

When the application is executed by Heroku, it needs to know that this is the configu‐
ration that needs to be used. The application instance created in manage.py uses the
FLASK_CONFIG environment variable to know what configuration to use, so this variable
needs to be set in the Heroku environment. Environment variables are set using the
Heroku client’s config:set command:

$ heroku config:set FLASK_CONFIG=heroku
Setting config vars and restarting <appname>... done, v4
FLASK_CONFIG: heroku

Configuring email

Heroku does not provide a SMTP server, so an external server must be configured.
There are several third-party add-ons that integrate production-ready email sending
support with Heroku, but for testing and evaluation purposes it is sufficient to use the
default Gmail configuration inherited from the base Config class.

Because it can be a security risk to embed login credentials directly in the script, the
username and password to access the Gmail SMTP server are provided as environment
variables:

$ heroku config:set MAIL_USERNAME=<your-gmail-username>
$ heroku config:set MAIL_PASSWORD=<your-gmail-password>

Running a production web server

Heroku does not provide a web server for the applications it hosts. Instead, it expects
applications to start their own servers and listen on the port number set in environment
variable PORT.

The development web server that comes with Flask will perform very poorly because it
was not designed to run in a production environment. Two production-ready web
servers that work well with Flask applications are Gunicorn and uWSGI.

To test the Heroku configuration locally, it is a good idea to install the web server in the
virtual environment. For example, Gunicorn is installed as follows:

(venv) $ pip install gunicorn

To run the application under Gunicorn, use the following command:

(venv) $ gunicorn manage:app
2013-12-03 09:52:10 [14363] [INFO] Starting gunicorn 18.0
2013-12-03 09:52:10 [14363] [INFO] Listening at: http://127.0.0.1:8000 (14363)
2013-12-03 09:52:10 [14363] [INFO] Using worker: sync
2013-12-03 09:52:10 [14368] [INFO] Booting worker with pid: 14368

The manage:app argument indicates the package or module that defines the application
to the left of the colon and the name of the application instance inside that package on
the right. Note that Gunicorn uses port 8000 by default, not 5000 like Flask.

The Heroku Platform | 221

Adding a requirements file

Heroku loads package dependencies from a requirements.txt file stored in the top-level
folder. All the dependencies in this file will be imported into a virtual environment
created by Heroku as part of the deployment.

The Heroku requirements file must include all the common requirements for the pro‐
duction version of the application, the psycopg2 package to enable Postgres database
support, and the Gunicorn web server.

Example 17-4 shows an example requirements file.

Example 17-4. requirements.txt: Heroku requirements file
-r requirements/prod.txt
gunicorn==18.0
psycopg2==2.5.1

Adding a Procfile

Heroku needs to know what command to use to start the application. This command
is given in a special file called the Procfile. This file must be included in the top-level
folder of the application.

Example 17-5 shows the contents of this file.

Example 17-5. Procfile: Heroku Procfile
web: gunicorn manage:app

The format for the Procfile is very simple: in each line a task name is given, followed by
a colon and then the command that runs the task. The task name web is special; it is
recognized by Heroku as the task that starts the web server. Heroku will give this task
a PORT environment variable set to the port on which the application needs to listen for
requests. Gunicorn by default honors the PORT variable if it is set, so there is no need to
include it in the startup command.

Applications can declare additional tasks with names other than web
in the Procfile. These can be other services needed by the applica‐
tion. Heroku launches all the tasks listed in the Procfile when the
application is deployed.

Testing with Foreman
The Heroku Toolbelt includes a second utility called Foreman, used to run the appli‐
cation locally through the Procfile for testing purposes. The environment variables such
as FLASK_CONFIG that are set through the Heroku client are available only on the Heroku

222 | Chapter 17: Deployment

servers, so they also must be defined locally so that the testing environment under
Foreman is similar. Foreman looks for these environment variables in a file
named .env in the top-level directory of the application. For example, the .env file can
contain the following variables:

FLASK_CONFIG=heroku
MAIL_USERNAME=<your-username>
MAIL_PASSWORD=<your-password>

Because the .env file contains passwords and other sensitive account
information, it should never be added to the Git repository.

