELDgdEdvh W KARI of the LoginClient  object. Finally,

it checks that the validateLoginForm API produces the "(field is required)"

PHVVDJH LQ WKH XVHUQDPH PHVVDJH AHOG 7KH VHFRQG VSHF L\
ZLWK WKH SDVVZRUG AHOG QRW ZLWK WKH XVHUQDPH AHOG

[57]



Jasmine

The following code snippet shows the second and the third test suites of
LoginClientSpec, which YDOLGDWHY WKH IRUPDWY RI WKH XVHUQDPH DQG

describe("when validating username format", function() {
it("should be able to display an error message when username
format is not correct", function() {
document.getElementByld("username").value = "someone@yahoo";
[* setting username to incorrect format */
document.getElementByld("password").value = "Admin@123";

loginClient.validateLoginForm(loginForm);

expect(document.getElementByld("usernameMessage").innerHTML).
toEqual("(format is invalid)");

h:
M

describe("when validating password format", function() {

it("should be able to display an error message when

password format is not correct", function() {
document.getElementByld("username").value =
"someone@yahoo.com";
document.getElementByld("password").value = "admin@123";
/* setting password to incorrect format */

loginClient.validateLoginForm(loginForm);

expect(document.getElementByld("passwordMessage").innerHTML).
toEqual("(format is invalid)");

b
b

In the precedng FRGH VQLSSHW WKH AUVW VXLWH WHVWV WKH YDOLGD
format. It tests that the LoginClient ~ object should be able to display an error

message when the username format is not correct. It sets an invalid e-mail value in

the "username” AHOG DQG W Kvhliatdt @yi@ForM W KPI of the LoginClient

object. Finally, it checks that the validateLoginForm API produces the "(format is

invalid)" PHVVDJH LQ WKH XVHUQDPH PHVVDJH AHOG

7KH VHFRQG VXLWH GRHVY WKH VDPH WKLQJ EXW ZLWK WKH SDVVZ
XVHUQDPH AHOG ,W HQWHUV D SDVVZRUG WKDW GRHV QRW FRPS
password rules; it enters a password that does not include a capital letter, and then

calls the validateLoginForm API of the LoginClient  object. Finally, it checks that

the validateLoginForm API produces the "(format is invalid)" message in the

SDVVZRUG PHVVDJH AHOG

[58]



&KDSWHU

It may not be always suitable while performing JavaScript unit testing
to test against the application messages because the application
messages can change at any time. However, in the weather application

Q‘ testing example, | performed testing on the application messages in
order to show you how to perform testing against the HTML DOM
elements. If you want to avoid testing against DOM elements, you can
test against thevalidateLoginForm API directly as follows:

expect(loginClient.validateLoginForm(loginForm)).
toEqual(true);

Testing the RegistrationClient object

In the RegistrationClient object, we will test the following functionalities:

t Validation of empty username and password

¥ Validation of matched passwords

t Validating that the username is in e-mail address format
¥

Validating that the password contains at least one digit, one capital and small
letter, at least one special character, and six characters or more

T Validating that the user registration Ajax functionality is performed correctly

7KH AUVW IRXU SRLQWYV ZLOO QRW EH H[SODLQHG EHFDXVH WKH\
that are explained in LoginClientSpec VR OHW V H[SODLQ KRZ WR FKHFN WKDW
registration functionality is done correctly. The following code snippet shows the

user registration test scenarios:

describe("RegistrationClientSpec", function() {
var registrationClient;
var registrationForm;
var userName;

beforeEach(function() {
loadFixtures("registrationFixture.html");

registrationClient = new weatherapp.RegistrationClient();

registrationForm = {
"userNameField" : "username”,
"passwordFieldl" : "passwordl",
"passwordField2" : "password2",
"userNameMessage" : "usernameMessage",
"passwordMessagel” : "passwordMessagel"

[59]




Jasmine

b
/[The user registration test scenarios

describe("when user registration is done", function() {

it("should be able to register valid user correctly”,
function() {

userName = "hazems" + new Date().getTime() + "@apache.org";

document.getElementByld("username").value = userName;
document.getElementByld("password1").value = "Admin@123";
document.getElementByld("password2").value = "Admin@123";

var successCallBack = jasmine.createSpy();
var failureCallBack = jasmine.createSpy();

registrationClient.registerUser(registrationForm,
successCallBack, failureCallBack);

waitsFor(function() {
return successCallBack.callCount > 0;
}, "registration never completed”, 10000);

runs(function() {
expect(successCallBack).toHaveBeenCalled();
expect(failureCallBack).not.toHaveBeenCalled();
»;
B

it("should fail when a specific user id is already
registered"”, function() {

document.getElementByld("username”).value = userName;
document.getElementByld("password1").value = "Admin@123";
document.getElementByld("password2").value = "Admin@123";

var successCallBack = jasmine.createSpy();
var failureCallBack = jasmine.createSpy();

registrationClient.registerUser(registrationForm,
successCallBack, failureCallBack);

waitsFor(function() {
return failureCallBack.callCount > 0;
}, "registration never completed”, 10000);

[60]



&KDSWHU

runs(function() {
expect(failureCallBack).toHaveBeenCalled();

expect(failureCallBack.mostRecentCall.args[0].xmlhttp.
responseText, "A user with the same username is already registered

)
expect(successCallBack).not.toHaveBeenCalled();
Pk
B
Pk
D

In the preceding code snippet, beforeEach ORDGV WKH A[WXUH Rl WKH UHJLVWUD
test, creates an instance fromweatherapp.RegistrationClient, and creates the

registrationForm object, which holds the IDs of the registration form that will

EH XVHG LQ WKH WHVW 7KH IROORZLQJ FRGH VQLSSHW VKRZV Wil
client test in the registrationFixture.htm| AOH

<label for="username">Username (Email) <span id="usernameMessage"
class="error"></span></label>

<input type="text" id="username" name="username"/>

<label for="password1">Password <span id="passwordMessagel"
class="error"></span></label>

<input type="password" id="passwordl" name="password1"/>

<label for="password2">Confirm your password</label>
<input type="password" id="password2" name="password2"/>

The registration testing suite has two main test scenarios:

T The registration client should be able to register valid user correctly

¥ The registration client should fail when registering a user ID that
is already registered

,Q WKH AUVW VSHF WKH UHJLVWUDWLRQ IRUP LV AOOHG ZLWK D Yl
SDVVZRUGY WKHQ WZR VSLHV DUH FUHDWHG 7KH AUVW VS\ UHSOTL
the second one replaces the failure callbackregistrationClient.registerUser

is called with the registration form, the success callback, and the failure callback

parameters and thewaitsFor()  function waits for a call to the success callback or it

will be timed out after 10000 milliseconds. Once waitsFor()  is completed, the runs

block checks that the success callback is called and the failure callback is not called for

ensuring that the registration operation is completed correctly.

[61]




Jasmine

Note that the Ajax testing of the weather application is real Ajax testing; this requires
the server to be up and running in order to perform the test correctly. If you want to
make fake Ajax testing, for example, for the successful user registration, you can do
this as you learned from the spyOn section as follows:

it("makes a fake registration Ajax call", function() {
document.getElementByld("username").value = userName;
document.getElementByld("password1").value = "Admin@123";
document.getElementByld("password2").value = "Admin@123";
var successCallBack = jasmine.createSpy();
var failureCallBack = jasmine.createSpy();

spyOn(registrationClient,

'registerUser’).andCallFake(function(registrationForm,

successCallBack, failureCallBack) {
successCallBack();

s

registrationClient.registerUser(registrationForm,
successCallBack, failureCallBack);

expect(successCallBack).toHaveBeenCalled();
expect(failureCallBack).not.toHaveBeenCalled();

s

,Q WKH VHFRQG VSHF WKH UHJLVWUDWLRQ IRUP LV AOOHG ZLWK
DOUHDG\ UHJLVWHUHG LQ WKH AUVW VSHF DQG WKHQ WZR VSLHV
replaces the success callback while the second one replaces the failure callback.
registrationClient.registerUser is called with the registration form, the

success callback, and the failure callback parameters and thevaitsFor()  function

waits for a call to the failure callback or it will be timed out after 10000 milliseconds.

OncewaitsFor()  is completed, theruns block checks that the failure callback is

called, and using expect(failureCallBack.mostRecentCall.args[0].xmlhttp.
responseText, "A user with the same username is already registered

..")  ensures that the server sends the correct duplicate registration failure message
to the failure callback. Finally, the spec checks that the success callback is not called
for ensuring that the registration operation is not done because of the already
registered user ID. This was all about the registration tests.

[62]




&KDSWHU

Testing the WeatherClient object

In the WeatherClient  object, we will test the following functionalities:

¥ Getting the weather of a valid location

T Getting the weather for an invalid location (the system should display an
error message for this case)

For testing the WeatherClient  object, the same technique that we used in the

registerUser test case is followed. | will leave this test for you as an exercise; you

can get the full source code of theweatherClientSpec.js AOH IURRapiatE H

IROGHU LQ WKH FRGH EXQGOH DYDLODEOH IURP WKH ERRN V ZHE

Running the weather application tests

In order to run the weather application tests correctly, you have to make sure that the

server is up and running in order to pass the Ajax test suites. So, you need to deploy

WKLV FKDSWHU V XSGDWHG YHUVLRQ RI WKH ZHDWKHU DSSOLFDW
in &KDSWBHQUL W 7HVWLQJ -DY D GRdthed Wp&is BOHrdwdaNther Q V

following URL to see the passing tests:

http://localhost:8080[or other Tomcat port]/weatherApplication/js/js-
test/jasmine/SpecRunner.html

Summary

In this chapter, you learned what Jasmine is and how to use it for testing synchronous

JavaScript code. You also learned how to test asynchronous (Ajax) JavaScript code

using Jasmine Spies and thewaitsFor / runs mechanism. You also learned how to

make fake Ajax testing using Jasmine. You learned the various matchers provided by

WKH IUDPHZRUN DQG NQRZ KRZ WR ORDG WKH +70/ A[WXUHV HDVL(
Finally, | explained how to apply all of these things for testing the weather application

using Jasmine. In the next chapter, you will learn how to work with the YUI Test

framework and how to use it for testing the weather application.

[63]







YUI Test

YUI Test is one of the most popular JavaScript unit testing frameworks. Although

YUI Test is part of the Yahoo! User Interface (YUI) JavaScript library (YUl is an

open source JavaScript and CSS library that can be used to build Rich Internet

Applications), it can be used to test any independent JavaScript code that does not

use the YUI library. YUI Test provides a simple syntax for creating JavaScript test

cases that can run either from the browser or from the command line; it also provides

a clean mechanism for testing asynchronous (Ajax) JavaScript code. If you are

familiar with the syntax of xUnit IUDPHZRUNV VXFK DV -8QLW \RX ZLOO AQG

familiar with the YUI Test syntax. In this chapter, the framework will be illustrated

in detail and will be used to test the weather application that is discussedin & KDSWHU
, 8QLW 7HVWLQJ -DYD6FULSW $SSOLFDWLRQV

In YUI Test, there are different ways to display test results. You can display the test
results in the browser console or develop your custom test runner pages to display
the test results. It is preferable to develop custom test runner pages in order to
display the test results in all the browsers because some browsers do not support the
console object. Theconsole object is supported in Firefox with Firebug installed,
Safari 3+, Internet Explorer 8+, and Chrome.

%HIRUH ZULWLQJ \RXU AUVW <8, WHVW \RX QHHG WR NQRZ WKH \
YUI test runner page. We will create the test runner page, BasicRunner.html

that will be the basis for all the test runner pages used in this chapter. In order

WR EXLOG WKH WHVW UXQQHU SDJH AUVW RI DOO \RX QHHG WR 1
A Qiirminjs  —from the Yahoo! Content Delivery Network (CDN)—in the

BasicRunner.html AOH DV IROORZV

<script src="http://yui.yahooapis.com/3.6.0/build/yui/yui-min.js"></
script>



YUI Test

At the time of this writing, the latest version of YUI Test is 3.6.0, which is the one
XVHG LQ WKLV FKDSWHU $IWHU LQFOXGLQJ WKH <8, -DYD6FULSW
FRQAJXUH D <8, LQVWMDM@uEeH XM La® fbllowk: H

YUI().use('test’, ‘console’, function(Y) {

D
The YUI().use  API takes the list of YUl modules to be loaded. For the purpose of
testing, we need the YUl 'testt  and'console’  modules (the 'test  module is
responsible for creating the tests, while the 'console’  module is responsible for
displaying the test results in a nifty console component). Then, the YUI().use API

WDNHVY WKH WHVW V FDO O E DNVNQIXKIKQFRWERNDYIIBsVdrel V FDOOHG
loaded. The Y parameter in the callback function represents the YUI instance.

As shown in the following code snippet taken from the BasicRunner.html AOH
you can write the tests in the provided callback and then create a console component
using the Y.Console object:

<HTML>
<HEAD>
<TITLE>YUITest Example</TITLE>

<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

<script src="http://yui.yahooapis.com/3.6.0/build/yui/yui-
min.js"></script>

</HEAD>

<BODY>
<div id="log" class="yui3-skin-sam" style="margin:0Opx"></div>

<script>

/I create a new YUI instance and populate it with the required
modules.

YUI().use('test’, ‘console’, function(Y) {

I/l Here write your test suites with the test cases
(tests)...

/[create the console

var console = new Y.Console({
style: 'block’,
newestOnTop : false

i

console.render('#log");

[66]




&KDSWHU

/I Here run the tests

s

</script>

</BODY>
</HTML>

The console object is rendered as a block element by setting thestyle attribute

to 'block' , and the results within the console can be displayed in the sequence of
their executions by setting the newestOnTop attribute to false . Finally, the console
component is created on thelog div element.

Now you can run the tests, and they will be displayed automatically by the YUI
console component. The following screenshot shows theBasicRunner.html AOH V
console component without any developed tests:

'ULWLQJ \RXU ¢¢UVW <8, WHVW

The YUI test can contain test suites, test cases, and test functions. A YUI test suite is

a group of related test cases. Each test case includes one or more test functions for the
JavaScript code. Every test function should contain one or more assertion in order to
perform the tests and verify the outputs.

The YUI Test.Suite  object is responsible for creating a YUI test suite, while the YUI
Test.Case object creates a YUI test case. Thadd method of the Test.Suite  object
is used for attaching the test case object to the test suite. The following code snippet
shows an example of a YUI test suite:

YUI().use('test’, ‘console’, function(Y){
var testcasel = new Y.Test.Case({

[67]




YUI Test

name: "testcasel”,

testFunctionl: function() {
/...
h
testFunction2: function() {
/...
}
»;

var testcase2 = new Y.Test.Case({
name: "testcase2"”,

testAnotherFunction: function() {
/...
}
»;

var suite = new Y.Test.Suite("Testsuite");

suite.add(testcasel);
suite.add(testcase?);

...
b

Asshownin WKH SUHFHGLQJ FRGH VQLSSHW WZR WHVW FDVHV DUH FU
named testcasel ; it contains two test functions, testFunctionl and testFunction2

In YUI Test, you can create a test function simply by starting the function name with

the word "test". The second test case is namedestcase2 ; and it contains a single test

function, testAnotherFunction . A test suite is created with the name Testsuite

Finally, testcasel and testcase2 are added to the Testsuite  test suite. In YUI Test,

you have the option of creating a friendly test name for the test function, as follows:

var testCase = new Y.Test.Case({
name: "some Testcase",
"The test should do X": function () {
/...

}

he test should do Y": function () {
/...

D

[68]




&KDSWHU

The "some Testcase"  test case contains two tests with the names'The test
should do X" and "The test should do Y"

/HW V QRZ PRYH Wsknpighratd Woav@Script Kisjlect (which we tested using
Jasmine in & KD S W B WV P LT@dHfollowing code snippet reminds you with the code
of the SimpleMath object:

SimpleMath = function() {
I3

SimpleMath.prototype.getFactorial = function (number) {

if (number < 0) {
throw new Error("There is no factorial for negative numbers");

}

else if (number == 1 || number == 0) {

/I If number <= 1 then number! = 1.
return 1;
}else {

/I If number > 1 then number! = number * (humber-1)!
return number * this.getFactorial(number-1);
}
}

SimpleMath.prototype.signum = function (number) {
if (number > 0) {
return 1;
} else if (number == 0) {
return O;
}else {
return -1;
}
}

SimpleMath.prototype.average = function (humberl, number2) {
return (numberl + number2) / 2;

}

[69]




YUI Test

Aswe didin & KD SW BV P, wewill develop the following three test scenarios for
the getFactorial method:

1t A positive number
¥ Zero
t A negative number

The following code snippet shows how to test calculating the factorial of a positive
number (3), 0, and a negative number (-10) using YUI Test:

YUI().use('test’, ‘console’, function(Y){
var factorialTestcase = new Y.Test.Case({
name: "Factorial Testcase",

_should: {
error: {
testNegativeNumber: true //this test should throw an error
}
h

setUp: function() {
this.simpleMath = new SimpleMath();
h
tearDown: function() {
delete this.simpleMath;
h
testPositiveNumber: function() {
Y.Assert.areEqual(6, this.simpleMath.getFactorial(3));
h
testZero: function() {
Y.Assert.areEqual(l, this.simpleMath.getFactorial(0));
h
testNegativeNumber: function() {
this.simpleMath.getFactorial(-10);
}
D

/...

D

TheY.Test.Case object declares a new test case calletfFactorial Testcase"
The setUp method is used to initialize the test functions in the test case; that is, the
setUp method is called once before the run of each test function in the test case.

[70]



&KDSWHU

In the setUp method, the simpleMath object is created usingnew SimpleMath()

The tearDown method is used to de-initialize the test functions in the test case; the
tearDown method is called once after the run of each test function in the test case.
In the factorial tests, the tearDown method is used to clean up resources by deleting
the createdsimpleMath  object.

,Q WKH AUVW W H V§WtFhdtd@dF W Li&straBe, thekKAdsert.areEqual
assertion function calls simpleMath.getFactorial(3) and expects the result to
be 6. If simpleMath.getFactorial(3) returns a value other than 6, the test fails.
We have many other assertions to use instead ofy.Assert.areEqual ; we shall be
discussing them in more detail in the $V V H UsactidhQ V

In the second test function of the getFactorial test case, they.Assert.areEqual

assertion function calls simpleMath.getFactorial(0) and expects it to be equal to
1. In the last test function of the getFactorial test case, they.Assert.areEqual
assertion function calls simpleMath.getFactorial(-10) and expects it to throw an

error by using the _should.error object. In YUI Test, if you set a property whose
QDPH LV WKH WHVW PHWKRGe Vin @® RBidubDép6 VY DigjextHhisV
means that this test method must throw an error in order to have the test function pass.

$IWHU A QD QuetFac®rial W Ktkst case, we come to a new test case that
tests the functionality of the signum method provided by the SimpleMath object.
The following code snippet shows the signum test case:

var signumTestcase = new Y.Test.Case({
name: "Signum Testcase",

setUp: function() {
this.simpleMath = new SimpleMath();
h
tearDown: function() {
delete this.simpleMath;
h
testPositiveNumber: function() {
Y.Assert.areEqual(l, this.simpleMath.signum(3));
h
testZero: function() {
Y.Assert.areEqual(0, this.simpleMath.signum(0));
h
testNegativeNumber: function() {
Y.Assert.areEqual(-1, this.simpleMath.signum(-1000));
}
»;

[71]



YUI Test

In the preceding code snippet, we have three tests for thesignum method:

t 7KH AUVW WHVW LV DERXW JHWWLQJ WKH3WLJQXP YDOXH IR
¥ The second test is about getting the signum value for0
T The last test is about getting the signum value for a negative number (-1000 )

The following code snippet shows the average test case:

var averageTestcase = new Y.Test.Case({
name: "Average Testcase",

setUp: function() {
this.simpleMath = new SimpleMath();
h
tearDown: function() {
delete this.simpleMath;
h
testAverage: function() {
Y.Assert.areEqual(4.5, this.simpleMath.average(3, 6));
}
D;

In the average test case, thaestAverage test function ensures that the average is
calculated correctly by calling the average method, using the two parameters 3 and
6, and expecting the result to be4.5 .

In the following code snippet, a test suite "SimpleMath Test Suite" is created
in order to group the test casesfactorialTestcase , SignumTestcase , and
averageTestcase . Finally, the console component is created to display the
test results.

var suite = new Y.Test.Suite("SimpleMath Test Suite");

suite.add(factorialTestcase);
suite.add(signumTestcase);
suite.add(averageTestcase);

/[create the console

var console = new Y.Console({
style: 'block’,
newestOnTop : false

b

console.render(‘#resultsPanel’);

Y.Test.Runner.add(suite);
Y.Test.Runner.run();

[72]



&KDSWHU

In order to run the test suite, we need to add it to the YUI test runner page by using the

Y.Test.Runner.add API, and then run the YUI test runner page by using the Y.Test.

Runner.run  API. After clicking the SimpleMath YUI test page SimpleMathTests.

html \RX ZLOO AQG WKH WHVW UHVXOWV DV VKRZQ LQ WKH IROORZ

Finally, the following code snippet shows the complete structure of the SimpleMath
YUI test page, which includes the simpleMath.js VRXUFH AOH WR EH WHVWHG LQ W/

<HTML>
<HEAD>

<TITLE>SimpleMathTest</TITLE>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
<script src="http://yui.yahooapis.com/3.6.0/build/yui/yui-
min.js"></script>
<script src="src/simpleMath.js"></script>

</HEAD>
<BODY>
<div id="resultsPanel" class="yui3-skin-sam"></div>
<script language="javascript" type="text/javascript">
YUI().use('test', ‘console’, function(Y){
var factorialTestcase = new Y.Test.Case({

B

[73]




YUI Test

var signumTestcase = new Y.Test.Case({
| N
var averageTestcase = new Y.Test.Case({
)
var suite = new Y.Test.Suite("SimpleMath Test Suite");

suite.add(factorialTestcase);
suite.add(signumTestcase);
suite.add(averageTestcase);

/lcreate the console and run the test suite ...

D
</script>
</BODY>
</HTML>

It is recommended that you separate the test logic from the test
. UXQQHU AOH V WKDW LV KDYH WKH WHVWV]LQ VHSDUDWH -D°
~ WKHQ LQFOXGH WKHP LQ WKH WHVW UXQQHUJAOH V +RZHYHU

HPEHGGHG LQ WKH W H \siplgMathQ Hesting exdmple W JH

for simplicity. Inthe 7HVWLQJ WKH ZH Bétidn] thisBGIDIOLFPWLRQ

separation will be applied.

Assertions

An assertion is a function that validates a condition if the condition is not valid;

it throws an error that causes the test to fail. A test method can include one or more
assertions; all the assertions have to pass in order that the test method passes. In the
AUVW <8, WHVW H[DP 8.8skbrt.atdEqdaV H Gas¥eridh. In this section,

the other different built-in assertions provided by YUI Test will be illustrated.

