Dependency Injection
with AngularJS

Design, control, and manage your dependencies with AngulardS
dependency injection

Dependency Injection with
AngularJS

Design, control, and manage your dependencies with
AngularJS dependency injection

Alex Knol

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Dependency Injection with AngularJS

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2013
Production Reference: 1111213

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-656-6
www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

Credits

Author
Alex Knol

Reviewers
lwan van Staveren

Ruoyu Sun

Acquisition Editor
James Jones

Commissioning Editor
Neil Alexander

Technical Editors
Sharvari H. Baet

Dennis John

Copy Editors
Alisha Aranha

Roshni Banerjee
Tanvi Gaitonde
Gladson Monteiro
Shambhavi Pai
Adithi Shetty

Project Coordinator
Sherin Padayatty

Proofreader
Simran Bhogal

Indexer
Rekha Nair

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

About the Author

Alex Knol is a lifelong tech geek with a passion for automation. After spending some
years away from software development, around the beginning of this century, he took
up PHP development based on his early experiences with C and Pascal. Surprisingly,
he has never really used web tools, but applications instead, to make websites, such as
the platform that's driving kaizegine.com . Having built various applications using
web technologies and frameworks, such as Symfony, he discovered AngularJS at the
beginning of 2008, while searching for a way to structure frontend application code

and make development easy. He used AngularJS, among other technologies, for a
job-matching project in the Netherlands and, more recently, for an online website
designer named Risingtool.com

I'd like to thank the AngularJS team for continuously improving the
framework and documentation; my employer, Risingtool.com ,
for allowing me to work on this book, partly on their time. This book
also took time away from my family time, for which I'd like to thank
my wife and children.

About the Reviewers

Iwan van Staveren is a software architect. He has over 14 years of experience in
developing all kinds of web applications. He loves working with the Symfony2 and
AngularJs frameworks. He is owner of the privately-owned E-one Software.

Ruoyu Sun is a designer and developer living in Hong Kong. He is passionate
about programming and has been contributing to several open source projects.

He has founded several tech startups, using a variety of technologies, before going
into the IT industry. He is the author of the book Designing for XOOPS$O'Reilly
Media July 2011

I would like to thank all my friends and family who have always
supported me.

www.PacktPub.com

6 XSSRUW (¢OHV H%RRNV GLVFRXQW RIIHU'

You might want to visit www.PacktPub.com IRU VXSSRUW AOHV DQG GRZQORDGV |
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF

DQG H3XE AOHV DYDLODEOH" <RX FDQ X@&wkPBc@bWR WKH H%RRN Y
com and as a print book customer, you are entitled to a discount on the eBook copy.

Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com , you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

[ﬂ]PA(:KT

http://PacktLib.PacktPub.com

®

'R \RX QHHG LQVWDQW VROXWLRQV WR \RXU ,7 TXHVWLRQV" 3DFN
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
» Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On-demand and accessible via web browsers

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com , you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface 1
Chapter 1: Learning to Fly 5
Let's get going 5
Adding a controller 8
What about routes? 9
Showing a list 11
$GGLQJ D (OWHU
Chart directives 13
Using services 15
Summary 16

&KDSWHU Y%HWWHU &RGH

'LULQJ XS WKH EDFNHQG

Duplicating code 19
$QJXODU VHUYLFH WR WKH UHVFXH

7KH WKHRU\ EHKLQG '"HSHQGHQF\ ,QMHFWLRQ

6 XPPDU\

Chapter3: 7KH ODJLF

$SSOLFDWLRQ ARZ

Different ways of injecting 31
6 XPPDU\
& KD S W Hadting 35
Test automation 35

7THVW \RXU FRGH QRW WKH IUDPHZRUN

THVWLQJ WKH SDUWYV

7KH .DUPD WHVW UXQQHU

End-to-end testing 50
Setting up the Protractor 51
6 XPPDU\

Table of Contents

Chapter 5: Large Applications 55
Organizing your application 55
Going a bit larger 57
Organizing using dynamic teams 58
Using modules 58
Organizing using directives 60
Nesting controllers 60
More powerful nesting 61
$SSOLFDWLRQ FRPPXQLFDWLRQ
Events 62
Let the model speak 62
Summary 63
Index 65

i]

Preface

Dependency Injection is a term often used in the world of object-oriented software
design. AngularJS depends on it at its core. This book teaches you why and how to
use Dependency Injection with AngularJs.

What this book covers

Chapter 1 Learning to Fly will take you through the basics of an Angular
application. This chapter prepares a sample app that will be used throughout
the examples in the book.