Foreman has several options, but the main two are foreman run and foreman start.
The run command can be used to run arbitrary commands under the environment of
the application and is perfect to run the deploy command that the application uses to
create the database:

(venv) $ foreman run python manage.py deploy

The start command reads the Procfile and executes all the tasks in it:

(venv) $ foreman start
22:55:08 web.1 | started with pid 4246
22:55:08 web.1 | 2013-12-03 22:55:08 [4249] [INFO] Starting gunicorn 18.0
22:55:08 web.1 | 2013-12-03 22:55:08 [4249] [INFO] Listening at: http://...
22:55:08 web.1 | 2013-12-03 22:55:08 [4249] [INFO] Using worker: sync
22:55:08 web.1 | 2013-12-03 22:55:08 [4254] [INFO] Booting worker with pid: 4254

Foreman consolidates the logging output of all the tasks started and dumps it to the
console, with each line prefixed with a timestamp and the task name.

It is possible to simulate multiple dynos using the -c option. For example, the following
command starts three web workers, each listening on a different port:

(venv) $ foreman start -c web=3

Enabling Secure HTTP with Flask-SSLify
When the user logs in to the application by submitting a username and a password in
a web form, these values can be intercepted during travel by a third party, as discussed
several times before. To prevent user credentials from being stolen in this way, it is
necessary to use secure HTTP, which encrypts all the communications between clients
and the server using public key cryptography.

Heroku makes all applications that are accessed on the herokuapp.com domain available
on both http:// and https:// without any configuration using Heroku’s own SSL certifi‐

The Heroku Platform | 223

cate. The only necessary action is for the application to intercept any requests sent to
the http:// interface and redirect them to https://, and this is what the extension Flask-
SSLify does.

The extension needs to be added to the requirements.txt file. The code in Example 17-6
is used to activate the extension.

Example 17-6. app/__init__.py: Redirect all requests to secure HTTP
def create_app(config_name):
 # ...
 if not app.debug and not app.testing and not app.config['SSL_DISABLE']:
 from flask.ext.sslify import SSLify
 sslify = SSLify(app)
 # ...

Support for SSL needs to be enabled only in production mode, and only when the
platform supports it. To make it easy to switch SSL on and off, a new configuration
variable called SSL_DISABLE is added. The base Config class sets it to True, so that SSL
is not used by default, and the class HerokuConfig overrides it. The implementation of
this configuration variable is shown in Example 17-7.

Example 17-7. config.py: Configure the use of SSL
class Config:
 # ...
 SSL_DISABLE = True

class HerokuConfig(ProductionConfig):
 # ...
 SSL_DISABLE = bool(os.environ.get('SSL_DISABLE'))

The value of SSL_DISABLE in HerokuConfig is taken from an environment variable of
the same name. If the environment variable is set to anything other than an empty string,
the conversion to Boolean will return True, disabling SSL. If the environment variable
does not exist or is set to an empty string, the conversion to Boolean will give a False
value. To prevent SSL from being enabled when using Foreman, it is necessary to add
SSL_DISABLE=1 to the .env file.

With these changes, the users will be forced to use the SSL server, but there is one more
detail that needs to be handled to make the support complete. When using Heroku,
clients do not connect to hosted applications directly but to a reverse proxy server that
redirects requests into the applications. In this type of setup, only the proxy server runs
in SSL mode; the applications receive all requests from the proxy server without SSL
because there is no need to use strong security for requests that are internal to the Heroku
network. This is a problem when the application needs to generate absolute URLs that
match the security of the request, because request.is_secure will always be False
when a reverse proxy server is used.

224 | Chapter 17: Deployment

An example of when this becomes a problem is the generation of avatar URLs. If you
recall from Chapter 10, the gravatar() method of the User model that generates the
Gravatar URLs checks request.is_secure to generate the secure or nonsecure version
of the URL. Generating a nonsecure avatar when the page was requested over SSL would
cause some browsers to display a security warning to the user, so all components of a
page must have matching security.