The assert assertion

Theasset IXQFWLRQ WDNHV WZR SDUDPHWHUV 7KH AUVW SDUDPHW
the second parameter represents a failure message. It is passed if the condition is
true, and when it fails, the failure message is displayed. For example:

[74]




&KDSWHU

Y.assert(10 == 10, "Error ..."); // will pass
Y.assert(10 '= 10, "Error ..."); // will fail and display an error

/7KH DUH(TXDO DQG DUH1IRW(TXDO DVYV

The areEqual assertion IXQFWLRQ WDNHV WKUHH SDUDPHWHUV WKH AUVW
represent the expected and actual values, and the third parameter is optional and

represents a failure message. ThaareEqual function is passed if the actual is equal

to the expected. If they are not equal, the test fails and the optional failure message

is displayed. The areNotEqual  function ensures that the actual and expected

parameters are not equal.

It is very important to know that the areEqual and areNotEqual functions are using
the JavaScript== operator to perform the comparison, that is, they do the comparison
and neglect the types. For example, the following assertions will pass:

Y.Assert.areEqual(10, 10, "10 should equal 10...");
Y.Assert.areEqual(10, "10", "10 should equal '10'...");
Y.Assert.areNotEqual(10, 11, "10 should not equal 11...");

(KH DUH6DPH DQG DUH1RWG6DPH DVVH

The areSame and areNotSame assertion functions are much similar to the areEqual
and areNotEqual assertions. The main difference between them is that theareSame
and areNotSame assertion functions use the=== operator for comparison, that is,
they compare both the values and the types of the actual and expected parameters.
For example, the following assertions will pass:

Y.Assert.areSame(10, 10, "10 is the same as 10...");
Y.Assert.areNotSame(10, 11, "10 is not the same as 11...");
Y.Assert.areNotSame(15, "15", "15 is not the same as '15"...");
Y.Assert.areNotSame(15, "16", "15 is not the same as '16"...");

The datatype assertions
The following set of assertion functions in YUl Test checks the value types. Each one
Rl WKHVH DVVHUWLRQ IXQFWLRQV WDNHV WZR SDUDPHWHUV WK}
test and the second parameter is an optional failure message:
T isBoolean() is passed if the value is a Boolean
T isString() is passed if the value is a string
T isNumber() is passed if the value is a number
T isArray() is passed if the value is an array

[75]




YUI Test

¥ isFunction() is passed if the value is a function
T isObject() is passed if the value is an object

For example, the following assertions will pass:

Y.Assert.isBoolean(false);
Y.Assert.isString("some string");
Y.Assert.isNumber(1000);
Y.Assert.isArray([1, 2, 3]);
Y.Assert.isFunction(function(){ alert('test’); });
Y.Assert.isObject({somekey: 'someValue'});

YUI Test also provides generic assertion functions,isTypeOf and isinstanceOf
to check the datatypes.

TheisTypeOf() method uses the JavaScriptypeof operator in order to check the

YDOXH W\SH ,W WDNHV WKUHH SDUDPHWHUV WKH AUVW SDUDPHW
the second represents the value to test, and the third parameter is optional and

represents a failure message. For example, the followingisTypeOf assertions will pass:

Y.Assert.isTypeOf("boolean”, false);
Y.Assert.isTypeOf("string", "some string");
Y.Assert.isTypeOf("number"”, 1000);
Y.Assert.isTypeOf("object", [1, 2, 3]);
Y.Assert.isTypeOf("function”, function(){ alert('test’); });
Y.Assert.isTypeOf("object", {somekey: 'someValue'});

In addition to all of this, you can use the isinstanceOf  assertion, which uses the

JavaScriptinstanceof ~ operator in order to check the value instance. It takes three

SDUDPHWHUV WKH AUVW SDUDPHWHU UHSUHVHQWYV WKH W\SH FRQ
the value to test, and the third parameter is optional and represents a failure message.

Special value assertions

The following set of assertion functions in YUl Test checks whether a variable value
belongs to one of the special values as mentioned in the following list. Each one of
WKHVH IXQFWLRQV WDNHV WZR SDUDPHWHUV WKH AUVW SDUDPH
second parameter is an optional failure message:
T isUndefined() LV SDVVHG LI WKH YDOXH LV XQGHAQHG
T isNotUndefined() LV SDVVHG LI WKH YDOXH LV QRW XQGHAQHG G
T isNull) is passed if the value is null
T isNotNull() is passed if the value is not null
t

isNaN() is passed if the value is not a number (NaN)

[76]



&KDSWHU

T isNotNaN() is passed if the value is not NaN
T isFalse() is passed if the value is false
T isTrue() is passed if the value is true

For example, the following assertions will pass:

this.someStr = "some string";
Y.Assert.isUndefined(this.anyUndefinedThing);
Y.Assert.isNotUndefined(this.someStr);
Y.Assert.isNull(null);
Y.Assert.isNotNull(this.someStr);
Y.Assert.isNaN(1000 / "string_value");
Y.Assert.isNotNaN(1000);
Y.Assert.isFalse(false);

Y.Assert.isTrue(true);

The fail assertion

In some situations, you may need to fail the test manually, for example, if you want

WR PDNH \RXU RZQ FXVWRP DVVHUWLRQ IXQFWLRQ WKDW HQFDSV
logic. In order to do this, YUI Test provides the fail() method to fail the test

manually. The Y.Assert.isAverage assertion is an example of a custom assertion

that uses thefail() method:

Y.Assert.isAverage = function(numberl, number2, expected,
failureMessage) {
var actual = (numberl + number2) / 2;
if (actual != expected) {
Y.Assert.fail(failureMessage);
}
}

The Y.Assert.isAverage custom assertion can be called by simply using
the following code:

Y.Assert.isAverage(3, 4, 3.5, "Average is incorrect”);

The fail() method has an optional message parameter that is
o displayed when the fail() method is called.

[77]



YUI Test

Testing asynchronous (Ajax) JavaScript
code

The common question that comes to mind is how to test asynchronous (Ajax)
JavaScript code using YUI Test. What was mentioned earlier in this chapter so far is
how to perform unit testing for synchronous JavaScript code. YUI Test provides two
main APlIs in order to perform real Ajax testing: wait() and resume() . Although the
provided APIs of the YUI Test to perform real Ajax testing are not as rich as Jasmine
(the provided YUI Test APIs do not, for example include something like spies or the
-DVPLQH V DwaksFerP Dridthadnism), they are enough to perform a real Ajax
test. Let me show you how to do this.

The wait and resume functions

Thewait) functon KDV WZR PRGHV RI RSHUDWLRQ ,WV AUVW PRGH SD:
of the test until its timeout period passes. For example:

this.wait(function() {
Y.Assert.isAverage(3, 4, 3.5, "Average is incorrect");
}, 1000);

This code pauses the test fortoo0 PLOOLVHFRQGY DQG DIWHU WKDW LWV IXQF
argument is executed.

The second mode of operation pauses the execution of the test until it is resumed
using the resume() function; if it is not resumed using the resume() function, the
test fails. Using the second mode of operation, we can perform a real Ajax testing
using YUI Test, as shown in the following code snippet:

/I Inside a test function
var this_local = this;

var successCallback = function(response) {
this_local.resume(function() {
/I Assertions goes here to the response object...
i
2

[78]



&KDSWHU

var failureCallback = function(response) {
this_local.resume(function() {

fail(); /* failure callback must not be called for successful
scenario */

M
h

asyncSystem.doAjaxOperation(inputData, successCallback,
failureCallback);

this.wait(5000); /* wait for 5 seconds until the resume is called
or timeout */

As shown in the preceding code snippet, two callbacks are created; one of

them represents the successful callback fuccessCallback ) that is called

if the Ajax operation succeeds, and the other one represents the failure

callback (failureCallback ) that is called if the Ajax operation fails. In both
successCallback  and failureCallback , acall to theresume() APl is donein
order to notify the wait() API that the server response is returned. Theresume()
API has a single argument that represents a function that can have one or more
assertions. InsuccessCallback , the argument function of the resume() API
can carry out assertions on theresponse parameter, which is returned from

the server response to verify that the server returns the correct results, while in
failureCallback , the argument function of the resume() API forces the test to
fail because it must not be called if the operation is completed successfully.

, I WKH $MD[ UHVSRQVH LV QRW UHWXUQHG IURP WKH VHUYHU DIW
set this to whatever duration you want), the wait() APl will cause the test to fail.

$OWKRXJIK WKLV LV D PDQXDO PHW KwiGFoD &8t/ HG WR -DVPLQH
it is enough for real Ajax testing and will be used in order to test the Ajax part of the

weather application in the next section.

Testing the weather application

Now we come to developing the YUI tests for our weather application. Actually,
after you know how to write YUI tests for both synchronous and asynchronous
JavaScript (Ajax) code, testing the weather application is an easy task. As you
remember from the previous two chapters, we have three major JavaScript objects
in the weather application that we need to develop tests for—the LoginClient
RegistrationClient , and WeatherClient  objects.

[79]




YUI Test

Two subfolders, yuitest andtests |, are created under thejs-test  folder (thus:
yuitest\tests ) to contain the YUI tests, as shown in the following screenshot:

%HFDXVH FXUUHQWO\ <8, 7THVW GRHV QRW KDYH DQ $3, WR ORDG W
are included as part of the HTML test runner pages. As shown in the preceding
VFUHHQVKRW WKHUH DUH WKUHH +70/ AOHV WKDW FRQWDLQ WKH -

test—LoginClientTest.html , RegistrationClientTest.html , and

WeatherClientTest.html (YHU\ +70/ AOH DOVR LQFOXGHV WKH VRXUFH DQC
WHVW -DYD6FULSW REMHFWYV 7kbiiCkéntDestis WKUHH <8, WHVW AOHV
RegistrationClientTest.js , and WeatherClientTest.js ) that test the

main three JavaScript objects of the application.

Testing the LoginClient object

Aswhatwe didin &KDSWBWVPIhGd 7HVWLQJ WKH /R 3$edoctOLHQW REMHFW
we will perform unit testing for the following functionalities:

¥ Validation of empty username and password

t Validating that the username is in e-mail address format

T Validating that the password contains at least one digit, one capital and
small letter, at least one special character, and six characters or more

[80]



&KDSWHU

In order to perform this test, two test cases are created; one for testing the validation

Rl WKH HPSW\ AHOGV WKH XVHUQDPH DQG SDVVZRUG DQG WKH F
YDOLGDWLRQ RI WKH AHOGV IRUPDWV 7KH WZR WHVW FDVHV DU
LoginClient Test Suite . The following code snippet shows the validation of the

HPSW\ AHOGV W HagWClienBrdsts L Q WAKTHH

var emptyFieldsTestcase = new Y.Test.Case({
name: "Empty userName and Password fields validation Testcase",

setUp: function() {
this.loginClient = new weatherapp.LoginClient();

this.loginForm = {
"userNameField" : "username”,
"passwordField" : "password",
"userNameMessage" : "usernameMessage",
"passwordMessage" : "passwordMessage”
J2
h
tearDown: function() {
delete this.loginClient;
delete this.loginForm;
h
testEmptyUserName: function() {
document.getElementByld("username”).value = ""; /* setting
username to empty */
document.getElementByld("password").value = "Admin@123";

this.loginClient.validateLoginForm(this.loginForm);

Y.Assert.areEqual(“(field is required)”,
document.getElementByld("usernameMessage").innerHTML);

h

testEmptyPassword: function() {
document.getElementByld("username").value =
"someone@yahoo.com”;
document.getElementByld("password").value = "™; /* setting
password to empty */

this.loginClient.validateLoginForm(this.loginForm);

Y.Assert.areEqual(“(field is required)”,
document.getElementByld("passwordMessage”).innerHTML);

}
b

[81]



YUI Test

In the preceding code snippet, the setUp method creates an instance from
weatherapp.LoginClient and creates theloginForm  object, which holds
the IDs of the HTML elements that are used in the test.

testEmptyUserName  tests whether the LoginClient ~ object is able to display an error
message when the username is not entered. It sets an empty value in theisername
AHOG DQG W KVa@atELbgdEdivh W KARI of the LoginClient  object. Then it
checks whether the validateLoginForm API produces the "(field is required)"
message in theusernameMessage AHOG E\ X VY.AQel AMKgHal assertion.

testEmptyPassword  does the same thing, but with the password AHOG QRW ZLWK WKH
username AHOG

The following code snippet shows the second test case, which validates the formats
Rl WKH AHOGV XVHUQDPH D@i®li&aéysZRUCGAAH) WKH

var fieldsFormatTestcase = new Y.Test.Case({
name: "Fields format validation Testcase",

setUp: function() {
this.loginClient = new weatherapp.LoginClient();

this.loginForm = {
"userNameField" : "username",
"passwordField" : "password",
"userNameMessage" : "usernameMessage",
"passwordMessage" : "passwordMessage"
h
h
tearDown: function() {

delete this.loginClient;

delete this.loginForm;
h
testUsernameFormat: function() {

document.getElementByld("username").value =
"someone@someDomain";/* setting username to invalid format */
document.getElementByld("password").value = "Admin@123";

this.loginClient.validateLoginForm(this.loginForm);

Y.Assert.areEqual("(format is invalid)",
document.getElementByld("usernameMessage").innerHTML);
h
testPasswordFormat: function() {
document.getElementByld("username").value =

[82]



&KDSWHU

"someone@someDomain.com";
document.getElementByld("password").value = "Admin123"; /*
setting password to invalid format */

this.loginClient.validateLoginForm(this.loginForm);

Y.Assert.areEqual("(format is invalid)", document.getElementByld("
passwordMessage").innerHTML);

}
b

In the preceding code snippet, testUsernameFormat  tests the validation of the
username format. It tests whether the LoginClient  object should be able to

display an error message when the username format is not valid. It sets an invalid
e-mail value in the username AHOG D QG W KvalifatdE &ioForv W KPI of

the LoginClient  object. Finally, it checks whether the validateLoginForm API
produces the "(format is invalid)" message in theusernameMessage AHOG E\
using the Y.Assert.areEqual assertion.

testPasswordFormat HQWHUY D SDVVZRUG WKDW GRHV QRW FRPSO\ ZLW
password rules; it enters a password that does not include a capital letter and then

calls the validateLoginForm API of the LoginClient REMHFW W AQDOO\ FKHFNV
whether the validateLoginForm API produces the "(format is invalid)"

message in thepasswordMessage AHO G

emptyFieldsTestcase and fieldsFormatTestcase are added to the LoginClient
test suite, the YUI console is created, the test suite is run, and the test results are
displayed in the console component, as shown in the following code snippet from
the LoginClientTest.js AOH

var suite = new Y.Test.Suite("LoginClient Test Suite");

suite.add(emptyFieldsTestcase);
suite.add(fieldsFormatTestcase);

/lcreate the console

var console = new Y.Console({
style: 'block’,
newestOnTop : false

D

console.render(‘#resultsPanel’);

Y.Test.Runner.add(suite);
Y.Test.Runner.run();

[83]



YUI Test

)LQDOO\ WKH IROORZLQJ FRGH VQLSSH Wogih&IiBZ V tasK H +70/ A[WXUF

suite in the LoginClientTest.html AOH ,W LQFOXGHV WKH XVHUQDPH DQG SD
AHOGV WKH <, FROMPRIOQW DQG ERWK WKH VRXUFH -DYD6FULSW |
(LoginClient.js DQG WKH WHVW -D Y D§iclkthtSedtjsR EMHFW AOH

<label for="username">Username <span id="usernameMessage"
class="error"></span></label>

<input type="text" id="username" name="username"/>

<label for="password">Password <span id="passwordMessage"
class="error"></span></label>

<input type="password" id="password" name="password"/>

<div id="resultsPanel" class="yui3-skin-sam"></div>

<script type="text/javascript" src="../../../js-src/LoginClient.js"></
script>
<script type="text/javascript" src="LoginClientTest.js"></script>

Testing the RegistrationClient object

In the RegistrationClient object, we will verify the following functionalities:

1 Validation of empty username and passwords

¥ Validation of matched passwords

¥ Validating that the username is in e-mail address format
t

Validating that the password contains at least one digit, one capital and small
letter, at least one special character, and six characters or more

¥ Validating that the user registration Ajax functionality is performed correctly

7 KH AfdbifWictionalities will be skipped because they are pretty similar to the

tests that are explained in the LoginClient WHVW VXLWH VR OHW V OHDUQ KRZ W
whether the user registration (the registerUser test case) Ajax functionality is

performed correctly.

The registerUser test case covers the following test scenarios:
¥ Testing the adding of a new user through the testAddNewUser test function.

The registration client object should be able to register a valid user correctly.

¥ Testing the adding of a user with an existing user ID through the
testAddExistingUser test function. In this case, the registration client object
should fail when registering a user whose ID is already registered.

[84]




&KDSWHU

The following code snippet shows the testAddNewUser

test function of the

registerUser test case in theRegistrationClientTest.js AOH satpH
method creates an instance fromweatherapp.RegistrationClient and creates the
registrationForm object, which holds the IDs of the registration form that will be

used in the test.

var registerUserTestcase = new Y.Test.Case({
name: "RegisterUser Testcase",

setUp: function() {

this.registrationClient = new weatherapp.RegistrationClient();

this.registrationForm = {
"userNameField" : "username”,
"passwordField1" : "passwordl1",
"passwordField2" : "password2",
"userNameMessage" : "usernameMessage",
"passwordMessagel” : "passwordMessagel"
h
h
tearDown: function() {
delete this.registrationClient;
delete this.registrationForm;
h
testAddNewUser: function() {

this.userName = "hazems" + new Date().getTime() +
"@apache.org";

document.getElementByld("username”).value = this.userName;
document.getElementByld("passwordl1").value = "Admin@123";
document.getElementByld("password2").value = "Admin@123";

var this_local = this;
var Y_local = Y;

var successCallback = function(response) {
var resultMessage = response.xmlhttp.responseText;
this_local.resume(function() {

Y_local.Assert.areEqual("User is registered successfully
...", resultMessage);

B
k

var failureCallback = function() {

[85]



YUI Test

this_local.resume(function() {
fail();
i
h

this.registrationClient.registerUser(this.registrationForm,
successCallback, failureCallback);

this.wait(5000); /* wait for 5 seconds until the resume is
called or timeout */

}
D
In the testAddNewUser WHVW IXQFWLRQ WKH UHJLVWUDWLRQ IRUP LV AO
generated username and valid matched passwords, and then two callbacks are
FUHDWHG 7KH AUVW FDOOEDFN LV WKH VXFFHVV FDOOEDFN ZKL:
callback. registrationClient.registerUser is called with the registration form,

the success callback, and the failure callback parametersthis.wait(5000) waits for
a call from the resume() API, or it fails after 5000 milliseconds.

In the success callback, thaesume() API is called, and the resume() function
parameter ensures that the returned response message from the server i¥Jser is
registered successfully ... using the areEqual assertion.

In the failure callback, the resume() API is also called, and theresume() function
parameter ensures that the test fails by using thefail) ~ API because the failure
callback must not be called for a valid user registration.

The YUI Test Ajax testing of the weather application is U HApaftesting; ]

[ this requires the server to be up and running in order to perform the

test correctly.

The following code snippet shows the testAddExistingUser test function of the
registerUser test case in theRegistrationClientTest.js AOH

var registerUserTestcase = new Y.Test.Case({

testAddExistingUser: function() {

document.getElementByld("username").value = this.userName;
document.getElementByld("password1").value = "Admin@123";
document.getElementByld("password2").value = "Admin@123";

var this_local = this;
var Y_local = Y;

[86]




&KDSWHU

var successCallback = function() {
this_local.resume(function() {
fail();
i
h

var failureCallback = function(response) {
var resultMessage = response.xmlhttp.responseText;
this_local.resume(function() {

Y_local.Assert.areEqual("A user with the same username is
already registered ...", resultMessage,);

B
k

this.registrationClient.registerUser(this.registrationForm,
successCallback, failureCallback);

this.wait(5000); /* wait for 5 seconds until the resume is called
or timeout */

}
b

In the testAddExistingUser test funcion WKH UHJLVWUDWLRQ IRUP LV AOOHG Z
same username that is already registered in thetestAddNewUser test function,
DQG WKHQ WZR FDOOEDFNV DUH FUHDWHG 7KH AUVW FDOOEDFN

the second one is the failure callback.registrationClient.registerUser is
called with the registration form, the success callback, and the failure callback
parameters. Thethis.wait(5000) waits for a call to the resume() API or it fails

after 5000 milliseconds.

In the success callback, thaesume() API is called, and the resume() function
parameter ensures that the test fails by using thefail) APl because the success
callback must not be called when registering a user whose ID is already registered.

In the failure callback, the resume() API is also called, and theresume() function
parameter ensures that the returned failure response message from the server

is A user with the same username is already registered ... using the
areEqual assertion.

[87]




YUI Test

)LQDOO\ WKH IROORZLQJ FRGH VQLSSHW VKRZV WKH +70/ A[WXUF
RegistrationClient test suite in the RegistrationClientTest.html AOH

W LQFOXGHV WKH XVHUQDPH DQG SDViV 2Rhk6t, &ld bothY WKH <8, FR
WKH -DYDG6FUL S WegistRiliohORdrt.jA O H V and LoginClient.js , because

RegistrationClient.js depends on LoginClient.js and on the JavaScript test

A QRElistrationClientTest.js

<label for="username">Username (Email) <span id="usernameMessage"
class="error"></span></label>
<input type="text" id="username" name="username"/><br/>

<label for="password1">Password <span id="passwordMessagel"
class="error"></span></label>
<input type="password" id="password1" hame="password1"/><br/>

<label for="password2">Confirm your password</label>
<input type="password" id="password2" hame="password2"/><br/>

<div id="resultsPanel" class="yui3-skin-sam"></div>

<script type="text/javascript" src="../../../js-src/LoginClient.js"></
script>

<script type="text/javascript" src="../../../js-src/
RegistrationClient.js"></script>

<script type="text/javascript" src="RegistrationClientTest.js"></
script>

Testing the WeatherClient object

In the WeatherClient  object, we will test the following functionalities:

1t Getting the weather for a valid location

¥ Getting the weather for an invalid location (the system should display
an error message for this case)

To test the WeatherClient  object, the same technique that we used in the
registerUser test case is followed. Developing this test will be left for you as
an exercise. You can get the full source code for theweatherClientTest.js and
WeatherClientTest.html AOHV | UGhaptaNK Holder in the code bundle
DYDLODEOH RQ WKH ERRN V ZHEVLWH

[88]



&KDSWHU

To get the test source code, all that you need to do is to unzip the
weatherApplication.zip AOH DQG \RX ZLOO EH DEOH WR AQG DOO WKH <

tests folder in weatherApplication\WebContent\js\js-test\yuitest

Running the weather application tests

In order to run the weather application tests correctly, you have to make sure that

the server is up and running or the application will not pass the Ajax tests. So, you

QHHG WR GHSOR\ WKLY FKDSWHU V XSGDWHG YHUVLRQ RI WKH ZF
as explainedin &KDSWBHQUL W 7HVWLQJ -DYD6and thé&nwypd 8.8 irke DW LR QV
IROORZLQJ 85/V LQ WKH EURZVHU V DGGUHVV EDU

T http://localhost:8080/weatherApplication/js/js-test/yuitest/
tests/LoginClientTest.html

T http://localhost:8080/weatherApplication/js/js-test/yuitest/
tests/RegistrationClientTest.html

T http://localhost:8080/weatherApplication/js/js-test/yuitest/
tests/WeatherClientTest.html

M 'RQ W ZRUU\ \RX GR QRW QHHG WR GR WKLV HYHU\ WLPH \RX
Q Test pages. Checkthe, QW HJUDWLRQ ZLWK EXkdidda PDRPDIJHPHQW WRROV
to learn how to automate the running of the YUI Test pages.