Chapter 2Better Codgtakes you from bad coding practices to maintainable
and testable software using Dependency Injection. It also shows you the
theory of Dependency Injection and some of its positive effects.

Chapter 3The Magic is a technical explanation of how Dependency Injection
can be used with AngularJS and the caveats to watch out for.

Chapter 4 Testing is a chapter that will show you the advantages that Dependency
Injection brings when testing your application. Integration testing and unit testing
are covered. The set up and use of recommended AngularJS testing frameworks
are covered as well.

Chapter 5Large Applicationswill show you ways to implement the theory
and techniques used in large applications. The result will be less code and
better maintainability.

Preface

What you need for this book

To play along with the examples in this book, you just need a working installation
of NodeJS and a text editor. To view the output, a web browser is required.

Who this book is for

If you are a developer or software engineer, this book is ideal for you. You should
have a basic understanding of JavaScript and web development.

Conventions

,Q WKLV ERRN \RX ZLOO AQG D QXPEHU RI VW\OHV RI WH[W WKDW
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

&RGH ZRUGYV LQ WH[W GDWDEDVH WDEOH QDPHV IROGHU QDPHYV
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"Earlier, you saw how to use the ng-app attribute to bootstrap the application."

A block of code is set as follows:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.
min.js"></script>

<script src="//cdnjs.cloudflare.com/ajax/libs/raphael/2.1.0/
raphael-min.js"></script>

<script src="http://cdn.oesmith.co.uk/morris-0.4.1.min.js"></
script>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.
min.js"></script>
<script src="//cdnjs.cloudflare.com/ajax/libs/raphael/2.1.0/
raphael-min.js"> </script>
<script src="http://cdn.oesmith.co.uk/morris-0.4.1.min.js"></
script>

Preface

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail tofeedback@packtpub.com
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

<RX FDQ GRZQORDG WKH H[DPSOH FRGH AOHV IRU DOO 3DFNW ER
from your account at http://www.packtpub.com . If you purchased this book

elsewhere, you can visit http://www.packtpub.com/support and register to have

WKH AOHV H PDLOHG GLUHFWO\ WR \RX

[3]

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

GR KDSSHQ ,I \RX AQG D PLVWDNH LQ RQH RI RXU ERRNV3PD\EH D |
the code—we would be grateful if you would report this to us. By doing so, you can

save other readers from frustration and help us improve subsequent versions of this

ERRN ,I \RX AQG DQ\ HUUDWD SO H Btig:Hwiig@iubW WKHP E\ YLVLWLQ.
com/submit-errata , Selecting your book, clicking on the errata submission form link,

DQG HQWHULQJ WKH GHWDLOV RI \RXU HUUDWD 2QFH \RXU HUUDW
will be accepted and the errata will be uploaded on our website, or added to any list of

existing errata, under the Errata section of that title. Any existing errata can be viewed

by selecting your title from http://iwvww.packtpub.com/support

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form,

on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us atopyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us atquestions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Learning to Fly

When you code larger applications in JavaScript, you soon run into a need for some
kind of organization for your code. There are a great number of frameworks out there
that can help you; the sheer number is enough to just keep you coding as you have
done for years. Although there is a learning curve involved like in any framework or
tool library, it will help you deliver a better end result with fewer headaches. A handy
guide for choosing a framework is http://addyosmani.github.com/todomvc/

It shows you the same app using different tools and libraries.

Let's get going

The traditional way of getting started with any kind of JavaScript library is

GRZQORDGLQJ LW IURP LWV ZHEVLWH RU UHSRVLWRU\ DQG LQFO X
7KH AUVW WK Wwied yoR Yo 1 Htk://angularjs.org/ is a big Download

button. It will take you right to a pop up to download AngularJS. The defaults will

EH IRU WKH ODWHVW VWDEOH YHUVLRQ 8QOHVV \RX DUH LQWHUF
YHUVLRQ ZLOO EH AQH DV VKRZQ LQ WKH IROORZLQJ VFUHHQVKR

Download AngularJS

Branch | Stable Unstable ©

Bulld ' rinified Uncompressed zip @
CDN e sai ; fai e flibef et . -
ps://ajax.googleapis.com/ajax/libs/angularjs/1.0.7/angular.min.js 7]
Bower hower install angular]

Extras Previous Versions

&% Download

Learning to Fly

Thiswil GRZQORDG MXVW D PLQLAHG -DYD6FULSW AOH WKDW \RX KI
+70/ AOH 7R JHW VWDUWHG \RXU +70/ FRXOG ORRN OLNH WKH IR

<ldoctype html>
<html lang="en" ng-app="myApp">
<head>
<meta charset="utf-8">
<title>My First html page with AngularJS</title>
</head>
<body>
<script src="lib/angular. min. js"></script>
</body>
</html>