Proxy servers pass information that describes the original request from the client to the
redirected web servers through custom HTTP headers, so it is possible to determine
whether the user is communicating with the application over SSL by looking at these.
Werkzeug provides a WSGI middleware that checks the custom headers from the proxy
server and updates the request object accordingly so that, for example,
request.is_secure reflects the security of the request that the client sent to the reverse
proxy server and not the request that the proxy server sent to the application.
Example 17-8 shows how to add the ProxyFix middleware to the application.

Example 17-8. config.py: Support for proxy servers
class HerokuConfig(ProductionConfig):
 # ...
 @classmethod
 def init_app(cls, app):
 # ...

 # handle proxy server headers
 from werkzeug.contrib.fixers import ProxyFix
 app.wsgi_app = ProxyFix(app.wsgi_app)

The middleware is added in the initialization method for the Heroku configuration.
WSGI middlewares such as ProxyFix are added by wrapping the WSGI application.
When a request comes, the middlewares get a chance to inspect the environment and
make changes before the request is processed. The ProxyFix middleware is necessary
not only for Heroku but in any deployment that uses a reverse proxy server.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 17c to check out this version of the application.
To ensure that you have all the dependencies installed, also run pip
install -r requirements.txt.

Deploying with git push
The final step in the process is to upload the application to the Heroku servers. Make
sure that all the changes are commited to the local Git repository and then use git push
heroku master to upload the application to the heroku remote:

The Heroku Platform | 225

$ git push heroku master
Counting objects: 645, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (315/315), done.
Writing objects: 100% (645/645), 95.52 KiB, done.
Total 645 (delta 369), reused 457 (delta 288)

.---> Python app detected

.----> No runtime.txt provided; assuming python-2.7.4.

.----> Preparing Python runtime (python-2.7.4)

...
-----> Compiled slug size: 32.8MB
-----> Launching... done, v8
 http://<appname>.herokuapp.com deployed to Heroku

To git@heroku.com:<appname>.git
 * [new branch] master -> master

The application is now deployed and running, but it is not going to work correctly
because the deploy command was not executed. The Heroku client can run this com‐
mand as follows:

$ heroku run python manage.py deploy
Running `python manage.py predeploy` attached to terminal... up, run.8449
INFO [alembic.migration] Context impl PostgresqlImpl.
INFO [alembic.migration] Will assume transactional DDL.
...

After the database tables are created and configured, the application can be restarted so
that it starts cleanly:

$ heroku restart
Restarting dynos... done

The application shoud now be fully deployed and online at https://<appname>.hero‐
kuapp.com.

Reviewing Logs
The logging output generated by the application is captured by Heroku. To view the
contents of the log, use the logs command:

$ heroku logs

226 | Chapter 17: Deployment

During testing it can also be convenient to tail the log file, which can be done as follows:

$ heroku logs -t

Deploying an Upgrade
When a Heroku application needs to be upgraded the same process needs to be repeated.
After all the changes have been committed to the Git repository, the following com‐
mands perform an upgrade:

$ heroku maintenance:on
$ git push heroku master
$ heroku run python manage.py deploy
$ heroku restart
$ heroku maintenance:off

The maintenance option available on the Heroku client will take the application offline
during the upgrade and will show a static page that informs users that the site will be
coming back soon.

Traditional Hosting
The traditional hosting option involves buying or renting a server, either physical or
virtual, and setting up all the required components on it yourself. This is typically less
expensive than hosting in the cloud, but obviously much more laborious. The following
sections will give you an idea of the work involved.

Server Setup
There are several administration tasks that must be performed on the server before it
can host applications:

• Install a database server such as MySQL or Postgres. Using a SQLite database is also
possible but is not recommended for a production server due to its many limita‐
tions.

• Install a Mail Transport Agent (MTA) such as Sendmail to send email out to users.
• Install a production-ready web server such as Gunicorn or uWSGI.
• Purchase, install, and configure a SSL certificate to enable secure HTTP.
• (Optional but highly recommended) Install a front-end reverse proxy web server

such as nginx or Apache. This process will serve static files directly and will forward
any other requests into the application’s web server listening on a private port on
localhost.

Traditional Hosting | 227

• Server hardening. This groups several tasks that have the goal of reducing vulner‐
abilities in the server such as installing firewalls, removing unused software and
services, and so on.