Generating test reports

Inthe , QW HIJUDWLRQ ZLWK E Xkeddp, PUD Tebt BEléhiHi® Diivelr RR O V
is used to generate JUnit XML reports automatically without using the YUI Test
reporting APIs. You may jump to that section if you are not interested in digging

into the YUI Test reporting APIs.

YUI Test has a powerful feature, test reporting. Once the test completes its execution

DQG WKH WHVW UHVXOW V REMHFW LV UHWULHYHG \RX FDQ SRV\
servlet, PHP, or another server-side object)yto JHQHUDWH WKH UHSRUW )LUVW RI DC
KRZ WR UHWULHYH WKH WHVW UHVXOW V REMHFW

,Q RUGHU WR UHWULHYH WKH WHVW UWUH&RWErY REMHFW \RX QHH

getResults() API. Unfortunately, The Y.Test.Runner.getResults() API expects
you to call it when the test is completed; in other words, it does not wait for the tests
to complete its executions. If you call the Y.Test.Runner.getResults() APl and

the tests are still running, the API will return  null

[89]



YUI Test

However, to make sure that the test is completed, you have one of two options:

t 7KH AUVW LYsRwiRnggV HARVIK tHe TestRunner interface, which
UHWXUQV WUXH LI WKH WHVW LV VWLOO UXQQLQJ DQG IDOVH
The following code snippet shows you how to call the Y.Test.Runner.
getResults() API properly and ensure, using the isRunning()  API,
that it will not be called while the test is running:

var intervallD = window.setInterval(function() {
if (! Y.Test.Runner.isRunning()) {
var results = Y.Test.Runner.getResults();

/I Do whatever you want with the results

window.clearInterval(intervallD);

}
}, 1000);
The code is simple;window.setInterval calls the Y.Test.Runner.
isRunning() APl every 1000 milliseconds and waits until Y.Test.Runner.
isRunning()  returns false. When Y.Test.Runner.isRunning() returns
false, the Y.Test.Runner.getResults() API can be called safely, and
then the execution of window.setInterval is stopped by calling window.

clearinterval(intervallD)

T The second option, which is the recommended one, is to subscribe in the YUI
test runner complete event (Y.Test.Runner. COMPLETE_EVENT ), as shown in
the following code snippet:

function processTestResults() {
var results = Y.Test.Runner.getResults();

/I Do whatever you want with the results

}

Y.Test.Runner.subscribe(Y.Test.Runner. COMPLETE_EVENT,
processTestResults);

<RX FDQ XVH WKH <8subyérita)W B @ Qrietto\subscribe in
WKH WHVW UXQQH U pybcesRrEsBResHtyY H ild tiélapant handler
that is called once the event is completed. In theprocessTestResults event
handler, it is safe to call the Y.Test.Runner.getResults() API to get the
test results.

[90]




&KDSWHU

In YUI Test, there are many types of events that can be subscribed to.
There are events on the level of the test, test case, test suite, and the

M test runner. The preceding code snippet is an example of an event on
the test runner level. To get a complete reference for all the YUl Test
events, check the following URL:

http://yuilibrary.com/yui/docs/api/classes/Test.
L Runner.html#Events

After gettingthe WHVW UHVXOWY OHW V OHDUQ KRZ WR SRVW WKH UHYV
to generate the report. The following code snippet shows how to send the

test results data in JUnit XML format to the server. This code is part of the

RegistrationClientTest.js AOH

Y.Test.Runner.add(suite);

function processTestResults() {
var results = Y.Test.Runner.getResults();
var reporter = new
Y.Test.Reporter("/weatherApplication/YUIReportViewer",
Y.Test.Format.JUnitXML);

/I Some parameters to be sent

reporter.report(results);

}

Y.Test.Runner.subscribe(Y.Test.Runner. COMPLETE_EVENT,
processTestResults);

Y.Test.Runner.run();

$IWHU JHWWLQJ WKH WHVW UHI¢sXreMitey R BIBjEREFW \RX FUHDWH D
which can be constructed using the two following parameters:

¥ 7KH VHUYHU 85/ WR SRVW WKH WHVW UHVXOW V GDWD WR 1
operation is performed silently by the Y.Test.Reporter object and
does not cause the test page to navigate away because it does not get
back any response from the server. In our example, the server URL is/
weatherApplication/YUIReportViewer , which maps to a simple Java
VHUYOHW WKDW UHFHLYHV WKH SRVWHG WHVW UHVXOWYV GD
inside a local directory.

[91]




YUI Test

¥ The report format. The four following formats are allowed for the posting
of test results:
Y.Test.Format.XML : To post the test results data in XML format.
Y.Test.Format.JSON : To post the test results data in JSON format.

Y.Test.Format.JUnitXML : To post the test results data in JUnit
XML format.

g Y.Test.Format.TAP : To post the test results in TAP format. TAP
stands for Test Anything Protocol . For more information about this
format, check the following URL.:

http://testanything.org/wiki/index.php/Main_Page
In order to post the test result data to the server, you need to call thereport()  API
of the Y.Test.Reporter object with the test result data (results ). By default, the
following parameters are posted to the server when the report() APl is called:
T results : The serialized test results data object
¥ useragent : The user-agent string that represents the browser
¥ timestamp : The date and time at which the report was sent

You have the ability to post extra parameters by using the addField()  API,
as shown in the following code snippet:

reporter.addField("paraml”, "valuel");
reporter.addField("param2”, "value2");

,Q RUGHU WR PDNH WKH UHSRUW QDPH DQG WKH UHSRUW AOH HJ\
the addField()  API can be used in order to send this information to the
YUIReportViewer  custom servlet, as shown in the following code snippet:

Y.Test.Runner.add(suite);

function processTestResults() {
var results = Y.Test.Runner.getResults();

var reporter = new
Y.Test.Reporter("/weatherApplication/YUIReportViewer",
Y.Test.Format.JUnitXML);

/I Send a custom parameter to tell the Servlet the report
name and extension.

reporter.addField("reportName”, "registrationTestReport");

reporter.addField("format”, "xml");

[92]




&KDSWHU

reporter.report(results);

}

Y.Test.Runner.subscribe(Y.Test.Runner. COMPLETE_EVENT,
processTestResults);

Y.Test.Runner.run();

The custom YUIReportViewer serviet JHQHUDWHY WKH UHSRUW AOH ZLWK WKH
[reportName].[format] name under the yuitest\reports IROGHU 7KH UHSRUW AOH
contains theresults  content. The custom servlet code is included for your reference

in the following code snippet; as you can see, it is very simple code that can be

implemented easily in any other server-side technology such as PHP and ASP.NET.

public class YUIReportViewer extends HttpServlet {

protected void doPost(HttpServletRequest request,
HttpServietResponse response) throws ServietException,
IOException {

String results = request.getParameter("results");

String format = (request.getParameter(“format") == null) ?
"xml" : request.getParameter("format");

String reportName = (request.getParameter("reportName") ==
null) ? "report" : request.getParameter("reportName");

/I Generate the report result file under the reports folder...
BufferedWriter out = null;

String reportFullPath =
getServletContext().getRealPath("/js/js-test/yuitest/reports")
+"/" + reportName + "." + format;

try {
FileWriter fstream = new FileWriter(reportFullPath);

out = new BufferedWriter(fstream);
out.write(results);

} catch (Exception e) {
e.printStackTrace();

} finally {
out.close();

}

}
}

[93]



YUI Test

As indicated before, this book does not teach you any server-side
M technology (it is outside the scope of the book); however, it is good to
Q mention the custom YUIReportViewer  servlet code in this example
in order to show you what the server-side code will look like in the
case of generating a report.

After running the RegistrationClient test suite by browsing to http:/
localhost:8080/weatherApplication/js/js-test/yuitest/tests/

RegistrationClientTest.html , the registrationTestReport.xml AOH FDQ
be accessed vianttp://localhost:8080/weatherApplication/js/js-test/
yuitest/reports/registrationTestReport.xml . The following code snippet
shows the RegistrationClient test report in JUnit XML format:

<testsuites>

<testsuite name="Empty userName and Password fields Testcase"
tests="2" failures="0" time="0.039">

<testcase name="testEmptyUserName" time="0.003"/>
<testcase name="testEmptyPassword" time="0.008"/>
</testsuite>

<testsuite name="RegisterUser Testcase" tests="2" failures="0"
time="0.17">

<testcase name="testAddNewUser" time="0.048"/>
<testcase name="testAddExistingUser" time="0.062"/>
</testsuite>
</testsuites>

You can produce a JSON report instead; change the format parameters ofy.Test.
Reporter , as shown in the highlighted part of the following code snippet:

function processTestResults() {
var results = Y.Test.Runner.getResults();
var reporter = new
Y.Test.Reporter("/weatherApplication/YUIReportViewer",
Y.Test.Format.JSON );

/I Send a custom parameter to tell the Servlet the report
name and extension.

reporter.addField("reportName", "registrationTestReport");
reporter.addField("format", "json");

reporter.report(results);

}

[94]



&KDSWHU

After running the RegistrationClient test suite, registrationTestReport.json
can be accessed via the following location:

http://localhost:8080/weatherApplication/js/js-test/yuitest/reports/
registrationTestReport.json

M You can follow the same procedure to generate YUI Test reports with
Q different formats. All you need to do is to change the format parameter
of the Y.Test.Reporter object, as shown in the previous examples.

Automation and integration with build

management tools

,W FDQ EH GLIAFXOW WR UXQ HYHU\ WHVW SDJH LQGLYLGXDOO\ L
for example, if we have 100 YUI test pages, it means that we have to type 100 URLs

LQ WKH EURZVHU V DGGUHVV EDU ZKIpé&rforming De¥ebts)\ LQHIAFLHQW
Fortunately, we can automate the running of the YUI test pages using Selenium

(an automation web application testing tool) integration with YUI Test. This sort

RI LQWHJUDWLRQ FDQ EH GRQH E\ WKH <8, THVW 6HOHQLXP '"ULYH
work it.

&RQ¢IXULQI <8, 7THVW 6HOHQLXP "ULYI

Inorderto FRQAJXUH WKH <8, 7THVW 6HOHQLXP 'ULYHU XWLOLW\ ZLWK
you need to do the following:

1. Make sure that you have installed Java 5 (v1.5 or later) on your
operating system.

2. Download the following:

g The Selenium Server Version 2.25.0; it can be found at
http://seleniumhg.org/download/.

g The Selenium Java Client Driver; it can be found at https://github.
com/yuilyuitest/blob/master/java/lib/selenium-java-
client-driver jar.

g The YUI Test Selenium Driver, which can be found at https://
github.com/yui/yuitest/blob/master/java/build/yuitest-
selenium-driver.jar..

[95]



YUI Test

3. Start the Selenium Server from the command line usingjava -jar
selenium-server-standalone-2.25.0.jar

4. Place the Selenium Java Client Driver §elenium-java-client-driver.
jar ) in /lib/ext/ , in your JRE directory.

5. After following the preceding steps, YUI Test Selenium Driver
(yuitest-selenium-driver.jar ) is ready to execute the YUI tests.

/HW V VHH KRZ ZH ZLOO XVH WKH GULYHU WR DXWRPDWH WKH UX
application YUI tests.

Using YUI Test Selenium Driver in the
weather application

YUI Test Selenium Driver works by communicating with the Selenium Server and

specifying on which browsers the YUI test pages are to be loaded. The server then

ORDGV WKH WHVW SDJHV DQG WKH -DYD6FULSW WHVWY DUH H[HF
once the tests are complete, the results are retrieved and then outputted into JUnit

:0/ UH SR U\autewr@ti¢ally (this is the default report format and it can be

FKDQJHG WR ;0/ RU 7$3 IRUPDWYV IURP WKH GULYHU FRQAJXUDWLEF

In the weather application project, a cli folder is created under the yuitest  folder

to include the yuitest-selenium-driver.jar AOH DQG WKH FRPPDQG OLQH EDWFI
AOH WKDW DXWRPDWHV WKH UXQQLQJ RI WKH WHVW SDJHV LQ FI
environment, you can create an equivalent.sh AOH 7KH IROORZLQJ FRPPDQG VKRZ
how to automate running of the weather application test pages in the runTests.bat

AOH GRQ W IRUJHW WR PDNH VXUH WKDW 6HOHQLXP 6HUYHU LV

this command):

java -jar yuitest-selenium-driver.jar --browsers *firefox,*iexplore
--tests tests.xml --resultsdir %~dpOgen_reports

This command executes theyuitest-selenium-driver.jar A Qiith the
following parameters:

¥ --browsers 7KLV SDUDPHWHU VSHFLAHV ZKLFK EURZVHUV ZLOO
tests; in our case, Firefox and Internet Explorer are used.

T --tests 7KLY SDUDPHWHU VSHFLAHV WKH ;0/ AOH WKDW LQFOX
SDJHV 7KH FRQWHQW RI WKLV AOH LV VKRZQ LQ WKH QH[W F

[96]



&KDSWHU

T --resultsdir 7KLV SDUDPHWHU VSHFLAHV WKH ORFDWLRQ RI WK
AOHV ,Q RXU FDVH WKH RXWSXW U IdédRegots AOHV DUH JHQHUI
folder underthe cli  IROGHU ZKLFK FRQWDLQV WKH EDWFK AOH

/[HW V VHH WKH ERQWHQMD R| MKNH K LQFOXGHV WKH ZHDWKHU DSS
test pages, in the following code snippet:

<?xml version="1.0"?>

<yuitest>
<tests base="http://localhost:8080/weatherApplication/js/js-test/
yuitest/tests/" timeout="30000">

<url>LoginClientTest.html</url>
<url>RegistrationClientTest.html</url>
<url>WeatherClientTest.htmlI</url>
</tests>
<lyuitest>

Thetestsxmi  AOH FRQWDLQV PDLQO\ WKUHH HOHPHQWYV

T The<yuitest> element, which represents the root element.

T The<tests> element, which includes the <url> tags of the different test
pages. It has abase attribute that is used to specify the base location of all
of the children <url> tags. In our case, this ishttp://localhost:8080/
weatherApplication/js/js-test/yuitest/tests/ . The <tests>
element also has atimeout DWWULEXWH WKDW VSHFLAHV WKH PD[LPXP
milliseconds the driver will wait for the test to complete; after this period, an
error will be thrown for the test. In our case, 30 VHFRQGV LV VSHFLAHG

T The<url> element, which contains the relative paths of the pages under the
EDVH 85/ VSHFLAdS Lparewt Klement.

[97]



YUI Test

While runningthe FRPPDQG \RX ZLOO AQG WKH DSSOLFDWLRQ WHVWV C
the Internet Explorer and Firefox browsers, as shown in the following screenshot:

Once the tests are complete, the browsers will close automatically, and six JUnit

XML test reports will be generated in the gen_reports  folder—three reports for the

WKUHH ZHDWKHU DSSOLFDWLRQ WHVW SDJHV H[HFXWLRQ UHVXO
reports for the execution results in IE.

Now you know how to use the driver in order to automate YUI tests.
Ry There are other parameters and features that are supported by the
Q YUI Test Selenium Driver. You may check all of them in the driver
documentation page in GitHub:

https://github.com/yui/yuitest/wiki/Selenium-driver

Integration with build management tools

Because the YUI Test Selenium Driver can run from the command line, it can be
integrated easily with build management tools such as Ant and Maven and also with
continuous integration tools such as Hudson . The following code snippet shows an
Ant script (ant.xml ) that runs the runTests.bat AOH

<project name="weatherApplication" default="runYUITests" basedir=".">
<target name="runYUITests">
<exec executable="cmd">

[98]



&KDSWHU

<arg value="/c"/>
<arg value="runTests.bat"/>
</exec>
</target>
</project>

For Hudson, you can create aHudson job that periodically executes

the runTests.bat AOH DV D :LQGRZV EDWFK FRPPOQG +XGVRQ LV D

continuous integration tool that provides an easy way for the software

~ team to integrate the code changes to the software project. It allows
the software team to produce up-to-date builds from the system easily
through the automated continuous build (it can be done many times
per day). More information about Hudson can be found at http://
hudson-ci.org/

Summary

In this chapter, you learned what YUI Test is and how to use the JavaScript unit
testing framework to test synchronous JavaScript code. You also got to know how
to test asynchronous (Ajax) JavaScript code by using the YUl Testait and resume
mechanism. You learned the various assertions provided by the framework, how
to get the XML and JSON test reports using the framework reporter APls, and how
to generate the test reports automatically by using the YUI Test Selenium Driver.
You also learned how to automate the YUI tests using the YUI Test Selenium Driver
and how to integrate the automation script with Ant as an example of the build
management tools. Along the way, we applied all of these concepts to test our
weather application. In the next chapter, you will learn how to work with the

QUnit framework and how to use it to test the weather application.

[99]






QuUnit

QUnit is a popular JavaScript unit testing framework. Although QUnit is used and
maintained by jQuery, it can be used for testing any independent JavaScript code.
QUnit provides a simple syntax for creating JavaScript test modules and functions
that can be run from the browser. QUnit provides a clean mechanism for testing
asynchronous (Ajax) JavaScript code. In this chapter, the QUnit framework will be
illustrated in detail and used for testing the weather application that was discussed

in &KDSWBHQU W 7HVWLQJ -DYD6FULSW $SSOLFDWLRQV

&RQ:;IJXUDWLRQ

,Q RUGHU WR FRQAJXUH 48QLW WKH AUVW VWHS LV WR GRZQORD

t The QUnitJS A @kind at http:/code.jquery.com/qunit/qunit-
1.10.0.js

t The QUnit CSS A @hind at http:/code.jquery.com/qunit/qunit-
1.10.0.css

$IWHU GRZQORDGLQJ WKH WZR AOHV SXW WKHP LQ WKH VDPH IR
lib .) At the time of this writing, the latest release of QUnit is the v1.10.0, which will
be used in this book.

1RZ OHW V SUHSDUH WKH WHVWYVY UXQQHU SDJH RI WKH 48QLW W
The following code snippet shows the BasicRunner.html page that contains
the basic skeleton of the QUnit test runner page:

<IDOCTYPE html>
<htmlI>
<head>
<meta charset="utf-8">
<title>QUnit test runner</title>
<link rel="stylesheet" href="lib/qunit-1.10.0.css">



QUnit

</head>
<body>
<div id="qunit"></div>
<div id="qunit-fixture"></div>
<script src="lib/qunit-1.10.0.js"></script>

...The test code here...
</body>
</html>

The BasicRunnerhtml  page LQFOXGHV WKH IUDP H ZiR Uddeh@HY IURP WKH

\RX ZLOO QRWLFH WKHUH DUH WZR GLY HOHPgd®@WlV LQ WKH WHVW
element is used for displaying the QUnit test results while the second qunit-fixture

GLY HOHPHQW LV XVHG IRU KROGLQJ WKH 48QLW +70/ A[WXUHV QHEF

~ QUnit cleans up the qunit-fixture div element before every test
run so you do not have to do this clean up manually.

Now you can run the test runner page that does not include any of the QUnit tests
yet. The following screenshot shows the BasicRunner.html page, which does not
include any tests:

'ULWLQJ \RXU ¢¢UVW 48QLW WHVW

A QUNnit test can contain test modules and test functions. A QUnit test module is
a group of related test functions. Every test function should contain one or more
assertion(s) in order to perform the test and verify the outputs.

The QUnit module function is responsible for creating the QUnit module and the
QUnit test function is responsible for creating the QUnit test. In order to add the
test function to the module, just place the test function under the declared module,
as shown in the following code snippet:

[102]



&KDSWHU

module("testing Module", {
setup: function() {
I/l setup code goes here...
}, teardown: function() {
// teardown code goes here...
}

D

test("testing functionl1”, function() {
/l assertions go here...

b

test("testing function2", function() {
I/l assertions go here...

b

As shown in the preceding code snippet, a test module with the name "testing

Module " is created. The test module can contain ssetup method that is called to
perform the initialization of every test function before its execution. The test module
can also contain ateardown method that is called after the execution of every test
function, for de-initializing the test. The test module contains two test functions. The
AUVW WHVW [XQ EeafihgRu@ctibnd" Q D P M/Ble the second test function is
named "testing function2" . Every test function can contain one or more assertions.

In QUnit, you have the option to create the test functions without
s . . . o .
~ including them in modules. However, it is preferred to include
tests in modules to organize them. Grouping the tests in modules
gives you the ability to run every module independently.

/HW V PRYH W RSipleNMaN L RaaSeriptrobject (which we tested using the
Jasmine and YUI Test frameworks in the previous chapters). The following code
shippet reminds you with the code of the SimpleMath object:

SimpleMath = function() {
I3

SimpleMath.prototype.getFactorial = function (number) {

if (number < 0) {
throw new Error("There is no factorial for negative numbers");

}

else if (number == 1 || number == 0) {

/I If number <= 1 then number! = 1.

[103]



QUnit

return 1,
}else {

/I If number > 1 then number! = number * (number-1)!
return number * this.getFactorial(number-1);

}
}

SimpleMath.prototype.signum = function (number) {
if (number > 0) {
return 1,
} else if (number == 0) {
return O;
}else {
return -1;
}
}

SimpleMath.prototype.average = function (numberl, number2) {
return (numberl + number2) / 2;

}
In order to organize the SimpleMath QUnit tests, three modules are created for
testing the getFactorial , signum , and average APIs of the SimpleMath object.

As we did in the previous chapters, we will develop the following three test
scenarios for the getFactorial method:

1t Positive number
¥ Zero
1t Negative number

The following code snippet shows how to test the getFactorial module calculating
the factorial of a positive number (3), 0, and a negative number (-10 ), using QUnit:

module("Factorial”, {
setup: function() {
this.simpleMath = new SimpleMath();
}, teardown: function() {
delete this.simpleMath;

}
D

test("calculating factorial for a positive number", function() {
equal(this.simpleMath.getFactorial(3), 6, "Factorial of three

[ 104]



&KDSWHU

must equal six");

b

test("calculating factorial for zero", function() {

equal(this.simpleMath.getFactorial(0), 1, "Factorial of zero
must equal one");

b

test("throwing an error when calculating the factorial for a negative
number”, function() {

raises(function() {
this.simpleMath.getFactorial(-10)
}, "There is no factorial for negative numbers");

b

The module function declares a new module called Factorial . In the setup method,
the simpleMath  object is created usingnew SimpleMath() . tearDown is used to
clean up by deleting the created simpleMath  object.

,Q WKH AUVW W H V ®ctbiia F ivdd&ReQ the QUMK étjual  assertion
function calls simpleMath.getFactorial(3) and expects the result to be equal to6.
If simpleMath.getFactorial(3) returns a value other than 6, then the test function
fails. The last parameter of the QUnit equal assertion is an optional one, and it
represents the message to be displayed with the test.

In the second test function of the Factorial module, the equal assertion function
calls simpleMath.getFactorial(0) and expects it to be equal tol. In the last
test function of the Factorial module, the test function calls simpleMath.
getFactorial(-10) and expects it to throw an error using the raises assertion.

Theraises DVVHUWLRQ WDNHV WZR SD U Dffhttiohl H paramété¢ H AUVW RQH LV
that includes the call to the API to test, and the second one is an optional one and

represents the message that is to be displayed with the test. Theaises assertion

succeeds if the API that is to be tested throws an error.

QUnit has other assertions to use instead of theequal and raises assertions; we will
discuss them in more detail later in this chapter in the $V V H UsattidhQ V

$IWHU AQD Crhdri@ J \WiédHle, we come to the new module that tests the
functionality of the signum API provided by the SimpleMath object. The following
code snippet shows the Signum module:

module("Signum"”, {
setup: function() {
this.simpleMath = new SimpleMath();
}, teardown: function() {

[105]




QUnit

delete this.simpleMath;

}
b

test("calculating signum for a positive number", function() {
equal(this.simpleMath.signum(3), 1, "Signum of three must equal
one");

b

test("calculating signum for zero", function() {
equal(this.simpleMath.signum(0), 0, "Signum of zero must equal
zero");

b

test("calculating signum for a negative number", function() {
equal(this.simpleMath.signum(-1000), -1, "Signum of -1000 must
equal -1");

D

We have three test functions in the Signum PRGXOH WKH AUVW WHVW IXQFWLRQ W
signum of a positive number, the second test function tests the signum of zero, and

the last test function tests the signum of a negative number. The following code

shippet shows the Average module:

module("Average", {
setup: function() {
this.simpleMath = new SimpleMath();
}, teardown: function() {
delete this.simpleMath;
}
D

test("calculating the average of two numbers", function() {
equal(this.simpleMath.average(3, 6), 4.5, "Average of 3 and 6 must
equal 4.5");

b

In the Average module, the "calculating the average of two numbers"

test function ensures that the average is calculated correctly by calling theaverage
API using the two parameters 3 and 6, and expecting the result to be4.5 using the
equal assertion.

[ 106]



&KDSWHU

A very important thing that you should know is that QUnit does not
guarantee the order of executing the test functions, so you must make
every test function atomic; that is, every test function must not depend on
any other test functions. For example, do not do the following in QUnit:
var counter = 0;
test("test functionl1”, function() {
counter++;

Q‘Q equal(counter, 1, "counter should be 1");
i

test("test function2", function() {

counter += 20;

equal(counter, 21, "counter should be 21");
i
test("test function3", function() {

counter += 10;

equal(counter, 31, "counter should be 31");

- b

In order to run the SimpleMath QUNnit tests, we need to include the SimpleMath.
js and simpleMathTest.js (which contains the unit tests of the SimpleMath object)
AOHV LQ WKH WHVW UXQQHU SDJH DV VKRZQ LQ WKH IROORZLQJ

<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>QUnit test runner</title>
<link rel="stylesheet" href="lib/qunit-1.10.0.css">
</head>
<body>
<div id="qunit"></div>
<div id="qunit-fixture"></div>
<script src="lib/qunit-1.10.0.js"></script>

<script src="src/simpleMath.js"></script>
<script src="tests/simpleMathTest.js"></script>
</body>
</html>

[107]




QUnit

After clicking the SimpleMath QUnit test page testRunner.html \RX ZLOO AQG WKH
test results as shown in the following screenshot:

Assertions

An assertion is a function that validates a condition if the condition is not valid; it

throws an error that causes the test function to fail. A test function can include one or

more assertions; all the assertions have to pass in order to have the test function pass.

,Q WKH AUVW 48QLW WHVW H[Dda@iOahd rFists X ddseBtionsKlhithisd Q L W
section, the most important QUnit built-in assertions will be illustrated in more detail.

The ok assertion

The ok assertion WDNHV WZR SDUDPHWHUV 7KH AUVW SDUDPHWHU LV D
second parameter is optional and represents the message that is to be displayed with

the test. Theok assertion is passed if the condition is true. For example, the following

examples will pass:

ok(true, "true passes");
ok(4==4, "4 must equal 4");
ok("some string", "Non-empty string passes");

[ 108]




&KDSWHU

The equal and notEqual assertions

The equal assertion KDV WKUHH SDUDPHWHUV WKH AUVW WZR SDUDPHW!
actual and expected values, and the third parameter is optional and represents the

message that is to be displayed with the test. Theequal assertion is passed if the

actual parameter is equal to the expected parameter. ThenotEqual assertion ensures

that the actual and expected parameters are not equal.

It is very important to know that the equal and notEqual assertions use the
JavaScript== operator in order to perform the comparison, that is, they make the
comparison and neglect the types. For example, the following assertions will pass:

equal(5, 5, "5 should equal 5...");

equal(5, "5", "5 should equal '5'...");
notEqual(5, 6, "5 should not equal 6...");
notEqual(5, "6", "5 should not equal '6'...");

The deepEqual and notDeepEqual assertions

The deepEqual assertion is more powerful than the equal assertion. It makes a deep
comparison (recursively) between objects, arrays, and primitive datatypes. Unlike

the equal assertion, thedeepEqual assertion uses the=== operator to perform

the comparison (that is, it does not ignore the types). ThenotDeepEqual assertion
function does the reverse operation of the deepEqual assertion. For example, the
following assertions will pass:

/I Objects comparison

var objectl = {a:1, b:2, c: {cl: 11, c2: 12}};

var object2 = {a:1, b:2, ¢ : {cl: 11, c2: 12}};

var object3 = {a:1, b:"2", ¢ : {c1: 11, c2: 12}};

deepEqual(objectl, object2, "objectl should equal object2");
notDeepEqual(objectl, object3, "objectl should not equal object3");

/I Primitive comparison
deepEqual(1, 1, "1 ===1");
notDeepEqual(1, "1", "1 I=="1");

As you will notice in the preceding code snippet, object3 does not equalobjectl
because thedeepEqual assertion uses the=== operator; this means thatbh:2 does not
equal b:"2"

[109]




QUnit

The expect assertion

The expect assertion LV XVHG IRU GHAQLQJ WKH QXPEHU RI DVVHUWLRQV
function must contain. If the test function is completed without the correct number of

DVVHUWLRQV V Sigdel Aatamndtap tNe kest fails. For example, the following

test function will fail:

test("test functionl1”, function() {
expect(3);
ok(true);
equal(, 1);

b

The test fails because theexpect(3)  expects to see three assertions in the test
function. If we insert the third assertion, the test function passes, as follows:

test("test functionl1”, function() {
expect(3);
ok(true);
equal(, 1);
deepEqual("1", "1");
b

Instead of using the expect assertion, the expectation count can be passed as the
second parameter to thetest function, as follows:

test("test functionl1”, 3, function() {
ok(true);
equal(1, 1);
deepEqual("1", "1");
D
The expect assertion can be useful when you have a probability
of Q RXEcuting one or more assertions in your QUnit test code due
. tosome reason, such as an operation failure. This can happen while
& testing asynchronous operations for which the execution of one or
L more assertions cannot be guaranteed if the operation fails or times
out. The only remaining important, built-in assertion is the raises
assertion, and you already know how it works in the SimpleMath
object example.

[110]




&KDSWHU

Developing custom QUnit assertions

Adding to the mentioned built-in QUnit assertions, QUnit enables you to develop

FXVWRP DVVHUWLRQV WR KDYH PRUH SRZHUIXO DQG GHVFULSWL)
two custom assertions, which are the isPrimeNumber and sum assertions, in order to

understand how to develop custom assertions in QUnit.

The purpose of the isPrimeNumber(number, message) assertion is to check if the

passed number is a prime number, while the sum(numberl, number2, result,

message) DVVHUWLRQ FKHFNV LI WKH VXP RI LWV AUVW WZR QXPEHU
the third number argument.

,Q RUGHU WR GHAQH D FXVWRP DVVHUWQB®pUsi) ABIQLW \RX VKRXC
The QUnit.push  API has the following parameters:

T result :Ifitis setto true, this means that the test succeeds, and if it is set to
false, this means that the test fails
actual : It represents the actual value
expected : It represents the expected value
message : It represents the message that is to be displayed with the
test function

The main usage of theactual and expected parameters is that they are used by the

QUnit framework in order to help the developer troubleshoot the test when it fails,

DV VKRZQ LQ WKH QH[W VFUHHQVKR Wun/¢dstonvassetiblJ W LPSOHPHQW |
The following code snippet shows the sum custom assertion code:

function sum(numberl, number2, result, message) {
var expected = numberl + " + " + number2 + " =" + result;
var actual = expected,;

if ((numberl + number2) != result) {

actual = numberl +" +" + number2 + " I=" + result;
}
QUnit.push((numberl + number2) == result, actual, expected,
message);
}

[111]



QUnit

7KH AUVW SDUD@UiMudi) RAI iv\sktHo the Boolean result for checking
that the summation of numberl and number2 is equal toresult . When the two
numbers numberl and number2 are not equal toresult , the actual and expected
parameters should have meaningful values in order to help the developer debug the
failing test. The actual parameter is set tonumberl + number2 != result while
the expected parameter is always set tonumberl + number2 = result

The sum custom assertion, works just like any other QUnit assertion. You can use it
as in the following code snippet:

sum(30, 20, 50, "50 = 30 + 20");

The next test will fail and the result will be displayed, as shown in the
following screenshot:

sum(30, 20, 55, "55 1= 30 + 20");

As shown in the previous screenshot, when the test fails, QUnit uses theactual and
expected parameters that are set in the custom assertion to display theExpected,
Result, and Diff items for helping the developer debug the test. The following code
shippet shows the isPrimeNumber custom assertion code:

function isPrimeNumber(number, message) {
if (number < 2) {
QUnit.push(false, false, true, message);
return;

}
var n = Math.sqrt(number);

for (vari=2;i<=n; ++i){
if (number % i == 0) {
QUnit.push(false, false, true, message);
return;
}
}

[112]




&KDSWHU

QUnit.push(true, true, true, message);
return;

}

If the passednumber SDUDPHWHU LV QRW D SULPH QXPEHU WKHQ WKH AL
the QUnit.push APl is set tofalse in order to fail the test. The actual parameter is

settofalse while the expected parameter is set totrue in order to show the error

details in the test runner page. The following code snippet shows the complete code

and usage of the custom assertions:

function sum(numberl, number2, result, message) {
var expected = numberl + " + " + number2 + " =" + result;
var actual = expected,;

if ((numberl + number2) != result) {
actual = numberl + " + " + number2 + " I=" + result;

}

QUnit.push((numberl + number2) == result, actual, expected,
message);

}

function isPrimeNumber(number, message) {
if (number < 2) {
QUnit.push(false, false, true, message);
return;

}

var n = Math.sqgrt(number);

for (vari=2;i<=n; ++i) {
if (number % i == 0) {
QUnit.push(false, false, true, message);
return;
}
}

QUnit.push(true, true, true, message);
return;

}

test("custom assertion test", function() {
sum(30, 20, 50, "50 = 30 + 20");
isPrimeNumber(23, "23 is prime");

D

[113]




QUnit

After running the preceding code snippet, the QUnit test runner page will display the
successful test results of the custom assertions, as shown in the following screenshot:

Testing asynchronous (Ajax) JavaScript
code

The common question that comes to mind is how to test asynchronous (Ajax)
JavaScript code using QUnit. What has been mentioned in the chapter so far is how
to perform unit testing for synchronous JavaScript code. QUnit provides two main
APls, namely stop() andstart() , in order to perform real Ajax testing. Let me
show you how to use them.

The stop and start APIs

The stop() API stops the QUnit test runner until the start() APl is called or the
test function is timed out. For example:

QUnit.config.testTimeout = 10000;
test("test functionl1”, function() {

stop();

window.setTimeout(function() {
ok(true);
start();
}, 3000);
b;

[114]



&KDSWHU

As shown in the preceding code snippet, the "test function1” function stops the
QUnit test runner by calling the stop() API. The window.setTimeout  function
resumes the test runner by calling the start() ~ API after 3000 milliseconds.

In order to specify the test function timeout, you can set the global property QUnit.
config.testTimeout to the time in milliseconds. In the previous example,
it is set to 10000 milliseconds (10 seconds).

QUnit has another way of working with asynchronous operations; instead of
explicitly calling the stop() API in the test method, you can directly use the
asyncTest function as follows:

asyncTest("test function1", function() {
window.setTimeout(function() {
ok(true);
start();
}, 3000);
b

Using one of the two mentioned approaches, you can perform real Ajax testing.
The following code snippet shows you how to create a real Ajax test using the
asyncTest function:

QUNnit.config.testTimeout = 10000;
asyncTest("Making a REAL Ajax testing", function() {
var successCallback = function(response) {
var resultMessage = response.xmlhttp.responseText;

/I Validate the result message using the QUnit assertions.

start();
h

var failureCallback = function() {
ok(false, "MUST fail");

start();

h

asyncSystem.doAjaxOperation(inputData, successCallback,
failureCallback);

b

[115]



QUnit

As shown in the previous code snippet, two callbacks are created; one of

them represents the successful callback fuccessCallback ) that is called

if the Ajax operation succeeds, and the other one represents the failure

callback (failureCallback ) that is called if the Ajax operation fails. In both
successCallback  and failureCallback ,acall tothestart() APl is made in order
to notify the QUnit asynchronous test that the server response is returned and the
test runner can resume. InsuccessCallback , there should be calls to the QUnit
assertions in order to validate the returned Ajax response, and in failureCallback ,
the ok(false)  expression forces the test to fail because the failure callback should
not be called if the asynchronous operation succeeds.

If the Ajax response is not returned from the server after 10 seconds (you can set it
to whatever duration you want using QUnit.config.testTimeout ), the test will
fail. Inthe 7THVWLQJ WKH ZH Battion the Bv8 $rovidEdQULiRAfax testing
approaches will be used in order to test the Ajax part of the weather application.

Testing the weather application

Now, we come to developing the QUnit tests for our weather application. Actually,
after you have learned how to write QUNnit tests for both synchronous and
asynchronous JavaScript (Ajax) code, testing the weather application is an easy task.
As you remember from the previous chapters, we have three major JavaScript objects
in the weather application that we need for developing tests for the LoginClient
RegistrationClient , and WeatherClient  objects.

Two subfolders qunit andtests are created under thejs-test  folder
(thus: qunit\tests ) for containing the QUnit tests, and the lib folder is created

under the qunit folder (thus: qunit\lib IRU FRQWDLQLQJ 48QLW OLEUDU\ AOHV

shown in the following screenshot:

[116]




&KDSWHU

Thetests IROGHU FRQWDLQV WKUH HoghDlier@respsY D6 FULSW AOHV

RegistartionClientTest.js , and WeatherClientTest.js ) for testing the
ZHDWKHU DSSOLFDWLRQ V FRUUHVSRQGLQJ -DYD6FULSW REMHFW
testRunner.html is placed directly under the qunit folder in the js-test  folder
(thus: js-test\qunit ). The following code snippet shows the contents of the QUnit
testRunner.html page of the weather application:
<IDOCTYPE html>
<html>
<head>

<meta charset="utf-8">

<title>QUnit test runner</title>

<link rel="stylesheet" href="lib/qunit-1.10.0.css">
</head>
<body>

<div id="qunit"></div>

<div id="qunit-fixture"></div>

<script src="lib/qunit-1.10.0.js"></script>

<l-- Source files -->
<script type="text/javascript" src="../../js-

[117]




QUnit

src/LoginClient.js"></script>

<script type="text/javascript" src="../../js-
src/RegistrationClient.js"></script>
<script type="text/javascript" src="../../js-
src/WeatherClient.js"></script>

<l-- Test files -->

<script src="tests/LoginClientTest.js"></script>
<script src="tests/RegistrationClientTest.js"></script>
<script src="tests/WeatherClientTest.js"></script>

</body>
</html>

As shown in the testRunner.html SDJH ERWK WKH VRXUFH DQG WHVW -DYDG6H
LQFOXGHG LQ WKH SDJH ,Q HDFK RI WKH WHVW AOHV D 48QLW P
for testing the corresponding JavaScript object will be created.

Testing the LoginClient object

As we did in the previous chapters,inthe 7THVWLQJ WKH /R3$ecQOLHQW REMHFW
we will perform unit testing for the following functionalities:

¥ Validation of empty username and password
t Validating that the username is in e-mail address format

T Validating that the password contains at least one digit, one capital and small
character, at least one special character, and six characters or more

In order to perform this test, a module "LoginClient Test Module" that groups
DOO RI WKHVH WHVWYV LV FUHDWHG 7KH IROORZLQJ FRGH VQLSSHI
"LoginClient Test Module"

module("LoginClient Test Module", {
setup: function() {

/I The HTML fixture for the LoginClient.
document.getElementByld("qunit-fixture").innerHTML =

"<label for=\"username\">Username <span
id=\"usernameMessage\"></span></label>" +

"<input type=\"text\" id=\"username\" name=\"username\"/>"
+

"<label for=\"password\">Password <span
id=\"passwordMessage\"></span></label>" +

"<input type=\"password\" id=\"password\"
name=\"password\"/>";

[118]




&KDSWHU

this.loginClient = new weatherapp.LoginClient();

this.loginForm = {
"userNameField" : "username”,
"passwordField" : "password",
"userNameMessage" : "usernameMessage",
"passwordMessage" : "passwordMessage"

h

}, teardown: function() {
delete this.loginClient;
delete this.loginForm;

}
D
The setup method of "LoginClient Test Module" DSSHQGV WKH +70/ A[WXUH WKDW
is needed by theLoginClient  test to the qunit-fixture GLY WKH +70/ A[WXUH
FRQWDLQV WKH XVHUQDPH DQG SDVVZRUG LQSXW AHOGV DQG OD
instance from weatherapp.LoginClient and creates theloginForm  object, which

holds the IDs of the HTML elements that are used in the test.

The following code snippet shows the empty username and password test functions
of "LoginClient Test Module" :

test("validating empty username”, function() {

document.getElementByld("username").value = ""; /* setting
username to empty */

document.getElementByld("password").value = "Admin@123";
this.loginClient.validateLoginForm(this.loginForm);

equal(document.getElementByld("usernameMessage").innerHTML,
"(field is required)", "validating empty username ...");

D

test("validating empty password”, function() {
document.getElementByld("username").value = "someone@yahoo.com";

document.getElementByld("password").value = ""; /* setting
password to empty */

this.loginClient.validateLoginForm(this.loginForm);

equal(document.getElementByld("passwordMessage").innerHTML,
"(field is required)", "validating empty password ...");

D

[119]



QUnit

The "validating empty username" test function tests LoginClient  to ensure that

it is able to display an error message when the username is not entered. It sets an

empty value in the username AHOG DQG W Kvdlifatdtayiororv W KPI of the
LoginClient REMHFW WKHQ L Walitatélbgidkbtd W KR Wodkidéstthe

"(field is required)" message in theusernameMessage AHOG XVLQJ WKH
equal assertion.

The "validating empty password" test function does the same thing but with the
password AHOG DQG Q RAtha@meW KHWOIGH

The following code snippet shows the test functions of the "LoginClient Test
Module ZKLFK YDOLGDWH WKH IRUPDWY RI WKH AHOGV WKH XVHUC

test("validating username format", function() {

document.getElementByld("username").value = "someone@yahoo"; /*
setting username to incorrect format */

document.getElementByld("password").value = "Admin@123";
this.loginClient.validateLoginForm(this.loginForm);

equal(document.getElementByld("usernameMessage").innerHTML,

"(format is invalid)", "validating username format ...");

D

test("validating password format", function() {
document.getElementByld("username").value = "someone@yahoo.com";

document.getElementByld("password").value = "admin@123"; /*
setting password to incorrect format */

this.loginClient.validateLoginForm(this.loginForm);

equal(document.getElementByld("passwordMessage").innerHTML,

"(format is invalid)", "validating password format ...");

b

The "validating username format" test function tests the validation of the

username format. It tests the LoginClient ~ object to ensure that it is able to

display an error message when the username format is not valid. It sets an invalid

e-mail value in the username AHOG DQG W Kvhliatdt @y@ForM W KPP of
LoginClient . Finally, it checks that the validateLoginForm API produces the

"(format is invalid)" message in theusernameMessage AHOG XVLQJ WKH
equal assertion.

[120]




&KDSWHU

The "validating password format" function enters a password that does not

FRPSO\ ZLWK WKH DSSOLFDWLRQ V SDVVZRUG UXOHV LW HQWHU\
include a capital letter and then calls the validateLoginForm API of LoginClient

,W AQDOO\ FK H/kiNaXALWiKFDrW W AP produces the "(format is

invalid”  message in thepasswordMessage AHO G

Testing the RegistrationClient object

In the RegistrationClient object, we will test the following functionalities:

¥ Validation of empty username and passwords

1t Validation of matched passwords

¥ Validating that the username is in e-mail address format
T

Validating that the password contains at least one digit, one capital and small
character, at least one special character, and six characters or more

T Validating that the user registration Ajax functionality is performed correctly

7HVWLQJ RI WKH AUVW IRXU IXQFWLRQDOLWLHY ZLOO EH VNLSSHG
similar to the tests that are explained in "LoginClient Test Module" VR OHW V VHH

how to verify that the user registration ( registerUser ) Ajax functionality is

performed correctly.

The registerUser tests cover the following test scenarios:

1t Testing adding a new user with a unique user ID.

T Testing adding a user with an existing user ID. In this case, the registration
client should fail when registering a user whose ID is already registered.