Importing Environment Variables
Similarly to Heroku, an application running on a standalone server relies on certain
settings such as database URL, email server credentials, and configuration name. These
are stored in environment variables that must be imported before the application starts.

Because there is no Heroku or Foreman to import these variables, this task needs to be
done by the application itself during startup. The short code block in Example 17-9
loads and parses a .env file similar to the one used with Foreman. This code can be added
to the manage.py launch script before the application instance is created.

Example 17-9. manage.py: Import environment from .env file
if os.path.exists('.env'):
 print('Importing environment from .env...')
 for line in open('.env'):
 var = line.strip().split('=')
 if len(var) == 2:
 os.environ[var[0]] = var[1]

The .env file must contain at least the FLASK_CONFIG variable that selects the configu‐
ration to use.

Setting Up Logging
For Unix-based servers, logging can be sent the syslog daemon. A new configuration
specific for Unix can be created as a subclass of ProductionConfig, as shown in
Example 17-10.

Example 17-10. config.py: Unix example configuration
class UnixConfig(ProductionConfig):
 @classmethod
 def init_app(cls, app):
 ProductionConfig.init_app(app)

 # log to syslog
 import logging
 from logging.handlers import SysLogHandler
 syslog_handler = SysLogHandler()
 syslog_handler.setLevel(logging.WARNING)
 app.logger.addHandler(syslog_handler)

228 | Chapter 17: Deployment

With this configuration, application logs will be written to /var/log/messages. The syslog
service can be configured to write a separate log file or to send the logs to a different
machine if necessary.

If you have cloned the application’s Git repository on GitHub, you can
run git checkout 17d to check out this version of the application.

Traditional Hosting | 229

CHAPTER 18

Additional Resources

You are pretty much done with this book. Congratulations! I hope the topics that I have
covered have given you a solid base to begin building your own applications with Flask.
The code examples are open source and have a permissive license, so you are welcome
to use as much of my code as you want to seed your projects, even if they are of a
commercial nature. In this short final chapter, I want to give you a list of additional tips
and resources that might be useful as you continue working with Flask.

Using an Integrated Development Environment (IDE)
Developing Flask applications in an integrated development environment (IDE) can be
very convenient, since features such as code completion and an interactive debugger
can speed up the coding process considerably. Some of the IDEs that work well with
Flask are listed here:

• PyCharm: Commercial IDE from JetBrains with Community (free) and Professio‐
nal (paid) editions, both compatible with Flask applications. Available on Linux,
Mac OS X, and Windows.

• PyDev: Open source IDE based on Eclipse. Available on Linux, Mac OS X, and
Windows.

• Python Tools for Visual Studio: Free IDE built as an extension to Microsoft’s Visual
Studio environment. For Microsoft Windows only.

231

http://bit.ly/py-charm
http://pydev.org
http://pytools.codeplex.com/

When configuring a Flask application to start under a debugger, add
the --passthrough-errors --no-reload options to the runserver
command. The first option disables the catching of errors by Flask so
that exceptions thrown while a request is handled are sent all the way
up to the debugger. The second disables the reloader module, which
confuses some debuggers.

Finding Flask Extensions
The examples in this book rely on several extensions and packages, but there are many
more that are also useful and were not discussed. Following is a short list of some ad‐
ditional packages that are worth exploring:

• Flask-Babel: Internationalization and localization support
• Flask-RESTful: Tools for building RESTful APIs
• Celery: Task queue for processing background jobs
• Frozen-Flask: Conversion of a Flask application to a static website
• Flask-DebugToolbar: In-browser debugging tools
• Flask-Assets: Merging, minifying, and compiling of CSS and JavaScript assets
• Flask-OAuth: Authentication against OAuth providers
• Flask-OpenID: Authentication against OpenID providers
• Flask-WhooshAlchemy: Full-text search for Flask-SQLAlchemy models based on

Whoosh
• Flask-KVsession: Alternative implementation of user sessions that use server-side

storage

If the functionality that you need for your project is not covered by any of the extensions
and packages mentioned in this book, then your first destination to look for additional
extensions should be the official Flask Extension Registry. Other good places to search
are the Python Package Index, GitHub, and BitBucket.