"RegistrationClient Test Module" groups all the RegistrationClient tests.
The following FRGH VQLSSHW VKRZV W ReébisGatioAQdniWdsR Q RI WKH
Module" :

module("RegistrationClient Test Module", {
setup: function() {

/l The HTML fixture for the RegistrationClient.
document.getElementByld("qunit-fixture").innerHTML =

"<label for=\"username\">Username (Email) <span
id=\"usernameMessage\"></span></label>" +

"<input type=\"text\" id=\"username\" name=\"username\"/>" +

"<label for=\"password1\">Password <span
id=\"passwordMessagel\"></span></label>" +

"<input type=\"password\" id=\"password1\"

[121]




QUnit

name=\"password1\"/>" +

"<label for=\"password2\">Confirm your password</label>" +
"<input type=\"password\" id=\"password2\"
name=\"password2\"/>";

this.registrationClient = new weatherapp.RegistrationClient();

this.registrationForm = {
"userNameField" : "username”,
"passwordFieldl" : "passwordl",
"passwordField2" : "password2",
"userNameMessage" : "usernameMessage"”,
"passwordMessagel” : "passwordMessagel"
h
}, teardown: function() {
delete this.registrationClient;
delete this.registrationForm;
}
D

The setup method of "RegistrationClient Test Module" appends the HTML

A[W X UH FRdistationClient test to the qunit-fixture div (the HTML

A[WXUH FRQWDLQV WKH XVHUQDPH DQG SDVVZRUGV LQSXW AHOG
creates an instance fromweatherapp.RegistrationClient and creates the

registrationForm object, which holds the IDs of the HTML elements that are used

LQ WKH WHVW 7KH IROORZLQJ FRGH V Qusth§tHeW VKRZV WKH AUVW |
registration feature" test function of "RegistrationClient Test Module"
which tests registering a new user using the registerUser  API:

QUnit.config.testTimeout = 10000;
test("testing the registration feature", function() {

/I Register a new user with a unique user name.
stop();

this.userName = "hazems" + new Date().getTime() + "@apache.org";

document.getElementByld("username").value = this.userName;
document.getElementByld("password1").value = "Admin@123";
document.getElementByld("password2").value = "Admin@123";
var local_this = this;

[122]



&KDSWHU

var newSuccessCallback = function(response) {
var resultMessage = response.xmlhttp.responseText;
equal(resultMessage, "User is registered successfully ...",
"Registering a new user succeeded ...");

start();

/I Register the created user again to check that the
registration will fail.
/I The code will be shown in the next code snippet ...

h

var newFailureCallback = function() {
ok(false, "Registering a new user failed ...");
start();

h

this.registrationClient.registerUser(this.registrationForm,
newSuccessCallback, newFailureCallback);

b

In the test function, the stop() APl waits for a call from the start()  API, or it

fails the test function after 200000 PLOOLVHFRQGY 7KH UHJLVWUDWLRQ IRUP LV
a valid generated username and valid matched passwords, and then two callbacks

DUH FUHDWHG 7KH AUVW FDOOEDFN UHSUHVHQWY WKH VXFFHVV
represents the failure callback. registrationClient.registerUser is called with

the registration form, the success callback, and the failure callback parameters.

In the success callback, the response message returned from the server is ensured of
being equal to the "User is registered successfully ..." message using the
equal assertion, and then a call is made to thestart()  API to proceed with the test.

In the failure callback, the ok(false) is called in order to fail the test function,
because the failure callback should not be called if the registration is performed
successfully, and then a call is made to thestart() ~ API to proceed with the test.

M The QUnit Ajax testing of the weather application is U HAp®testing;
Q this requires the server to be up and running in order to perform the
test correctly.

[123]



QUnit

The following code snippet shows the second part of the "testing the

registration feature" test function that was not shown in the preceding code.
The second part contains the second test scenario of theegisterUser API that tests
registering the created user again in order to ensure that theregisterUser API will
fail (because the username already exists):

stop();

var existingSuccessCallback = function(response) {
ok(false, "Validating registering a user with an existing id
failed ...");

start();

I

var existingFailureCallback = function(response) {
var resultMessage = response.xmlhttp.responseText;
equal(resultMessage, "A user with the same username is already

registered ...", "Validating registering a user with an existing
id succeeded ...");
start();

I3

local_this.registrationClient.registerUser(local_this.
registrationForm, existingSuccessCallback, existingFailureCallback);

The stop() API waits for a call to the start()  API, or it fails after the timeout

period has passed. The registration form is still holding the same username that

KDV DOUHDG\ EHHQ UHJLVWHUHG LQ WKH AUVW WHVW VFHQDULR
FDOOEDFNV DUH FUHD W EkiStingBilctes#Chlva¥ F D DrépEesehthithe

success callback while the second oneédxistingFailureCallback ) represents the

failure callback. registrationClient.registerUser is called with the registration

form, the success callback, and the failure callback parameters.

In the success callbackpk(false) is called in order to fail the test function because
the success callback must not be called in this case, and then a call is made to the
start() APl to proceed with the test. In the failure callback, the returned response
message from the server is ensured to equal the'A user with the same username

is already registered ..." message using theequal assertion, and then a call is
made to the start() ~ API to proceed with the test.

The following code snippet shows the complete code of the "testing the
registration feature" function of "RegistrationClient Test Module"

QUnit.config.testTimeout = 10000;
test("testing the registration feature", function() {

/I Register a new user.
stop();

[124]




&KDSWHU

this.userName = "hazems" + new Date().getTime() + "@apache.org";

document.getElementByld("username").value = this.userName;
document.getElementByld("password1").value = "Admin@123";
document.getElementByld("password2").value = "Admin@123";

var local_this = this;

var newSuccessCallback = function(response) {
var resultMessage = response.xmlhttp.responseText;
equal(resultMessage, "User is registered successfully ...",
"Registering a new user succeeded ...");
start();

/I Register the created user again (Register an existing
user).

stop();

var existingSuccessCallback = function(response) {
ok(false, "Validating registering a user with an existing id
failed ...");

start();

3

var existingFailureCallback = function(response) {
var resultMessage = response.xmlhttp.responseText;
equal(resultMessage, "A user with the same username is

already registered ...", "Validating registering a user with
an existing id succeeded ...");
start();

h

local_this.registrationClient.registerUser(local_this.
registrationForm, existingSuccessCallback, existingFailureCallback);

h

var newFailureCallback = function() {
ok(false, "Registering a new user failed ...");
start();

%

this.registrationClient.registerUser(this.registrationForm,
newSuccessCallback, newFailureCallback);

b

[125]




QUnit

Testing the WeatherClient object

In the WeatherClient  object, we will test the following functionalities:

¥ Getting the weather for a valid location

T Getting the weather for an invalid location (the system should display
an error message in this case)

For the time being, this test will not be left for you as an exercise because the

other QUnit Ajax testing approach using asyncTest will be used for testing the
WeatherClient ~ object. In order to perform the WeatherClient  test, "WeatherClient
Test Module"  that groups all the WeatherClient  tests is created. The following code
VQLSSHW VKRZV W KWkaBdrCheDt Tast IMBIQIe'R |

module("WeatherClient Test Module", {
setup: function() {

/l The HTML fixture for the WeatherClient.
document.getElementByld("qunit-fixture™).innerHTML =
"<div id=\"weatherInformation\"></div>";

this.weatherClient = new weatherapp.WeatherClient();

this.validLocationForm = {
'location': '1521894',
'resultDivID": ‘weatherInformation’

%

this.invalidLocationForm = {
'location’: 'INVALID_LOCATION',
'resultDivID": 'weatherInformation'

h

}, teardown: function() {

delete this.weatherClient;

delete this.validLocationForm;

delete this.invalidLocationForm;

}
D
The setup method of "WeatherClient Test Module" appends the HTML
A[W X UH \Rehth&®lieht  test to the qunit-fixture GLY WKH +70/ A[WXUH
contains the weatherinformation div element), and then creates an instance

from weatherapp . WeatherClient  creates thevalidLocationForm object that
represents a valid location form (that contains a valid location code and the ID of the
weatherinformation div element), and AQ D O O\ F U invalitN ¢dtafiowedfni

[126]



&KDSWHU

object that represents an invalid location form (that contains an invalid location code

and the ID of the weatherinformation div element). The following code snippet
shows the "getting the weather information for a valid place" test
function of "WeatherClient Test Module" that tests the getweatherCondition

$3, V EHKDYLRU ZLWK D YDOLG ORFDWLRQ FRGH

QUnit.config.testTimeout = 10000;
asyncTest("getting the weather information for a valid place",
function() {
var successCallback = function(response) {
var resultMessage = response.xmlhttp.responseText;

notEqual(resultMessage, ", "Getting the weather information
for a valid place succeeded");

start();
h

var failureCallback = function() {

ok(false, "Getting the weather information for a valid place
failed ...");
start();

g

this.weatherClient.getWeatherCondition(this.validLocationForm,
successCallback, failureCallback);

D
In order to test the getWeatherCondition method, the asyncTest API has been
used this time instead of the test API. As shown, there are nostop() calls because
stop() is called implicitly by the asyncTest API. By calling the stop() API
implicitly, the asyncTest API waits for a call from the start() APl or it fails
the test function after 10000 milliseconds.

Two callbacksare FUHDWHG 7KH AutteWCaiae O Fiegidsents the

success callback while the second onefgilureCallback ) represents the failure
callback. Finally, weatherClient.getWeatherCondition is called with the valid
location form, the success callback, and the failure callback parameters.

In the success callback, the response message returned from the server is ensured
of not being equal to an empty message using thenotEqual assertion (the server
response message should contain the weather information for the passed location),
and then a call is made to thestart() ~ API to proceed with the test.

[127]



QUnit

In the failure callback, ok(false) s called in order to fail the test function because the
failure callback must not be called in case you want to get weather information for a
valid location. Finally, a call is made to the start()  API to proceed with the test.

The following code snippet shows the other "getting the weather information
for an invalid place" test function of "WeatherClient Test Module"

asyncTest("getting the weather information for an invalid place”,
function() {

var successCallback = function() {

ok(false, "Getting the weather information for an invalid
place succeeded (MUST NOT Happen)!!!");

start();
h

var failureCallback = function(response) {
var resultMessage = response.xmlhttp.responseText;

equal(resultMessage, "Invalid location code”, "Getting the
weather information for an invalid place failed (Expected)

="
start();

g

this.weatherClient.getWeatherCondition(this.invalidLocationForm,
successCallback, failureCallback);

D
As shown in the previous code snippet, the "getting the weather information
for an invalid place" test function follows the same approach as that of the

previous test function. The main difference is that it ensures that failureCallback
is called and the server response message is validated to bélnvalid location
code" DQG AQ DeddDred.thet duvtessCallback  is not called.

Running the weather application tests

In order to run the weather application tests correctly, you have to make sure that

the server is up and running in order to pass the Ajax tests. So you need to deploy

WKLV FKDSWHU V XSGDWHG YHUVLRQ RI WKH ZHDWKHU DSSOLFDW
in &KDSWBHQU W 7HVWLQJ -DY D 6&nd th&nvypg $8 llowibgVWRRIQ V

WKH EURZVHU V DGGUHVYV EDU

http://localhost:8080/weatherApplication/js/js-test/qunit/testRunner.
html

[128]




&KDSWHU

7KH IROORZLQJ VFUHHQVKRW VKRZV WKH ZHDWKHU DSSOLFDWLRC

As shown in the preceding screenshot, the test modules appear in the drop-down
PHQX LQ WKH WRS ULJKW SDUW RI WKH WHVW SDJH
you want to execute using this drop-down menu; for example, if you select the
LoginClient Test Module menu item, only the LoginClient  test functions

will be executed, as with the other test modules.

Summary

In this chapter, you learned what QUnit is and how to use it for testing synchronous
JavaScript code. You learned how to test asynchronous (Ajax) JavaScript code using
the QUnit test and QUnit asyncTest mechanisms. You learned the assertions
provided by the framework, and how to develop your own assertion in order to

<RX FDQ AOW

VLPSOLI\ \RXU WHVW FRGH <RX DOVR OHDUQHG KRZ WR ORDG +7

QUnit tests. Finally, you learned how to apply all of these concepts for testing the
weather application using QUnit. In the next chapter, you will learn how to work
with the JsTestDriver framework, and learn how to use it for testing the JavaScript
part of the weather application. Along with this, you will also learn how to automate
the QUnit and Jasmine tests using the JsTestDriver framework.

[129]






JsTestDriver

JsTestDriver JSTD) LV RQH RI WKH PRVW SRZHUIXO DQG HIAFLHQW -DYD
frameworks. JSTD is not only a JavaScript unit testing framework but also a complete

test runner that can run other JavaScript unit testing frameworks, such as Jasmine,

YUI Test, and QUnit. JSTD provides a simple syntax for creating JavaScript test cases

that can run either from the browser or from the command line; JSTD provides a

clean mechanism for testing asynchronous (Ajax) JavaScript code. If you are familiar

ZLWK WKH VI\QWD[ RI [8QLW IUDPHZRUNV VXFK DV -8QLW \RX ZL(
with the JSTD syntax. In this chapter, the JSTD framework will be illustrated in detail

and will be used to test the weather application that was discussed in & KD S W8HQUL W

THVWLQJ -DYD6FULSW $SSOLFDWLRQV

Architecture

Before XQGHUVWDQGLQJ KRZ WR FRQAJXUH -67' ZH QHHG WR AUVW
ZRUNV 7KH IROORZLQJ AJXUH VKRZV WKH DUFKLWHFWXUH RI -V7}

Config

DB~

Sources Client

N '
\ Internet
Explorer

Tk

o
@
2
]




JsTestDriver

,Q WKH AUVW VWHS WKH VHUYHU LV ODXQFKHG WKHQ WKH VHU"
the different browsers once they are captured. (A browser can be captured through

WKH FRPPDQG OLQH RU E\ HOQWHULQJ WKH VHUYHU 85/ LQ WKH EU
the browser is captured, it is called a slave browser and can be controlled from

the command line.) By sending commands to slave browsers, the server loads the

-DYD6FULSW FRGH H[HFXWHV WKH WHVW FDVHV RQ HYHU\ VODYH
the results to the client.

We can supply the two following main inputs to the client (command line):

t -DYD6FULINe ADDAHDBFULSW VRXUFH DQG WHVW AOHV DQG PD\
KHOSHU AOHYV

t A FRQAJXU D W4iTRs@ridefrbhf : To organize the loading of the
-DYD6FULSW VRXUFH DQG WHVW AOHV

7KLV DUFKLWHFWXUH LV AH[LEOH LW DOORZV D VLQJOH VHUYHU
browsers whether they are on the same machine or on different machines on

the network. For example, this can be useful if your code is running on a Linux

environment and you want to run your JavaScript tests against Microsoft Internet

Explorer on another Windows machine.

&RQ:;IJXUDWLRQ

Inorderto FRQAJXUH -67' \RX QHHG WR IROORZ WKH HQVXLQJ VWHSV

1. Download the framework from http://code.google.com/p/js-test-
driver/downloadsl/list . At the time of this writing, the latest release of
JSTD is v1.3.4.b. So, th@sTestDriver-1.3.4.b.jar AOH KDV EHHQ XVHG IRU
working with JSTD in this chapter.

M As recommended in the previous chapters, it is a good habit to separate
Q the JavaScript source and testing files in different folders for the sake of
organization.

2. 7KH VHFRQG VWHS LV WR FUHDWH Wde¢stDrsst! WHVW FRQAJXUD'
conf , as shown in the following code snippet:

server: http://localhost:9876

load:
- srcl*.js
- tests/*.js

[132]



&KDSWHU

L)
Q This error occurs because JsTestDriver is unable to see the configuration file;

7KH FRQAJXUDWYRQ faronat (YAMILi®a recursive acronym for

YAML Ain't Markup Language . For more information about the YAML

format, check http://yaml.org/ .). Theserver directive refers to the JSTD

server URL. Ifthesever GLUHFWLYH LV QRW VSHFLAHG WKH VHUYHU
QHHGHG WR EH VSHFLAHG D Wioal KlifedfivePefels@@eOLQH 7KH
-DYD6FULSW AOHV WR EH ORDGHG E\ WKH -67' WHVW UXQQHL
code snippet, theload directive tells the test runner to load all JavaScript

VRXUFH AOHV ZLWK WK H,jsH ) WhHeQtle sk Qfolsidd sl Q

WR ORDG DOO WKH -DYD6FULSW WHVW AOHV ZLWK WKH VDPH
the tests folder.

After FUHDWLQJ WKH -67' WHVW FRQAJXUDWLRQ AOH \RX FDQ
from the command line using the following command:

java —jar JsTestDriver-1.3.4.b.jar --port 9876

Using this command, the server starts up on port 9876. Once the server starts,
you can capture the browsers by entering the following server URL in the
EURZVHU V DGGUHVV EDU

http://localhost:9876/capture
In the server startup command, you have the option of launching captured
(slave) browsers as follows:

java -jar JsTestDriver-1.3.4.b.jar --port 9876 --browser [firefoxp
ath],[iepath],[chromepath]

Using the browser argument, you can launch already captured browsers for
the server to execute the JavaScript tests on.

After you start the server and capture the browsers (manually or from the
command line), you can execute the JSTD tests from the command line using
the following command:

java -jar JsTestDriver-1.3.4.b.jar --tests all

Sometimes, you may face the following error while executing the tests:

"java.lang.RuntimeException: Oh Snap! No server
defined!"

in order to avoid this error, you can specify the configuration file path using
the --config ~ parameter in the command to execute tests, as follows:

java -jar JsTestDriver-1.3.4.b.jar --config jsTestDriver.
conf --tests all

[133]




JsTestDriver

After executing the JSTD tests, you will see the following result in the console if you
have executed three successful tests (for example):

Total 3 tests (Passed: 3; Fails: 0; Errors: 0) (2.00 ms)

Firefox 15.0 Windows: Run 3 tests (Passed: 3; Fails: 0; Errors 0) (2.00
ms)

... Other browsers here ...

In order to have the java command available from the command line,
\RX QHHG WR LQVWDOO DQG FRQAJXUH -DYD RQ \RXU PDFKLQH
M that you have already installed the JRE as indicated in & K D S W8HQUL W
Q 7THVWLQJ -DY D6 F U in®lerg&SrBrCtheFTDi¢ 4t Repver. After
installing the JRE, all you need to do to have thejava command
available from your command line is to add the JRE bin directory to
the PATHvariable of your operating system.

ULWLQJ \RXU UVW -67' WHVW

A JSTD test can contain test cases and test functions. A JSTD test case is a group of
related test functions. Every test function should contain one or more assertions

in order to perform the test and verify the outputs. The JSTD TestCase object is
responsible for creating the JSTD test case, and in order to create the test functions
inside the test case, every test function should start with the word "test".

Every JSTD assertion represents a function that validates a condition that can return
true or false. In order to pass the test function, all of the assertions inside the test
function have to be true. If one or more assertions inside a test function are false, the
test function fails. The following code snippet shows an example of two JSTD test
cases with test functions:

TestCasel = TestCase("Testcasel");

TestCasel.prototype.testFunctionl = function() {
/I One or more assertion(s)

%

TestCasel.prototype.testFunction2 = function() {
/I One or more assertion(s)

I3

TestCase2 = TestCase("Testcase2");

[134]



&KDSWHU

TestCase2.prototype.testAnotherFunction = function() {
/I One or more assertion(s)

I3

$V VKRZQ LQ WKH SUHFHGLQJ FRGH VQLSSHW WZR WHVW FDVHYV
case is namedTestcasel , and it contains two test functions testFunctionl and

testFunction2 . The second test case is namedestcase2 , and it contains a single

test function named testAnotherFunction

1RZ OHW V PRYH WrhplaMdthV WakaSdripiokjett (which we tested using
Jasmine, YUI Test, and QUnit in the previous chapters). The following code snippet
reminds you with the code of the SimpleMath object:

SimpleMath = function() {
I3

SimpleMath.prototype.getFactorial = function (number) {

if (number < 0) {
throw new Error("There is no factorial for negative numbers");

}

else if (number == 1 || number == 0) {

/I If number <= 1 then number! = 1.
return 1;
}else {

/[ If number > 1 then number! = number * (humber-1)!
return number * this.getFactorial(number-1);

}
}

SimpleMath.prototype.signum = function (number) {
if (number > 0) {
return 1;
} else if (number == 0) {
return O;
}else {
return -1;
}
}

SimpleMath.prototype.average = function (humberl, number2) {
return (numberl + number2) / 2;

}

[135]



JsTestDriver

As was done in the previous chapters, the following three test scenarios will be
developed for the getFactorial method:

1t A positive number
¥ Zero
t A negative number

The following code snippet shows how to test calculating the factorial of a positive
number (3), 0, and a negative number (-10 ) by using JSTD:

FactorialTestCase = TestCase("Factorial Testcase");

FactorialTestCase.prototype.setUp = function() {
this.simpleMath = new SimpleMath();

I3

FactorialTestCase.prototype.tearDown = function() {
delete this.simpleMath;

I

FactorialTestCase.prototype.testPositiveNumber = function() {

assertEquals("Factorial(3)", 6,
this.simpleMath.getFactorial(3));

I

FactorialTestCase.prototype.testZero = function() {

assertEquals("Factorial(0)", 1,
this.simpleMath.getFactorial(0));

I3

FactorialTestCase.prototype.testNegativeNumber = function() {
var localThis = this;

assertException("Factorial(-10)", function() {
localThis.simpleMath.getFactorial(-10)
}, "Error");
I3

The TestCase object declares a new test case calletFactorial Testcase" . The
setUp method is used to initialize the test functions in the test case, that is, thesetUp
method is called once before the run of each test function in the test case. In the
setUp method, the simpleMath object is created usingnew SimpleMath() . On the
contrary, the tearDown method is used to de-initialize the test functions in the test
case; thetearDown method is called once after the run of each test function in the test

[136]



&KDSWHU

case. In the factorial tests, thetearDown method is used to clean up, which deletes
the createdsimpleMath  object.

In the testPositiveNumber test function, the assertEquals  assertion function
calls simpleMath.getFactorial(3) and expects the result to be6. If simpleMath.

getFactorial(3) returns a value otherthan6 WKH WHVW IDLOV 7KH AUVW SDUDP

the assertEquals  assertion is optional, and it represents a message to be displayed
when the assertion fails. In JSTD, we have many other assertions to use instead of
assertEquals ; we will discuss them in greater detail in the $V V H UséctidghQ V

In the testZzero test function, the assertEquals  assertion function calls

simpleMath.getFactorial(0) and expects it to bel. In the testNegativeNumber
test function, the assertEquals  assertion function calls simpleMath.
getFactorial(-10) and expects it to throw an error by using the assertException

assertion. In JSTD, theassertException DVVHUWLRQ KDV WKUHH SDUDPHWHUV
parameter is optional and represents a message to be displayed when the assertion

fails, the second parameter represents a callback that contains the function to be

tested (which must throw an error in order to make the test function pass), and the

last parameter represents the string of the error type.