Getting Involved with Flask
Flask would not be as awesome without the work done by its community of developers.
As you are now becoming part of this community and benefiting from the work of so
many volunteers, you should consider finding a way to give something back. Here are
some ideas to help you get started:

• Review the documentation for Flask or your favorite related project and submit
corrections or improvements.

232 | Chapter 18: Additional Resources

http://bit.ly/fl-babel
http://bit.ly/fl-rest
http://bit.ly/celery-doc
http://bit.ly/flask-frozen
http://bit.ly/flask-debug
http://bit.ly/fl-assets
http://bit.ly/fl-oauth
http://bit.ly/fl-opID
http://bit.ly/fl-whoosh
http://pythonhosted.org//Whoosh/
http://bit.ly/fl-kvses
http://bit.ly/fl-exreg
http://pypi.python.org
http://github.com
http://bitbucket.org

• Translate the documentation to a new language.
• Answer questions on Q&A sites such as Stack Overflow.
• Talk about your work with your peers at user group meetings or conferences.
• Contribute bug fixes or improvements to packages that you use.
• Write new Flask extensions and release them as open source.
• Release your applications as open source.

I hope you decide to volunteer in one of these ways or any others that are meaningful
to you. If you do, thank you!

Getting Involved with Flask | 233

http://stackoverflow.com

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
.env file, 222, 228

A
application programming interfaces (APIs)

resources, 188
versioning, 178

authentication, 181, 184

C
cloud, 217
code coverage, 197
configuration, 211, 216, 228

D
database

association table, 150
filter_by query filter, 159
join query filter, 159
joins, 158
migrations, 64
NoSQL, 50
performance, 211
relational model, 49
relationships, 56, 61, 149, 166
SQL, 49

debugging, 216

decorators, 115

E
email, 221
error handling, 180

F
Flask, 3

abort function, 16, 180
add_url_route function, 14
after_app_request hook, 211
application factory function, 78
app_errorhandler decorator, 80, 180
before_app_request hook, 107
before_request hook, 15, 183
blueprints, 79, 92, 179
configuration object, 78
context processors, 63, 116
contexts, 12, 84
cookies, 161
current_app context variable, 13, 84
debug argument, 9
dynamic routes, 8
errorhandler decorator, 29, 79, 80, 188
extension registry, 232
flash function, 46
Flask class, 7
flask.ext namespace, 17, 26

235

g context variable, 13, 15
get_flashed_messages template function, 47
jsonify function, 179
make_response function, 16, 161
methods argument, 42
redirect function, 16, 45
render_template function, 22, 46
request context variable, 12, 13
Response class, 16
route decorator, 8, 14, 79
run method, 9
SECRET_KEY configuration, 76
server shutdown, 206
session context variable, 13, 45
set_cookie method, 16
static files, 32
static folder, 33
templates folder, 22
test client, 200
URL map, 14
url_for function, 32, 45, 81, 106
url_prefix argument, 93

Flask-Bootstrap, 26
blocks, 28
quick_form macro, 40

Flask-HTTPAuth, 181
Flask-Login, 94

AnonymousUserMixin class, 115
current_user context variable, 96
LoginManager class, 95
login_required decorator, 95, 107
login_user function, 98
logout_user function, 99
UserMixin class, 94
user_loader decorator, 95

Flask-Mail, 69
asynchronous sending, 72
Gmail configuration, 69

Flask-Migrate, 64
Flask-Moment, 33

format method, 34
fromNow method, 34
lang method, 35

Flask-Script, 17
Flask-SQLAlchemy, 52

add session method, 58, 60
column options, 55
column types, 54
create_all method, 58

delete session method, 60
drop_all method, 58
filter_by query filter, 63
get_debug_queries function, 211
models, 54
MySQL configuration, 52
paginate query method, 191
Postgres configuration, 52
query executors, 61
query filters, 61
query object, 60
SQLALCHEMY_COMMIT_ON_TEAR‐