$IWHU A QD QuetFac®rial W Kikst case, we come to a new test case that tests
the functionality of the signum method provided by the SimpleMath object. The
following code snippet shows the signum test case:

SignumTestCase = TestCase("Signum Testcase");

SignumTestCase.prototype.setUp = function() {
this.simpleMath = new SimpleMath();

%

SignumTestCase.prototype.tearDown = function() {
delete this.simpleMath;

I3

SignumTestCase.prototype.testPositiveNumber = function() {
assertEquals("Signum(3)", 1, this.simpleMath.signum(3));
h

SignumTestCase.prototype.testZero = function() {
assertEquals("Signum(0)", 0, this.simpleMath.signum(0));
b

SignumTestCase.prototype.testNegativeNumber = function() {
assertEquals("Signum(-1000)", -1, this.simpleMath.signum(-1000));

%

[137]

\



JsTestDriver

We have three test functions for the signum method, the testPositiveNumber

function tests getting the signum of a positive number, the testzero function tests
getting the signum of zero, and the testNegativeNumber  function tests getting the
signum of a negative number. The following code snippet shows the test case of the
average method:

AverageTestCase = TestCase("Average Testcase");
AverageTestCase.prototype.setUp = function() {
this.simpleMath = new SimpleMath();

J§

AverageTestCase.prototype.tearDown = function() {
delete this.simpleMath;

I§

AverageTestCase.prototype.testAverage = function() {
assertEquals("Average(3, 6)", 4.5, this.simpleMath.average(3, 6));

I§

In "Average Testcase" , the testAverage  test function ensures that the average is
calculated correctly by calling the average method, using the two parameters 3 and
6, and expecting the result to be4.5 .

1RWH WKDW WKH AUVW RSWLRQDO PHVVDJH SDUDPHWHU LQ WKH
displayed if the assertion fails in a way that gives an error with a descriptive

PHDQLQJ /HW V @Wwattsridld) W K B Yéturning a wrong value

(for example, 10). This means that the following assertion will fail:

assertEquals("Factorial(3)", 6, this.simpleMath.getFactorial(3));

The result of running this failing assertion will be:

Factorial Testcase.testPositiveNumber failed (1.00 ms): AssertError:
Factorial(3) expected 6 but was 10

.| WKH AUVW PHVVDJH SDUDPHWHU LV RPLWWHG WKH UHVXOW ZL

Factorial Testcase.testPositiveNumber failed (1.00 ms): AssertError:
expected 6 but was 10

In order to run the SimpleMath JSTD tests, you need to create the JSTD test
FRQAJXUDWLRQ AOH WKDW SRLQWV WR WKH VRXUFH DQG WHVW -
server URL, as follows:

server: http://localhost:9876
load:

- src/*js

- tests/*.js

[138]



&KDSWHU

The simpleMath.js AOH LV SODFHE Qs Hrd the K H
simpleMathTest.js AOH ZKLFK FRIMpIEMa V JBTR kests is
%\ placed under the tests  folder. The load directive asks the JSTD test runner to
s ORDG DOO RI WKH*® Y Drélerthe Sie/ fld@@i-xid then to load all
RI WKH -DYDG6FUL S WestsO FolMeXiQuBlertb &¥dCide the JSTD tests.

Then, start the server from the command line by using the following command:

java —jar JsTestDriver-1.3.4.b.jar --port 9876

Then, capture the browsers (for example, IE and Firefox) by entering the following
85/ LQ WKH EURZVHU V DGGUHVV EDU

http://localhost:9876/capture

Finally, you can execute the tests after you start the server and capture the browsers
manually (or from the command line) by using the following command:

java -jar JsTestDriver-1.3.4.b.jar --tests all

$IWHU H[HFXWLQJ WKH WHVW FDVHV \RX ZLOO AQG WKH IROORZL

Total 14 tests (Passed: 14; Fails: 0; Errors: 0) (8.00 ms)

Microsoft Internet Explorer 8.0 Windows: Run 7 tests (Passed: 7; Fails:
0; Errors 0) (0.00 ms)

Firefox 15.0.1 Windows: Run 7 tests (Passed: 7; Fails: 0; Errors 0) (8.00
ms)

Assertions

An assertion is a function that validates a condition; if the condition is not valid, it
throws an error that causes the test to fail. A test method can include one or more
assertions; all the assertions have to pass in order to have the test method pass. In
WKH AUVW -67' WHVW H[D P Sa6settEqhdts K Brid lss¥nExt&ptioV K H
assertions. In this section, the other different built-in assertions provided by JSTD
will be illustrated.

[139]




JsTestDriver

7KH DVVHUW DVVHUW7UXH DQG DVVH
expression) assertions

The assert and assertTrue  assertions do the same thing; they have two

SDUDPHWHUV 7KH AUVW SDUDPHWHU LV DQ RSWLRQDO PHVVDJH
assertion fails, and the second parameter represents an expression. Thassert and

assertTrue  assertions are passed if the expression parameter is evaluated torue .

The assertFalse  assertion does the reverse operation; it passes if the expression is

evaluated to false. For example, the following assertions work:

assert(6 == 6);
assertTrue("6 should equal 6", 6 == 6);
assertFalse(6 != 6);

7KH DVVHUW (TXDOV DQG DVVHUWI1RW (
HI[ISHFWHG DFWXDO DVVHUWLRQV

The assertEquals ~ assertion KDV WKUHH SDUDPHWHUV WKH AUVW SDUDPHW|
message to be displayed if the assertion fails, and the last two parameters represent

the expected and actual values. TheassertEquals  assertion is passed if the actual

value is equal to the expected value; if it is not, the assertion fails and the optional

message is displayed. TheassertNotEquals  assertion ensures that the actual and

expected parameters are not equal.

It is very important to know that the assertEquals  and assertNotEquals

assertions use the JavaScript= operator to perform the comparison, that is, they
carry out the comparison neglecting the types. For example, the following assertions
will be passed:

assertEquals("6 should equal '6", 6, "6");
assertNotEquals("6 should not equal 7", 6, 7);

/(KH DVVHUWG6DPH DQG DVVHUWI1IRWG6DI
HI[ISHFWHG DFWXDO DVVHUWLRQV

The assertSame and assertNotSame assertions are very similar to the
assertEquals  and assertNotEquals assertions. The main difference between
them is that the assertSame and assertNotSame assertions use the=== operator
for comparison, that is, they compare both the values and the types of the actual
and expected parameters. For example, the following assertions will be passed:

assertSame("6 is the same as 6", 6, 6);
assertNotSame("6 is not the same as '6", 6, "6");

[ 140]



&KDSWHU

The datatype assertions

The following set of assertions in JSTD checks the value types. Each one of these
DVVHUWLRQV WDNHV WZR SDUDPHWHUV WKH AUVW SDUDPHWHU L
displayed if the assertion fails, and the second parameter is the value to be tested:

T assertBoolean([msg], actual) is passed if the actual value is a Boolean
T assertString([msg], actual) is passed if the actual value is a string

T assertNumber([msg], actual) is passed if the actual value is a number

T assertArray([msg], actual) is passed if the actual value is an array

T assertFunction([msg], actual) is passed if the actual value is a function
T assertObject([msg], actual) is passed if the actual value is an object

For example, the following assertions will be passed:

assertBoolean(false);
assertString("some string");
assertNumber(1000);

assertArray([1, 2, 3]);
assertFunction(function(){ alert('test’); });
assertObject({somekey: 'someValue'});

JSTD also provides generic assertionsassertTypeOf — and assertinstanceOf ,
for checking the datatypes.

The assertTypeOf assertion uses the JavaScriptypeof operator in order to check

WKH YDOXH W\SH ,W WDNHV WKUHH SDUDPHWHUV WKH AUVW SD!
to be displayed if the assertion fails, and the other two parameters represent the

value type and the value to test. For example, the following assertTypeOf assertions

will pass:

assertTypeOf("boolean”, false);
assertTypeOf("string”, "some string");
assertTypeOf("number", 1000);
assertTypeOf("object", [1, 2, 3]);
assertTypeOf("“function”, function(){ alert('test’); });
assertTypeOf("object", {somekey: 'someValue'});

[141]



JsTestDriver

In addition to all of this, you can use the assertinstanceOf assertion, which uses
the JavaScriptinstanceof ~ operator in order to check the value instance. It takes
WKUHH SDUDPHWHUV #/d6dptiohbl/iiéssaBelidoe Hisplayed if the
assertion fails, and the other two parameters represent the type constructor and the
value to be tested. For example, the following assertions will pass:

assertinstanceOf(Boolean, false);
assertinstanceOf(String, "some string");
assertinstanceOf(Number, 1000);
assertinstanceOf(Object, [1, 2, 3]);
assertinstanceOf(Function, function(){ alert(‘test"); });
assertinstanceOf(Object, {somekey: 'someValue'});

Special value assertions

The following set of assertions in JSTD checks whether a variable value belongs

to one of the special values as mentioned in the following list. Each one of these

DVVHUWLRQV WDNHV WZR SDUDPHWHUV WKH AUVW SDUDPHWHU |
displayed if the assertion fails, and the second parameter is the value to be tested:

T assertUndefined([msg], actual) is passed if the actual value
LV XQGHAQHG

T assertNotUndefined([msg], actual) is passed if the actual value
LV QRW XQGHAQHG GHAQHG
assertNull([msg], actual) is passed if the actual value is null
assertNotNull([msg], actual) is passed if the actual value is not null
assertNaN([msg], actual) is passed if the actual value is not a number
(NaN)

T assertNotNaN([msg], actual) is passed if the actual value is not NaN

For example, the following assertions will be passed:

var someStr = "some string";
var undefinedVar;

assertUndefined(undefinedVar);
assertNotUndefined(somesStr);
assertNull(null);
assertNotNull(someStr);
assertNaN(1000 / "string_value");
assertNotNaN(1000);

[142]




&KDSWHU

The fail([msg]) assertion

In some situations, you may need to fail the test manually, for example, if you want

WR PDNH \RXU RZQ FXVWRP DVVHUWLRQ WKDW HQFDSVXODWHYV V.
order to do this, JSTD provides the fail() method for failing the test manually.

assertAverage is an example of a custom assertion that uses théail() method:

assertAverage = function (numberl, number2, expected, failureMessage)
{

var actual = (numberl + number2) / 2;

if (actual != expected) {

fail(failureMessage + ": Expected =" + expected + " while
Actual =" + actual);

}
}

The assertAverage  custom assertion can be called by simply using the following
line of code:

assertAverage(3, 4, 3.5, "Average is incorrect");

The fail() method has an optional message parameter that is displayed as
a failure message.

o There are other remaining built-in assertions in JSTD; however, the
~ only remaining important built-in assertion that you have to know
Q is assertException , and you already learned how it works in the
SimpleMath object test example.

Testing asynchronous (Ajax) JavaScript
code

The common question that comes to mind is how to test asynchronous (Ajax)
JavaScript code using JSTD. What has been mentioned in the chapter so far is how to
perform unit testing for the synchronous JavaScript code. Fortunately, JSTD provides
the AsyncTestCase object in order to perform asynchronous JavaScript testing

(Ajax testing). In the following section, you will understand how to work with the
AsyncTestCase object in order to develop asynchronous tests in JSTD.

[ 143]




JsTestDriver

$VIQF7THVW&DVH TXHXH DQG FDOOED

AsyncTestCase extendsTestCase by allowing the test methods to have a queue
parameter. The queue parameter can contain a list of inline functions (steps) that are
executed in sequence. Every inline function has acallbacks  parameter that allows
creating different callbacks for testing the asynchronous operations. JSTD mainly has
two types of callbacks:

¥ Success callbacks These represent the success path. The success callback
must be called if the Ajax operation succeeds. In order to handle the
RSHUDWLRQ WLPHRXW LI WKH VXFFHVV FDOOEDFN LV QRW F
of time (30 seconds, by default), the test function fails.

¥ Error callbacks : These represent the error path. The error callback must not
be called if the Ajax operation succeeds. If the error callback is called, the test
function fails.

The JSTDqueue parameter contains a list of inline functions that are

executed in sequence, which is helpful if you want to test a group of
T~ dependent Ajax operations.

The following code snippet shows an example of real Ajax testing using JSTD:

AsynchronousTestCase = AsyncTestCase("Asynchronous Testcase");

AsynchronousTestCase.prototype.testAjaxOperationsGroupl =
function(queue) {
queue.call('Testing operationl ...", function(callbacks) {
var successCallback =
callbacks.add(function(successParameters) {
/I Make the assertions for the successParameters...

B

var failureCallback = callbacks.addErrback('Unable to
register the user’);

/I call asynchronous API

asyncSystem.doAjaxOperation(inputData, successCallback,
failureCallback);

D

queue.call('Testing operation?2 ...", function(callbacks) {
/I will be called after 'Testing operationl ...'
i
2

[144]



&KDSWHU

AsynchronousTestCase.prototype.testAjaxOperationsGroup2 =
function(queue) {

1...
k

As shown in the preceding code snippet, an asynchronous test case;Asynchronous
Testcase" |, is created. It has two test methods:testAjaxOperationsGroupl and
testAjaxOperationsGroup?2 . Every test method has aqueue parameter. In the
testAjaxOperationsGroupl test method, the queue object includes two inline
functions, "Testing operation1 ..." and "Testing operation2 ..." , using the
queue.call() API.

The queue.call() $3, KDV WZR SDUDPHWHUV WKHJBAUVW SDUDPHWH!
optional and represents the title of the inline function, and the second
"~ parameter represents the inline function.

Every inline function has a callbacks  parameter. Thecallbacks parameter allows
creating the success and failure callbacks in order to test and validate the Ajax
operations. In the "Testing operationl ..." inline function, two callbacks are
created; one of them is the success callbacks(iccessCallback ) and it is called if
the Ajax operation succeeds. The success callback is created using theallbacks.
add() API. The other callback is the failure callback (failureCallback ), and itis
called if the Ajax operation fails. The failure callback is created using the callbacks.
addErrback()  APL.

If the Ajax response is not returned from the server after 30 seconds, the success
callback will cause the test to fail. In the next section, the AsyncTestCase , queue, and
callbacks  objects will be used in order to test the (asynchronous) Ajax part of the
weather application.

Testing the weather application

Now, we come to developing the JSTD tests for our weather application. Actually,
after you know how to write JSTD tests for both synchronous and asynchronous
JavaScript (Ajax) code, testing the weather application is an easy task. As you
remember from the previous chapters, we have three major JavaScript objects

in the weather application that we need to develop tests for: the LoginClient
RegistrationClient , and WeatherClient  objects.

[145]




JsTestDriver

Two subfolders, jstd andtests, are created under thejs-test  folder
(thus: jstd\tests ) to contain the JSTD tests, as shown in the following screenshot:

$V VKRZQ LQ WKH SUHFHGLQJ VFUHHQVKRW WKHUH DUH WKUHH -
(LoginClientTest.js , RegistrationClientTest.js , and WeatherClientTest.
js ) that test the main three JavaScript objects of the weather application.

Using the JSTDDOCDQQRWDWLRQ \RX FDQ ORDG ;IIKH +70/ A[WXUHV
an inline style) in your JSTD tests. For example:
FixtureTestCase = TestCase("Fixture Testcase");
NQ FixtureTestCase.prototype.testSomeThing = function()
{
[*:DOC += <div id="someDiv"></div> */
assertNotNull(document.getElementByld('someDiv"));

h

[ 146]



&KDSWHU

Testing the LoginClient object

As we did in the previous chapters, inthe 7THVWLQJ WKH /R3tcoaaOLHQW REMHFW
we will perform unit testing for the following functionalities:

T Validation of empty username and password
¥ Validating that the username is in e-mail address format

T Validating that the password contains at least one digit, one capital
and small letter, at least one special character, and six characters or more

In order to perform this test, one test case is created that tests both the validation

Rl WKH HPSW\ AHOGYV WKH XVHUQDPH DQG SDVVZRUG DQG WKH )
formats. The followingcode VQLSSHW VKRZV WKH YDOLGDWLRQ RI WKH HPSV
"LoginClient Testcase" :

LoginClientTestcase = TestCase("LoginClient Testcase");

LoginClientTestcase.prototype.setUp = function() {

/*:DOC += <label for="username">Username <span
id="usernameMessage" class="error"></span></label>

<input type="text" id="username" name="username"/>

<label for="password">Password <span id="passwordMessage"
class="error"></span></label>

<input type="password" id="password" name="password"/>*/
this.loginClient = new weatherapp.LoginClient();

this.loginForm = {

"userNameField" : "username”,

"passwordField" : "password",

"userNameMessage" : "usernameMessage"”,

"passwordMessage" : "passwordMessage”

h
b

LoginClientTestcase.prototype.tearDown = function() {
delete this.loginClient;
delete this.loginForm;

k

LoginClientTestcase.prototype.testEmptyUserName = function() {

document.getElementByld("username").value = ""; /* setting
username to empty */

document.getElementByld("password").value = "Admin@123";

[147]



JsTestDriver

this.loginClient.validateLoginForm(this.loginForm);

assertEquals(“(field is required)",
document.getElementByld("usernameMessage").innerHTML);

I3

LoginClientTestcase.prototype.testEmptyPassword = function() {
document.getElementByld("username").value = "someone@yahoo.com";

document.getElementByld("password").value = "; /* setting
password to empty */

this.loginClient.validateLoginForm(this.loginForm);

assertEquals(“(field is required)",
document.getElementByld("passwordMessage").innerHTML);

I3

The setUp method creates an instance fromweatherapp.LoginClient and creates
the loginForm  object, which holds the IDs of the HTML elements that are used in the
WHVW 7KH +70/LAyindliehtT éstdade is loaded using the DOCannotation.

testEmptyUserName  tests whether the LoginClient  object is able to display an error
message when the username is not entered. It sets an empty value in thaisername
AHOG DQG W Kvai@atELDgdkdivh W KARI of the LoginClient  object. It then
checks whether the validateLoginForm API produces the "(field is required)"
message in theusernameMessage AHO G E\ X WdséptHqualK Hassertion.

testEmptyPassword  does the same thing, but with the password AHOG QRW ZLWK WKH
username AHOG

The following code snippet shows the second part of "LoginClient Testcase" ,
ZKLFK YDOLGDWHY WKH IRUPDWYV RI WKH AHOGV XVHUQDPH DQG

LoginClientTestcase.prototype.testUsernameFormat = function() {
document.getElementByld("username").value =
"someone@someDomain"; /* setting username to invalid format */
document.getElementByld("password").value = "Admin@123";

this.loginClient.validateLoginForm(this.loginForm);

assertEquals("(format is invalid)",
document.getElementByld("usernameMessage").innerHTML);

I3

LoginClientTestcase.prototype.testPasswordFormat = function() {
document.getElementByld("username").value =

[ 148]



&KDSWHU

"someone@someDomain.com";

document.getElementByld("password").value = "Admin123"; /*
setting password to invalid format */

this.loginClient.validateLoginForm(this.loginForm);

assertEquals("(format is invalid)",
document.getElementByld("passwordMessage").innerHTML);

h

testUsernameFormat  tests the validation of the username format. It tests whether

the LoginClient  object is able to display an error message when the username

format is not valid. It sets an invalid e-mail value in the username AHOG DQG WKHQ FDOOV
the validateLoginForm API of the LoginClient  object. Finally, it checks, by using

the assertEquals  assertion, whether the validateLoginForm API produces the

"(format is invalid)" message in theusernameMessage AHO G

testPasswordFormat  enters D SDVVZRUG WKDW GRHV QRW FRPSO\ ZLWK WK
password rules—it enters a password that does not include a capital letter—and

then calls the validateLoginForm API of the LoginClient  object. Finally, it checks

whether the validateLoginForm API produces the "(format is invalid)"

message in thepasswordMessage AHO G

Testing the RegistrationClient object

In the RegistrationClient object, we will test the following functionalities:

T Validation of empty username and passwords

¥ Validation of matched passwords

t Validating that the username is in e-mail address format
¥

Validating that the password contains at least one digit, one capital and small
letter, at least one special character, and six characters or more

¥ Validating that the user registration Ajax functionality is performed correctly

7HVWLQJ Rl WKH AUVW IRXU IXQFWLRQDOLWLHY ZLOO EH VNLSSH!«
similar to the tests that are explained in the LoginClient WHVW FDVH VR OHW V H[SODL
how to check whether the user registration (registerUser ) Ajax functionality is

performed correctly.

[149]




JsTestDriver

The registerUser test case should cover the following test scenarios:

1t Testing adding a new user, that is, the registration client should be able to
register a valid user correctly.

1t Testing adding a user with an existing user ID (username). In this case,
the registration client should fail when registering a user whose ID is
already registered.

The RegistrationTestcase asynchronous test case is created in order to validate

the user registration Ajax functionality. The following code snippet shows the

AUV W S D BéistRilioVestthse test case, which tests adding a new user.

The setUp method creates an instance fromweatherapp.RegistrationClient

and creates theregistrationForm object, which holds the IDs of the registration

form that will be used in the test. Usingthe DOCDQQRWDWLRQ WKH +70/ A[WXUH RI
RegistrationTestcase is loaded:

RegistrationTestcase = AsyncTestCase("Registration Testcase");

RegistrationTestcase.prototype.setUp = function() {
/*:DOC += <label for="username">Username (Email) <span
id="usernameMessage" class="error"></span></label>

<input type="text" id="username" name="username"/>
<label for="password1">Password <span id="passwordMessagel"
class="error"></span></label>

<input type="password" id="passwordl" name="password1"/>
<label for="password2">Confirm your password</label>
<input type="password" id="password2" name="password2"/>*/

this.registrationClient = new weatherapp.RegistrationClient();

this.registrationForm = {
"userNameField" : "username”,
"passwordField1" : "passwordl1",
"passwordField2" : "password2",
"userNameMessage" : "usernameMessage",
"passwordMessagel" : "passwordMessagel"
h
I8

RegistrationTestcase.prototype.tearDown = function() {
delete this.registrationClient;
delete this.registrationForm;

h

[150]



&KDSWHU

RegistrationTestcase.prototype.testRegisterUser = function(queue) {
var this_local = this;

queue.call('Registering a new user ...", function(callbacks) {
this_local.userName = "hazems" + new Date().getTime() +
"@apache.org";

document.getElementByld("username").value =
this_local.userName;
document.getElementByld("password1").value = "Admin@123";
document.getElementByld("password2").value = "Admin@123";

var successCallback = callbacks.add(function(response) {
var resultMessage = response.xmihttp.responseText;
assertEquals("User is registered successfully ...",
resultMessage);

jstestdriver.console.log("[Success] User is registered
successfully ...");

h

var failureCallback = callbacks.addErrback('Unable to
register the user');

/I call asynchronous API
this_local.registrationClient.registerUser(this_local.
registrationForm, successCallback, failureCallback);

b

/...
k

In the testRegisterUser test method, an inline function (‘Registering a new

user ...) , tests the creation of a new user usingqueue.call() . The registration

IRUP LV AOOHG ZLWK D YDOLG JHQHUDWHG XVHUQDPH DQG YDOLC
then two callbacks are created using thecallbacks  parameter. successCallback

which represents the success callback, whilefailureCallback represents the failure

callback. registrationClient.registerUser is called with the registration form,

the success callback, and the failure callback parameters. ThéRegistering a new

user ... inline test function waits for a call to either the success or failure callback,

or it fails after the timeout period passes.

[151]



JsTestDriver

In successCallback , the callback checks whether the returned response message
from the server is "User is registered successfully ..." using the
assertEquals  assertion. The failure callback displays the "Unable to register

the user"  message if theregisterUser test case fails.

The jstestdriver.console.log API can be used for JSTD logging

in the console. In the example, it is used to display the "operation
T successful" message.

The following code snippet shows the second inline function, 'Registering a user
whose id is already existing ...' , Of the testRegisterUser test method. It
tests registering a user with an existing ID:

qgueue.call(Registering a user whose id is already existing ...",
function(callbacks) {

document.getElementByld("username").value = this_local.userName;
document.getElementByld("passwordl1").value = "Admin@123";
document.getElementByld("password2").value = "Admin@123";

var failureCallback = callbacks.add(function(response) {
var resultMessage = response.xmlhttp.responseText;

assertEquals("A user with the same username is already registered
...", resultMessage);

jstestdriver.console.log("[Success] User is not created because
the user id is already registered ...");

bl

var successCallback = callbacks.addErrback('[Error] A user with the
same id is created !!");

/I call asynchronous API

this_local.registrationClient.registerUser(this_local.
registrationForm, successCallback, failureCallback);

b

The registraton IRUP LV AOOHG ZLWK WKH H[LVWLQJ XVHU ," WKDW LV
LQ WKH AUVW LQOLQH WHVW IXQFWLRQ DQG ZLWK D YDOLG SDVV
success callbacks are created. ThenegistrationClient.registerUser is called

with the registration form, the success callback, and the failure callback parameters.

[152]




&KDSWHU

In the failure callback (which must be called if the registerUser test case works
correctly), the callback checks whether the returned response message from the
server is"A user with the same username is already registered ..." ,
using the assertEquals  assertion. The success callback displays thé&[Error] A

user with the same id is created !'!" message if theregisterUser test case
creates a new user with an existing user ID.

Testing the WeatherClient object

In the WeatherClient  object, we will unit test the following functionalities:

1t Getting the weather for a valid location

¥ Getting the weather for an invalid location (the system should display
an error message for this case)

To test the WeatherClient  object, the same technique that we used in the

registerUser test case is followed. Developing this test will be left for you as

an exercise; you can get the full source code of thenveatherClientTest.js AOH

from the Chapter5 IROGHU LQ WKH FRGH EXQGOH DYDLODEOH RQ WKH E
To view the source code for the JavaScript tests, all you need to do is unzip the

weatherApplication.zip AOH DQG \RX ZLOO EH DEOH WR AQG DOO WKH -
under weatherApplication/WebContent/js/js-test/jstd/tests .

&RQ:IXULQJI WKH SURJ)\

In order to allow sending Ajax requests from the JSTD server to the backend server,

we need to access the backend server through a proxy so as to avoid the "security
permission denied" error that occurs due to the cross-domain request(s). Fortunately,

JSTD provides a gateway (proxy) that can be used for this purpose. The following

code snippet shows the complete JsTestDriver.config AOH Rl WKH ZHDWKHU
application JSTD test:

server: http://localhost:9876

gateway:
- {matcher: "*", server: "http://localhost:8080"}

load:
- .[.[js-srcl*.js
- tests/*.js

plugin:
- name: "coverage"
jar: coverage-1.3.4.b.jar

module: "com.google.jstestdriver.coverage.CoverageModule"

[153]



JsTestDriver

,Q WKH FRQAJXUDWLRQ AOH WKHUH DUH WZR QHZO\ LQWURGXFH
H[SODLQHG LQ WKH AUVW -@afeay dnd\Wudh] Ddr&tvés. The K H

plugih GLUHFWLYH LV XVHG WR GHAQH D -67' SOXJLQ )RU WKLV H[L
code coverage plugin that is used to generate the test reports (this plugin will be

illustrated in detail inthe *HQH U D W L Q J s@é¢tibR) VW helght&nviayU difattive

can be used to route the requests that match thematcher DWWULEXWH V SDWWHUQ WR
WKH FRUUHVSRQGLQJ VHUY KdiveB 5dttibStel FarAnd Gedti@r W K H

application tests, all of the Ajax requests (which are represented using the "*"

pattern) will be routed to the backend server in http://localhost:8080, which

hosts the weather application backend APIs.

In the matcher attribute, you can use the following varieties of patterns:
t Literal matchers : For example,"/matchedService"
= T Suffix matchers : For example,"/matchedService/*"

¥ Prefix matchers: For example,"*.json"

Running the weather application tests

In order to run the weather application tests correctly, you have to make sure that

WKH 7RPFDW VHUYHU LV XS DQG UXQQLQJ DQG WKDW WKLV FKDS\
weather application is deployed on the server as explainedin & KD SWHQU W 7HVWLQJ
-DYDB6FULSW 388 this,Fybunech 1 Yollow these steps:

1. Launch the command prompt and change directory (cd) to the "${INSTALL_
PATHNweatherApplication\WebContent\js\js-test\jstd\" path in the
deployed weather application.

2. Startthe JSTD server by typing the commandjava -jar JsTestDriver-
1.3.4.b.jar --port 9876

3. Capture the browsers (for example, Firefox and Internet Explorer) by
HQWHULQJ WKH IROORZLQJ 85/ LQ WKH EURZVHU V DGGUHVV

http://localhost:9876/capture

4. Finally, run the JSTD test command as follows:

java -jar JsTestDriver-1.3.4.b.jar --config jsTestDriver.conf
--tests all

[154]



&KDSWHU

The following result snippet shows the output of running the JSTD tests of the
weather application:

Total 24 tests (Passed: 24; Fails: 0; Errors: 0) (1297.00 ms)

Microsoft Internet Explorer 8.0 Windows: Run 12 tests (Passed: 12;
Fails: O; Errors 0) (610.00 ms)

Registration Testcase.testRegisterUser passed (32.00 ms)
[LOG] [Success] User is registered successfully...

[LOG] [Success] User is not created because the user id is
already registered...

WeatherClient Testcase.testGetWeatherForValidPlace passed (328.00
ms)

[LOG] [Success] Weather information is retrieved successfully...

WeatherClient Testcase.testGetWeatherForlnvalidPlace passed
(250.00 ms)

[LOG] [Success] The weather information is not retrieved for the
invalid place...

Firefox 15.0.1 Windows: Run 12 tests (Passed: 12; Fails: 0; Errors
0) (1297.00 ms)

Registration Testcase.testRegisterUser passed (493.00 ms)
[LOG] [Success] User is registered successfully...

[LOG] [Success] User is not created because the user id is
already registered...

WeatherClient Testcase.testGetWeatherForValidPlace passed (539.00
ms)

[LOG] [Success] Weather information is retrieved successfully...

WeatherClient Testcase.testGetWeatherForlnvalidPlace passed
(252.00 ms)

[LOG] [Success] The weather information is not retrieved for the
invalid place...

Generating test reports

JSTD can generate test reports from the test results by using the code coverage
SOXJLQ 7KH FRGH FRYHUDJH SOXJLQ FDQ DOVRIBIWRGXFH FRGH F
code coverage (LCOV ) format—which include the test code coverage statistics.

[155]




JsTestDriver

Code coverageis a software testing measure. It shows how much the
source code of a program has been tested. It has many criteria for this
measurement, for example:

’ T Line coverage measures the percentage of the program lines that
% are covered by the test
T Function coverage measures the percentage of the program
functions that are covered by the test
T Branch coverage measures the percentage of the program
branches (for example, L1 « MtBaVate covered by the test

In order to generate the test reports from the JSTD tests, you need to do
the following:

1. 'RZQORDG WKH FRGH FR Ycbletdde H3.8HaX J L Q) #odnkhe
download page of JSTD, which can be found at the following location:

http://code.google.com/p/js-test-driver/downloads/list

2. Add the code coverage plugin declaration to the JsTestDriver.conf AOH
as follows:
plugin:
- name: “coverage"”
jar: coverage-1.3.4.b.jar
module: "com.google.jstestdriver.coverage.CoverageModule"

This declaration tells JSTD to include the plugin whose name is coverage
from the com.google.jstestdriver.coverage.CoverageModule module
that resides in the coverage-1.3.4.b.jar AOH

3. Finally, you need to specify the --testOutput parameter in the test running
command. The --testOutput SDUDPHWHU VSHFLAHV WKH SDWK LQ ZKLF
ZLOO JHQHUDWH WKH WHVW UHSRUW AOHV )RU H[DPSOH

java -jar JsTestDriver-1.3.4.b.jar --config jsTestDriver.conf
--tests all --testOutput reports

This command tells JSTD to generate the test reports under the
reports  directory.

[ 156]




&KDSWHU

7KH IROORZLQJ VFUHHQVKRW VKRZV WKH JHQHUDWHG UHSRUW AC
preceding steps:

$V VKRZQ LQ WKH SUHFHGLQJ VFUHHQVKRW WKHUH DUH QLQH JH
jsTestDriver.conf-coverage.dat AOH LV WKH JHQHUDWHG /&29 AOH WKDW F
code coverage statistics (currently, the JSTD code coverage plugin generates the code

FRYHUDJH EDVHG RQ WKH OLQH FRYHUDJH FULWHULD 7KH RWKH
UHSRUW AOHV WKDW KDYH WKH IROORZLQJ QDPLQJ IRUPDW

TEST-[BrowserName_Version_Platform].[TestCaseShortName]Testcase.xml

,Q WKH ZHDWKHU DSSOLFDWLRQ WKHUH DUH IRXU WHVW FDVHV V
per browser:

T "LoginClient Testcase"
T "Registration Validation Testcase"
T "Registration Testcase"

T "WeatherClient Testcase"

$V D VDPSOH IRU WKH JHQHUDWHG WHVW UHSRUW AOHV WKH IROO
"LoginClient Testcase" -8QLW 0/ UHSRUW AOH IRU )LUHIR[ 7KH GLVSOD\}
UHSRUW A O HESWFi@®f&XPLEDG Windows.LoginClientaTestcase.xml

<?xml version="1.0" encoding="UTF-8"?>

failures="0" tests="4" time="0.013">

<testcase classname="Firefox_1501_Windows.LoginClient Testcase"
name="testEmptyUserName" time="0.0040"/>

<testcase classname="Firefox_1501_Windows.LoginClient Testcase"
name="testEmptyPassword" time="0.0010"/>

<testcase classname="Firefox_1501_Windows.LoginClient Testcase"
name="testUsernameFormat" time="0.0060"/>

<testcase classname="Firefox_1501_Windows.LoginClient Testcase"
name="testPasswordFormat" time="0.0020"/>

</testsuite>

[157]




JsTestDriver

1RZ OHW V OHDUQ KRZ WR JHQHUDWH XVHU IULHQGO\ FRGH FRYF
JRUWXQDWHO\ WKH -67' JHQHUDWHG /&29 AOHV FDQ EH FRQYHUW
HTML reports using the LCOV visualizer tool that can be found at http://ltp.

sourceforge.net/coverage/lcov.php

The LCOV visualizer works on a Red Hat Linux environment. In order to convert the
/&29 AOHV WR +70/ UHSRUWV \RX VKRXOG GR WKH IROORZLQJ

1.

Download the latest LCOV visualizer RPM (Icov-X.Y-Z.noarch.rpm AOH
from http:/ltp.sourceforge.net/coverage/lcov.php

,QVWDOO WKH GRZQORDGHG 530 AOH LQ \RXU 5HG +DW /LQX]
using the following command:
rpm -i Icov-1.9-1.noarch.rpm

In order to make sure that the LCOV visualizer tool is installed correctly,
type the genhtml command at the command line, and you should see the
following output:

genhtml: No filename specified

Use genhtml --help to get usage information

Runthegenhtml FRPPDQG RQ WKH -67' JHQHUDWHG /&29 AOH LQ Rl
generate the HTML test coverage report shown in the following screenshot:

Note that the jsTestDriver.conf-coverage.dat AOH KDV WKH IRUPDW VKRZQ
in the following code snippet:

SF:[PATH]\Workspaces\weatherApplication\WebContent\js\LoginClient.

js

DA:1,2

end_of_record

[158]



&KDSWHU

SF:[PATH]\weatherApplication\WehContent\js\RegistrationClient.js
DA:1,2

end_of _record
SF:[PATH]\weatherApplication\WebContent\js\WeatherClient.js
DA:1,2

end_of _record
SF:[PATH]\weatherApplication\WebContent\js\LoginClientTest.js
DA:10,2

end_of _record
SF:[PATH]\weatherApplication\WebContent\js\RegistrationClientTest.
is

DA:12,2

end_of record
SF:[PATH]\weatherApplication\WebContent\js\WeatherClientTest.js
DA:8,2

end_of _record

$V VKRZQ LQ WKH /&29 JHQHUD VgHaRridu@sicoaiiH JHQHUDWHG
the IXOO SDWKV RI ERWK WKH -DYD6FULSW VRXUFH DQG WHVW
make sure that these paths are updated if you change the location of the

-DYD6FULSW AOHV

If you run the genhtml command and the paths of the SF
attributes are not correct, you will encounter the following error:

% "mkdir: cannot create directory ™': No such file or
’ directory

genhtml: ERROR: cannot create directory !"

[159]



JsTestDriver

5. Ifthe genhtml command LV SDVVHG VXFFHVVIXOO\ \RX ZLOO AQG WKI
HTMLcode FRYHUDJH UHSRUW /A@dhm FOAGN WQ WHH WKH
HTML report shown in the following screenshot:

You can drill down in the report by clicking on the js directory link to see
WKH WHVW UHVXOW GHWDLOV RI HDFK -DYD6FULSW AOH

The generated LCOV HTML report is placed under the Icov-
Al html folder, which is under the jstd folder; you can access the
~ generated HTML report on your Tomcat server by using the
Q following URL:
http://localhost:8080/weatherApplication/js/js-
test/jstd/Icov-html/index.html

Integration with other JavaScript test

frameworks

Asweknow IURP WKH GHAQLWLRQ RI -67' LW LV QRW RQO\ D -DYDG6FL
but also a complete test runner that can run other JavaScript frameworks on top of it,

using adapters. Fortunately, JSTD has many ready-made adapters, developed by the

open source community, that enable many JavaScript frameworks (such as Jasmine,

QUnit, and YUI Test) to integrate with JSTD. The integration of JSTD with both

Jasmine and QUnit is highly required because these testing frameworks do not have

an out-of-the-box mechanism for executing the tests from the command-line interface

(unlike YUI Test, which can run from the command line using YUI Test Selenium

[160]



&KDSWHU

Driver, as illustrated in detail in & KD S W< 7 H Madng the ability to execute
the tests from the command-line interface allows automating the running of tests by
using the build and the continuous integration tools.

In this section, the required steps and tricks that are needed for integrating our
previously written Jasmine and QUnit tests (the weather application) with the JISTD
runner will be illustrated.

%HIRUH GLJJLQJ LQWR WKH GHWDLOV RI WKLY LQWHJUDWLRQ OH
integration folder, which contains the JSTD-Jasmine and JSTD-QUnit integration
AOHV LQ WKH ZHDWKHU DSSOLFDWLRQ

As shown in the preceding screenshot, theintegration folder contains two
subfolders—the jasmine folder and the qunit folder. The jasmine folder and the
qunit folder each contain the following subfolders:

T jstd-adapter 7KHVH FRQWDLQ WKH -67' DGDSWHU AOHV
¥ lib 7KHVH FRQWDLQ WKH -DYD6FULSW IUDPHZRUN OLEUDU\ A
or QUnit)

[161]



JsTestDriver

+ spec andtests 7KHVH FRQWDLQ WKH -DVPLQH DQG 48QLW WHVW
t repots 7KHVH FRQWDLQ WKH UHSRUW AOHV

The jasmine folder and the qunit IROGHU FRQWDLQ WKH IROORZLQJ AOHYV

t JsTestDriver-1.3.4.b.jar 7KH -67' -$5 AOH
T coverage-1.3.4.b.jar 7KH -67' FRGH FRYHUDJH -$5 AOH
t jsTestDriver-*.conf 7KH -67' FRQAJXUDWLRQ AOHYV

t 7ZR EDWFK AOHV WKDW FDQ VWDUW WKH -67' VHUYHU DQG H
RU 48QLW WHVWV 7KHVH WZR AOHV ZLOO ZRUN ZLWK \RX L
Windows; if you are working in a Linux environment, you can create
equivalent sh AOHV WR VWDUW XS WKH VHUYHU DQG H[HFXWH WK
having to remember the commands.

Integrating JSTD with Jasmine

In order to integrate the Jasmine tests of the weather application with JSTD,
you need to:

1. Download the JasmineAdapter.js A @din the following URL:

https://github.com/ibolmo/jasmine-jstd-adapter/blob/master/src/
JasmineAdapter.js

2. Place the downloaded JasmineAdapter.js AOH X Q Gritehrativhk H
jasmine/jstd-adapter folder.

3. &UHDWH D FRQAJXU DjavdstRrQerda€ntihe.d@d P H G, that
FRQWDLQV WKH -67' -DVPLQH FRQAJXUDWLRQ ZKLFK LV VKRz

code snippet:

server: http://localhost:9876
gateway:
- {matcher: "*", server: "http://localhost:8080"}
load:
- lib/jasmine-1.2.0/jasmine.js
- lib/plugins/jasmine-jquery/jquery.js
- jstd-adapter/JasmineAdapter.js
- lib/plugins/jasmine-jquery/jasmine-jquery.js
- .. A ] Jjs-srcl*js
- spec/*.js
plugin:
- name: "coverage"
jar: coverage-1.3.4.b.jar
module: "com.google.jstestdriver.coverage.CoverageModule"

[162]



&KDSWHU

Intheload GLUHFWLYH \RX QHHG WR ORDG WKH IROORZLQJ AOH

The Jasmine framework file
The jQuery file

The Jasmine JSTD adapter file
The Jasmine jQuery plugin file

O 0 o o o

The JavaScript source files
g The Jasmine JavaScript test files

This is basically what is needed in order to have Jasmine tests running on top of the
JSTD test runner. However, you need to take theloadFixtures API of the Jasmine
jQuery plugin into consideration. Due to the changes of the paths between JSTD and
Jasmine, theloadFixtures API will not work correctly. In order to run the loading

Rl WKH A[WXUH FRUUHFWO\ \RX KDYH WZR RSWLRQV

T Replace theloadFixtures  API with the jasmine.getFixtures().set API
DQG ORDG WKH A[WXUHV LQ DQ LQOLQH VW\OH ZKLFK LV WK
ZHDWKHU DSSOLFDWLRQ V -67' -DVPLQH WHVWYV

t &RQAJXUH W HobbFixuké® L QARI to work with JSTD

,Q RUGHU WR FIRagritinésJ H ARIKdHvork with JSTD, you need to do
the following:

1. 6SHFLI\ H[SOLFLWO\ WKH A$ihXaeHixSEs K E\ XVLQJ

fixturesPath DQG VWDUW WKH ﬁe[sNVXded)ll@\B:WK ZLWK
jasmine.getFixtures().fixturesPath = '/test/spec/javascripts/
fixtures/";

loadFixtures("loginFixture.html");

2. /IRDG WKH +70/ A[W X Wsehn¢ HikettiQelint& IS TD-Jasmine
FRQAJ XU D WNTlefO@vekj@shiine.conf , as shown in the following
code snippet:

server: http://localhost:9876
gateway:
- {matcher: "*", server: "http://localhost:8080"}
serve:
- spec/javascripts/fixtures/*.html
load:
- lib/jasmine-1.2.0/jasmine.js
- lib/plugins/jasmine-jquery/jquery.js
- jstd-adapter/JasmineAdapter.js
- lib/plugins/jasmine-jquery/jasmine-jquery.js
- .. A ] Jjs-srcl*js

[163]



JsTestDriver

- spec/*.js
plugin:
- name: “coverage"”
jar: coverage-1.3.4.b.jar
module: "com.google.jstestdriver.coverage.CoverageModule"

After applying the preceding steps, you can now start the JSTD server as usual,
using the following command:

java -jar JsTestDriver-1.3.4.b.jar --port 9876

Then, capture two browsers (for example, Firefox and IE) by entering the following
85/ LQ WKH EURZVHU V DGGUHVV EDU

http://localhost:9876/capture

Finally, you can run the Jasmine tests on top of the JSTD test runner by executing the
JSTD test running command:

java -jar JsTestDriver-1.3.4.b.jar --config jsTestDriver-jasmine.conf
--tests all --testOutput reports

The output in the console will be as follows:

Total 26 tests (Passed: 26; Fails: 0; Errors: 0) (1538.00 ms)

Microsoft Internet Explorer 8.0 Windows: Run 13 tests (Passed: 13; Fails:
0; Errors 0) (922.00 ms)

Firefox 15.0.1 Windows: Run 13 tests (Passed: 13; Fails: 0; Errors 0)
(1538.00 ms)

In the reports  folder under the /integration/jasmine IROGHU \RX ZLOO AQG
-8QLW ;0/ UHSRUW AOHV QLQH AOHV IRU WKH WHVWV RQ JLUHIR]
(YHU\ -8QLW ;0/ UHSRUW AOH FRQWDLQV WKH WHVW UHVXOWYV RI

Integrating JSTD with QUnit

In order to integrate the QUnit tests of the weather application with JSTD, you need
to do the following:

1. Download the equiv.js  and QUnitAdapter.js AOHV IURP WKH
following URL:
https://github.com/exnor/QUnit-to-JsTestDriver-adapter

2. 30DFH WKH WZR GRZQQsR-adapteG AfoldeNunder thie K H
integration/qunit folder.