DOWN configuration, 53
SQLALCHEMY_DATABASE_URI configu‐

ration, 53, 76
SQLite configuration, 52

Flask-SSLify, 223
Flask-WTF, 37

BooleanField class, 96
Cross-Site Request Forgery (CSRF), 37
custom validators, 101
Email validator, 96
EqualTo validator, 101
Form class, 38
form fields, 39
PasswordField class, 96
Regexp validator, 101
rendering, 40
Required validator, 38
StringField class, 38
SubmitField class, 38
validate_on_submit function, 98
validate_on_submit method, 42
validators, 38, 39

Foreman, 218, 222

G
Git, xiii, 218, 225
Gunicorn, 221, 222

H
Heroku, 218
Heroku client, 218
Heroku toolbelt, 218
HTTP status codes, 180
HTTPie, 192

236 | Index

I
integrated development environments (IDEs),

231
itsdangerous, 104, 184

J
JavaScript Object Notation (JSON), 177

serialization, 186
Jinja2, 3, 22

block directive, 25, 27
extends directive, 25, 27
filters, 23
for directive, 24
if directive, 24, 41
import directive, 24, 41
include directive, 25
macro directive, 24
safe filter, 24
set directive, 170
super macro, 25
template inheritance, 25
variables, 23

L
logging, 211, 211, 216, 220, 226, 228

M
manage.py, 76, 81, 228

coverage command, 197
db command, 64
deploy command, 215, 222
profile command, 213
runserver command, 18
shell command, 18, 63
test command, 84

P
pagination, 191
password security, hashing, 90
performance, 213
permissions, 112

pip, 6
platform as a service (PaaS), 217
post/redirect/get pattern, 44
Procfile, 222
profiling source code, 213
proxy servers, 225

R
Representational State Transfer (REST), 175
requirements file, 76, 82, 222
Rich Internet Applications (RIAs), 175

S
secure HTTP, 223
Selenium, 205
source code profiler, 213
syslog, 228

T
testing, 192, 197

unit tests, 83, 92, 116
web applications, 200
web services, 204

Twitter Bootstrap, 26

U
unittest, 83
URL fragment, 168
user roles, 111
uWSGI, 221

V
virtualenv, 4

activate command, 5
deactivate command, 6

W
Web Server Gateway Interface (WSGI), 7
Werkzeug, 3, 90, 213, 216

ProxyFix WSGI middleware, 225

Index | 237

About the Author
Miguel Grinberg has over 25 years of experience as a software engineer. At work, he
leads a team of engineers that develop video software for the broadcast industry. He has
a blog (http://blog.miguelgrinberg.com) where he writes about a variety of topics in‐
cluding web development, robotics, photography, and the occasional movie review. He
lives in Portland, Oregon with his wife, four kids, two dogs, and a cat.

Colophon
The animal on the cover of Flask Web Development is a Pyrenean Mastiff (a breed of
Canis lupus familiaris). These giant Spanish dogs are descended from an ancient live‐
stock guardian dog called the Molossus, which was bred by the Greeks and Romans and
is now extinct. However, this ancestor is known to have played a role in the creation of
many breeds that are common today, such as the Rottweiler, Great Dane, Newfound‐
land, and Cane Corso. Pyrenean Mastiffs have only been recognized as a pure breed
since 1977, and the Pyrenean Mastiff Club of America is working to promote these dogs
as pets in the United States.

After the Spanish Civil War, the population of Pyrenean Mastiffs in their native home‐
land plummeted, and the breed only survived due to the dedicated work of a few scat‐
tered breeders throughout the country. The modern gene pool for Pyreneans stems
from this postwar population, making them prone to genetic diseases like hip dysplasia.
Today, responsible owners make sure their dogs are tested for diseases and x-rayed to
look for hip abnormalities before being bred.

Adult male Pyrenean Mastiffs can reach upwards of 200 pounds when fully grown, so
owning this dog requires a commitment to good training and plenty of outdoors time.
Despite their size and history as hunters of bears and wolves, the Pyrenean has a very
calm temperament and is an excellent family dog. They can be relied upon to take care
of children and protect the home, while at the same time being docile with other dogs.
With proper socialization and strong leadership, Pyrenean Mastiffs thrive in a home
environment and will provide an excellent guardian and companion.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