[ 164]



&KDSWHU

Create

D FRQAJXUD W L Rj§Fe&mivér-qgGnidderfl G , that

contains WKH -67' 48QLW FRQAJXUDWLRQ ZKLFK LV DV VKRZQ LCQ
code snippet:

server: http://localhost:9876

gateway:

- {matcher: "*", server: "http://localhost:8080"}

load:

- lib/qunit-1.10.0.js
- jstd-adapter/equiv.js
- jstd-adapter/QUnitAdapter.js

-
- tests/*

plugin:
- name:

Jjs-srcl*.js
Jjs

"coverage"

jar: coverage-1.3.4.b.jar
module: "com.google.jstestdriver.coverage.CoverageModule"

As you may have noticed in the preceding code snippet, you need to load the
IROORZLQJ AOHV Lldad RilbeGtided LQ WKH

o0 O o

q

The QUnit framework file

The QUnit JSTD adapter files equiv.js  and QUnitAdapter.js )
The JavaScript source files

The QUNnit JavaScript test files

This is basically what is needed in order to have the QUnit tests working on the top

Rl WKH -67' WHVW UXQQHU +RZHYHU \RX QHHG WR WDNH WKH OF
LQWR FRQVLGHUDWLRQ ,Q RUGHU WR ORDG WKH +70/ A[WXUHV L
can use the standard JSTODOCannotation shown in the following code snippet:

module("LoginClient Test Module", {

setup: function() {
[*:DOC += <label for="username">Username <span
id="usernameMessage" class="error"></span></label>
<input type="text" id="username" name="username"/>
<label for="password">Password <span id="passwordMessage"
class="error"></span></label>
<input type="password" id="password" name="password"/>*/

/...

[ 165]



JsTestDriver

}, teardown: function() {
/...

}
b

test("validating empty username”, function() {
/...

b

test("validating empty password", function() {
/...

b

test("validating username format", function() {
/...

b

test("validating password format", function() {
/...

b

After making this change in the QUnit modules, you can now run them safely on the
top of the JSTD test runner.

Start the JSTD server as usual, using the following command:

java -jar JsTestDriver-1.3.4.b.jar --port 9876

Capture two browsers (for example, Firefox and IE) by entering the following URL in
WKH EURZVHU V DGGUHVYV EDU

http://localhost:9876/capture

Run the QUnit tests on top of the JSTD test runner, as follows:

java -jar JsTestDriver-1.3.4.b.jar --config jsTestDriver-qunit.conf
--tests all --testOutput reports

The output in the console will be as follows:

Total 24 tests (Passed: 24; Fails: 0; Errors: 0) (1150.00 ms)

Microsoft Internet Explorer 8.0 Windows: Run 12 tests (Passed: 12; Fails:
0; Errors 0) (826.00 ms)

Firefox 15.0.1 Windows: Run 12 tests (Passed: 12; Fails: O; Errors 0)
(1150.00 ms)

[ 166]



&KDSWHU

Inthe repots IROGHU RI WKH -67' 48QLW LQWHJUDWLRQ \RX ZLOO AQ
AOHV WKUHH AOHV IRU WKH WHVWV RQ JLUHIR[ DQG WKUHH AOH\
:0/ UHSRUW AOH FRQWDLQV WKH WHVW UHVXOWYV RI D VLQJOH 48¢(

Integration with build management tools

Because the JSTD tests can run from the command line, JSTD can be integrated easily
with build management tools such as Ant and Maven and also with continuous
integration tools such as Hudson. The following code snippet shows an Ant script

that runs the runAllTests.bat AOH Lsu\teéts H folder.

<project name="weatherApplication" default="runJSTDTests" basedir=".">
<target name="runJSTDTests">
<exec executable="cmd">
<arg value="runAllTests.bat"/>
</exec>
</target>
</project>

For Hudson, you can create a Hudson job that periodically executes

the runAllTests.bat AOH DV D :LQGRZV EDWFK FRPPPQG LI \RX DUH
working on a Linux environment, you can create a job that periodically

H[HFXWHV WKH /LQX[ VKHOO VFULSW AOH

As a result of running the tests from the command line, you can also integrate the
Jasmine and the QUnit tests, which run on top of the JSTD runner with Ant, Maven,
and Hudson.

Thanks to JSTD, we can automate the running of the Jasmine and the QUnit tests
and automate the generation of the test and code coveragereports for these
frameworks, which do not have a mechanism provided for integration with the
command-line interface.

Integration with the IDEs

In addition to all of the powerful features of JSTD just mentioned, it can also be

integrated with different integrated development environments (IDEs) such as

Eclipse and IntelliJ . Thanks to this integration, you can start the JSTD server and

UXQ WKH WHVWYV ZLWKRXW KDYLQJ Wee g BAD&GAwerRPPDQGY /HW
with Eclipse.

[167]



JsTestDriver

Eclipse integration
In order to work with JSTD on the Eclipse IDE, you need to:

1. Install the JSTD Eclipse plugin.

i. Inorder to install the JSTD plugin in Eclipse, go to Install new
Software in the Help menu.

ii. Then, add the following installation URL as an update site:

http://js-test-driver.googlecode.com/svn/update/

iii. Check the JsTestDriver Plugin for Eclipse checkbox and click
on Next. Finally, click on the Next button in the Install details
window, accept any agreements, apply the changes, and restart
Eclipse.

2. After installing the JSTD Eclipse plugin, you will need to create a
-VZHVW'ULYHU UXQ FRQAJGXDWLARMA B X UEndteR V. Q J
Run menu and then selecting the Js Test Driver Test item by right-clicking
onit, and clickingon New <RX ZLOO VHH WKH -67' UXQ FRQAJXUDWLRC
shown in the following screenshot:

[ 168]



&KDSWHU

3. ,Q WKH -67' UXQ FRQAIJXUDWLRQ IRUP \RX ZLOO QHHG WR HC
UXQ FRQAJ XéhbaMppReQionConfig ), select the web project and
the JSTD FRQAJXUDWLRQ AOH AIQ GndCdsE buttBrd. WuK H
will then need to start the JSTD server and capture the browsers from the
server panel as shown in the following screenshot:

4. Using the play and stop buttons in the server panel, you can start and stop
the JSTD server. In order to capture one or more browsers, just copy the URL
in the server panel and paste in the address bar of the browsers, and they
will automatically be captured. Once the browsers are captured, they will be
highlighted in the server panel, as shown in the preceding screenshot.

5. Finally, in order to execute the JSTD tests, selec6 XQ &R QAJIJXWHanwWLRQV
the Run menu, select theweatherApplicationConfig UXQ FRQAIJXUDWLRQ
and click on the Run button. You will see the output of the JSTD test results,
as shown in the following screenshot:

[169]



JsTestDriver

As shown in the preceding screenshot, the server panel displays the test result
information, which contains the test name, the test duration, and the browser on
which the test is performed.

You can apply these steps again in order to run the Jasmine and QUnit tests

(on the top of JSTD) from the Eclipse IDE; the main difference is that you will need to

VSHFLI\ WKH FRUUHVSRQGLQJ -67' WHVW FRQAJXUDWLRQ AOH LQ
form, that is, jsTestDriver-jasmine.conf for Jasmine andjsTestDriver-qunit.

conf for QUnit.

Summary

In this chapter, you learned what JsTestDriver (JSTD) is, the JSTD architecture,

WKH -67' FRQAJXUDWLRQ DQG KRZ WR XVH -67' IRU WHVWLQJ V\Q
code. You learned how to test asynchronous (Ajax) JavaScript code using the

JSTDAsyncTestCase object. You learned the various assertions provided by

the framework and how to generate the test and code coverage reports using

WKH IUDPHZRUN V FRGH FRYHUDJH SOXJLQ <RX DOVR OHDUQHG
test runner for other JavaScript unit testing frameworks, such as Jasmine and

QUnit, in order to enable the execution of the tests of these frameworks from

the command-line interface. You learned how to integrate the tests of the JSTD

(and the tests of the JavaScript frameworks on the top of JSTD) with build and

continuous integration tools, such as Ant and Hudson. You learned how to work

with the JSTD framework in one of the most popular IDEs, Eclipse.

[170]



Symbols

<tests> element 97
<url> element 97
<yuitest> element 97

A

adapters 160
andCallFake method 50, 51
Ant 98
areEqual function 75
areNotEqual function 75
areNotSame function 75
areSame function 75
assert assertion 140
assertEquals assertion 140
assertFalse assertion 140
assertion 74
assertions, JSTD test
about 139
assert 140
assertAverage custom assertion 143
assertEquals 140
assertFalse 140
assertNotEquals 140
assertNotSame 140
assertSame 140
assertTrue 140
datatype assertions 141
fail([msg]) assertion 143
special value assertions 142
assertions, QUnit test
custom QUnit assertions, developing 111
deepEqual assertion 109
equal assertion 109

Index

expect assertion 110
notDeepEqual assertion 109
notEqual assertion 109
ok assertion 108
assertions, YUI test
areEqual 75
areNotEqual 75
areNotSame 75
areSame 75
assert 74
datatype 75, 76
fail 77
special values 76
assertNotEquals assertion 140
assertNotSame assertion 140
assertSame assertion 140
assertTrue assertion 140
asynchronous (Ajax) JavaScript code,
Jasmine test
runs() function 45, 46
spyOn() function 49-51
testing 45
waitsFor() function 47-49
waits() function 46, 47
asynchronous (Ajax) JavaScript code, JSTD
about 143
AsyncTestCase 144
callbacks parameter 144
TestCase 144
asynchronous (Ajax) JavaScript code, QUnit
test
start APl 114
stop() APl 114
testing 114
asynchronous (Ajax) JavaScript code, YUI
test



resume() function 78
testing 78
wait() function 78

%

BasicRunner.html page 102

BDD 31

Behavior-driven development. SeeBDD
boundary testing 35

C

callbacks parameter 145

code coverage 156

FRQAJXUDWLRQ AOH

console object 67

Continuous integration (CI) 9

custom Jasmine matchers
developing 43, 44

custom QUnit assertions
developing 111, 112

D

datatype assertions 75, 141, 142
deepEqual assertion 109

describe keyword 36
displaySuccessMessage method 24, 28
displayWeatherinformation method 20, 23
DIV element 20

doAjaxOperation method 51

E

Eclipse 167
Eclipse integration, JSTD
about 168

working 168-170
equal assertion 109
error callbacks 144
expect assertion 110

F

Factorial Testcase 70
fail() method 77
fail([msg]) assertion 143

G

genhtml command 160

getFactorial method 34

getFactorial test case 71
getWeatherCondition method 20, 23

H

handleRegistrationError method 24, 28
handleWeatherInfoError method 20, 23
HTML code, weather forecasting
application
exploring 15
+70/ A[WXUHYV
about 51
MDVPLQH MTXHU\ FRQAJXULQJ
loadFixtures module 53, 54
Hudson
about 98
URL 99
Hudson job 99

IntelliJ 167

invokeWeatherClient function 20
isinstanceOf assertion 76

isPrimeNumber custom assertion code 112
isTypeOf() method 76

J

Jasmine
about 31
FRQAJXULQJ
download link 31
test, writing 32-38
-DVPLQH$GDSWHU MV AOH
URL 162
jasmine-jquery plugin
FRQAJXULQJ
Jasmine matchers
about 39
toBe 39, 40
WR%H'HAQHG
toBeFalsy 41

[172]



toBeGreaterThan 42
toBeLessThan 42
toBeNull 41
toBeTruthy 41
WR%H8QGHAQHG
toContain 42
toMatch 43
Jasmine spec 33
Jasmine suite 32
JavaScript applications
complexities, in testing 11
testing 11, 12
JavaScript code, weather forecasting
application
exploring 15
JavaScript Object Notation (JSON) object
16
-DYD6FULSW VRXUFH AOHV
Java servlets 13
JSTD
about 131
architecture 131, 132
FRQAJIXULQJ
downloading 132
integrating, with build management tools
167
integrating, with IDEs 167
integrating, with Jasmine 162, 163
integrating, with Jasmine 164
integrating, with JavaScript test
frameworks 160
integrating, with JavaScript test frameworks
160
integrating, with QUnit 164-166
JSTD-build management tools integration
167
JSTD Eclipse plugin
installing 168
JSTD-IDEs integration
about 167
Eclipse integration 168-170
JSTD-Jasmine integration 162-164
JSTD-QUnit integration 164-166
JSTD test
about 134
assertions 139

creating 134-139
JsTestDriver. SeeJSTD
-8QLW :0/ UHSRUW AOHYV

L

Linux code coverage (LCOV) format 155
loadFixtures module 53, 54
LoginClient JavaScript object 16
LoginClient object

about 16

testing 58

M
Maven 98

1

notDeepEqual assertion 109
notEqual assertion 109

O

ok assertion 108

Q

QUnit
about 101
FRQAJXULQJ
48QLW &66 AOH
URL 101
48QLW -6 AOH
URL 101
QUnit module function 102
QUnit.push API 111, 114
QUnit test
assertions 108
writing 102-107

R

registerUser function 24, 26

RegistrationClient object
testing 61, 62

resume() function 78

runs() function 45, 46

[173]



S

Selenium
used, for automating YUI test 95

Selenium Java Client Driver
download link 95

Selenium Server Version 2.25.0
download link 95

server panel 169

signum method 34

SimpleMath JavaScript object 33

slave browser 132

Smalltalk 7

spyOn() function 49-51

stop() API 114

success callbacks 144

T
TAP

about 92

URL 92
TDD

about 10, 11

ARZFKDUW
teardown method 103
testAddExistingUser test function 87
testAddNewUser test function 85
Test Anything Protocol. SeeTAP
testAverage test function 72
Test-Driven Development. SeeTDD
testEmptyPassword 82
testEmptyUserName tests 82
Test-First approach 10
testing Module 103
testPasswordFormat 83
WHVWYV [PO AOH

<tests> element 97

<url> element 97

<yuitest> element 97
WR%H'HAQHG PDWFKHU
toBeFalsy matcher 41
toBeGreaterThan matcher 42
toBeLessThan matcher 42
toBe matcher 40
toBeNull matcher 41

toBePrimeNumber matcher 43
toBeSumOf matcher 43

toBeTruthy matcher 41
WR%H8QGHAQHG PDWFKHU
toContain matcher 42

toEqual matcher 40
toHaveBeenCalledWith matcher 50
toMatch matcher 43

toThrow matcher 36

traditional unit testing 10

U

unit testing
about 7,8
need for 8,9

Vv

validateEmptyFields method 17
validateLoginForm function 16
validateLoginForm JavaScript function 16
validateLoginForm method 16
validatePassword method 18
validateRegistrationForm method 24
validateUserName method 18

wW

wait() function 78

waitsFor() function 47-49

waits() function 46

weather application, Jasmine test
LoginClient object, testing 56-58
RegistrationClient object, testing 59-62
testing 55
tests, running 63
WeatherClient object, testing 63

weather application, JSTD test
LoginClient object, testing 147-149
SUR[\ FRQAJXULQJ
RegistrationClient object, testing 149-152
running 154, 155
testing 145, 146
test reports, generating 155-160
WeatherClient object, testing 153

[174]




weather application, QUnit test Y
LoginClient object, testing 119, 120
RegistrationClient object, testing 121-124 Yahoo! User Interface. SeeYUI

running 128 YAML format

testing 116, 117 about 133

WeatherClient object, testing 126-128 URL 133
weather application, YUI test YUI

LoginClient object, testing 80-84 about 65

RegistrationClient object, testing 84-87 test results, displaying 65

running 89 test runner page 65

testing 79, 80 writing 67-73

test reports, generating 89-95 YUIReportViewer servlet 93

WeatherClient object, testing 88 <8,5HSRUWO9L\XLWHVW VHOHQLXP GULYHU M
weather forecasting application 96

about 13-15 YUI Test

HTML code, exploring 15-28 about 65

JavaScript code, exploring 15-28 assertions 74

running 28 asynchronous (Ajax) JavaScript code,

server-side part 13 testing 78

use cases 13 automating, Selenium used 95

user registration page 14, 15 YUI Test Selenium Driver

YUI Test Selenium Driver, using 96 about 95
weatherForm object 20 build management tools, integrating with
weatherIinformation div element 23 98
weatherInformationReady method 22 FRQAJXULQJ
WeatherProxyServlet 20 download link 95

using, in weather application 96-98

X working 96

) YUI Test.Suite object 67
xUnit 65

[175]






open source

community experience distilled
PUBLISHING

Thank you for buying
JavaScript Unit Testing

About Packt Publishing

S3DFNW SURQRXQFHG SDFNHG GXEWHUVUKAG $MSO0YSGWPYKERRWN (IIHFWLYH
0\64/ 0D Q DJHiR Apgl\2004 and subsequently continued to specialize in publishing
KLJKO\ IRFXVHG ERRNV RQ VSHFLAF WHFKQRORJLHYVY DQG VROXWLRQV

Our books and publications share the experiences of your fellow IT professionals in adapting
DQG FXVWRPL]LQJ WRGD\ V VIVWHPY DSSOLFDWLRQV DQG IUDPHZRUNYV
JLYH \RX WKH NQRZOHGJH DQG SRZHU WR FXVWRPL]JH WKH VRIWZDUH DQ
WR JHW WKH MRE GRQH 3DFNW ERRNV DUH PRUH VSHFLAF DQG OHVV JH
seen in the past. Our unique business model allows us to bring you more focused information,
JLYLQJ \RX PRUH RI ZKDW \RX QHHG WR NQRZ DQG OHVV RI ZKDW \RX GF

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to

continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licences, and offering information

to anybody from advanced developers to budding web designers. The Open Source brand

DOVR UXQV 3DFNW V 2SHQ 6RXUFH 5R\DOW\ 6FKHPH E\ ZKLFK 3DFNW JLY
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals

should be sent to author@packtpub.com. If your book idea is still at an early stage and you

ZRXOG OLNH WR GLVFXVV LW AUVW EHIRUH ZULWLQJ D IRUPDO ERRN SUF
commissioning editors will get in touch with you.

‘H UH QRW MXVW ORRNLQJ IRU SXEOLVKHG DXWKRUV LI \RX KDYH VWUR (
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.



open source

community experience distilled

PUBLISHING

-DYD6FULSW 7HVWLQJ %HJLQQHU
Guide

ISBN: 978-1-849510-00-4 Paperback: 272 pages

Test and debug JavaScript the easy way

1. Learn different techniques to test JavaScript, no
matter how long or short your code might be.

2. Discover the most important and free tools to
help make your debugging task less painful.

3. Discover how to test user interfaces that are
controlled by JavaScript.

4. Make use of free built-in browser features to
TXLEFNO\ AQG RXW ZK\ \RXU -DYD6FULSW FRGH

not working, and most importantly, how to
debug it.

Object-Oriented JavaScript
ISBN: 978-1-847194-14-5 Paperback: 356 pages

Create scalable, reusable high-quality JavaScript
applications, and libraries

1. Learn to think in JavaScript, the language of the
web browser

2. Object-oriented programming made accessible
and understandable to web developers

3. Do it yourself: experiment with examples that
can be used in your own scripts

30 HDVH wnPadktPub.com for information on our titles



open source

community experience distilled

PUBLISHING
Learning Ext JS 4
ISBN: 978-1-849516-84-6 Paperback: 504 pages
Sencha Ext JS for a beginner
/[HDUQ WKH EDVLFV DQG FUHDWH \RXU AUVW |

2. Handle data and understand the way it works,
create powerful widgets and new components

'LJ LQWR WKH QHZ DUFKLWHFWXUH GHAQHG E
and work on real world projects

Appcelerator Titanium: Patterns

DQG % HVW 3UDFWLFHYV
ISBN: 978-1-849693-48-6 Paperback: 120 pages

Take your Titanium development experience to the
next level, and build your Titanium knowledge on
CommonJs structuring, MVC model implementation,
memory management and much more

1. Full step-by-step approach to help structure
your apps in an MVC style that will make them
more maintainable, easier to code and more
stable

2. Learn best practices and optimizations both
related directly to JavaScript and Titanium
itself

3. Learn solutions to create cross-compatible
layouts that work across both Android and the
iPhone and utilize the new Appcelerator Cloud
Services to bring your apps to the market faster
than every before

30HDVH winP_a®ktPub.com for information on our titles






	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Unit Testing JavaScript Applications
	What unit testing is
	Why we need unit testing
	What Test-Driven Development (TDD) is
	Complexities in testing JavaScript applications
	Weather forecasting application
	Exploring the application's HTML and JavaScript code
	Running the weather application

	Summary

	Chapter 2: Jasmine
	Configuration
	Writing your first Jasmine test
	The nested describe blocks
	Jasmine matchers
	The toBe matcher
	The toBeDefined and toBeUndefined matchers
	The toBeNull matcher
	The toBeTruthy and toBeFalsy matchers
	The toContain matcher
	The toBeLessThan and toBeGreaterThan matchers
	The toMatch matcher
	Developing custom Jasmine matchers

	Testing asynchronous (Ajax) JavaScript code
	The runs() function
	The waits() function
	The waitsFor() function
	The spyOn() function

	HTML fixtures
	Configuring the jasmine-jquery
	The loadFixtures module

	Testing the weather application
	Testing the LoginClient object
	Testing the RegistrationClient object
	Testing the WeatherClient object
	Running the weather application tests

	Summary

	Chapter 3: YUI Test
	Writing your first YUI test
	Assertions
	The assert assertion
	The areEqual and areNotEqual assertions
	The areSame and areNotSame assertions
	The datatype assertions
	Special value assertions
	The fail assertion

	Testing asynchronous (Ajax) JavaScript code
	The wait and resume functions

	Testing the weather application
	Testing the LoginClient object
	Testing the RegistrationClient object
	Testing the WeatherClient object
	Running the weather application tests
	Generating test reports

	Automation and Integration with build management tools
	Configuring YUI Test Selenium Driver
	Using YUI Test Selenium Driver in the 
weather application
	Integration with build management tools

	Summary

	Chapter 4: QUnit
	Configuration
	Writing your first QUnit test
	Assertions
	The ok assertion
	The equal and notEqual assertions
	The deepEqual and notDeepEqual assertions
	The expect assertion
	Developing custom QUnit assertions

	Testing asynchronous (Ajax) JavaScript code
	The stop and start APIs

	Testing the weather application
	Testing the LoginClient object
	Testing the RegistrationClient object
	Testing the WeatherClient object
	Running the weather application tests

	Summary

	Chapter 5: JsTestDriver
	Architecture
	Configuration
	Writing your first JSTD test
	Assertions
	The assert, assertTrue, and assertFalse([msg], expression) assertions
	The assertEquals and assertNotEquals([msg], expected, actual) assertions
	The assertSame and assertNotSame([msg], expected, actual) assertions
	The datatype assertions
	Special value assertions
	The fail([msg]) assertion

	Testing asynchronous (Ajax) JavaScript code
	AsyncTestCase, queue, and callbacks

	Testing the weather application
	Testing the LoginClient object
	Testing the RegistrationClient object
	Testing the WeatherClient object
	Configuring the proxy
	Running the weather application tests
	Generating test reports

	Integration with other JavaScript test frameworks
	Integrating JSTD with Jasmine
	Integrating JSTD with QUnit

	Integration with build management tools
	Integration with the IDEs
	Eclipse integration

	Summary