,Q RXU AUVW FRGH H[FHUSW ZH KDYH XVHG D ORFDO YHUVLRQ RI
It is recommended to use the CDN version for production applications:

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.8/
angular.min.js"></script>

While AngularJS does a good job of helping you get organized, along the way, it also
makes you think a bit differently about DOM and how to manipulate it. When you

are used to working just with tools such as jQuery or Prototype, a new dimension
and a model, will be added to your world. When you use other frameworks such as
KnockoutJS or BackBoneJS, you will feel right at home, but will experience a more
opinionated way of writing substantially less code than you were used to.

Let's dive into some code! Let's say you want to ask the user to type a temperature,
and dependingonthe QXPEHU VKRZ D GLIIHUHQW UHVSRQVH $ VLPSOH +
this content would be enough to do that for you, shown as follows:

/lindex.html

<!doctype htmlI>
<html lang="en" ng-app>
<head>
<meta charset="utf-8">
<title>My AngularJS App<I/title>
<link rel="stylesheet" href="css/app.css"/>
</head>
<body>
Current temperature: <input ng-model="temp' type="number'/> Celcius
<p ng-show="temp>=17">Not too bad! {{ temp }} degrees, {{ temp - 10
}} would be a little cold</p>
<p ng-show="temp<17">{{ temp }} degrees, is a little chilly, {{ temp
+ 10 }} would be a nicer</p>
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.4/
angular.min.js"></script>
</body>
</html>

[6]

Chapter 1

. Valid HTML
AY
‘Q If you like valid HTML, Angular offers ways to specify instructions

so that your pages will be completely valid HTML. For instance,
\RX FDQ SUH Ag¢-*D ap@tiakigith x- or data- .

1RZ ZKDW H[DFWO\ LV KDSSHQLQJ KHUH" -XVW EHORZ WKH GRFW\SHI
ng-app . This is a general bootstrapping directive for Angular. In this case, it means

that anything between the <HTML>tags can contain instructions for Angular to add its

magic to your page. Further down you see some moreng- attributes. The attribute

ng-model="temp" binds the value of the input to the variable named temp. Now that

WKH LQSXW YDOXH LV ERXQG VHWWLQJ WKH YDOXH RI WKH LQSXW
value="17" won't work anymore because Angular has bound it to an empty variable.

The ng-show attribute triggers a function to show or hide the node it is applied to,

based on the evaluation of the expression. All values of the Angular name="value"

pairs can contain something that resembles regular JavaScript, although there are

differences. Check the documentation to read about the differences athttp://docs.

angularjs.org/guide/expression . In general, you should keep the amount of

"code” in your templates to a minimum to avoid mixing presentation with logic.

Now that we have the input, we need something to display the temp variable.

Angular, by default, uses double curly braces for interpolating variables in a

template, for example, {{temp}} . As you can see, the interpolation can also

contain any valid JavaScript expression; for example,{{ temp + 10 }}

Delimiters {{ ... }}

When you serve your Angular application from a framework like
Symfony, the double curly braces {{ }} ZLOO FRQALFW ZLWK|JWKH
Twig templating engine, because it also uses the same characters as
delimiters. To stay compatible with any plugins that rely on these
_delimiters on the server side, you should not change them. Angular
a offers a way to change the delimiters into something else:
A

var myAppModule = angular.module('myApp',[l,
function ($interpolateProvider) {
$interpolateProvider.startSymbol('<[");
$interpolateProvider.endSymbol(']>");
b
This will change the stock {{}} to<[]> for the current Angular app.

Learning to Fly

$V \RX VDZ HDUOLHU WKH LQSXW AHOG ER)VtobBgHiQG WR DQ HPSW\
ZLWK :KDW LI ZH ZDQWHG WR VWDUW ZLWK D WHPSHUDWXUH RI
we could set the value of temp to 17 in the template, but because one of our goals

KHUH LV WR KDYH EHWWHU FRGH RUJDQL]DWLRQ ZH OO SODFH W

Adding a controller

Earlier in the chapter, you saw how to use the ng-app attribute to bootstrap the

application. We can specialize this bootstrappingto DSSO\ D VSHFLAF SLHFH RI

JavaScript to the containing nodes. So we could have the<BODY>tag enriched by

D ELW RI $QJXODU 7R GR WKLV WKH AOH VKRXOG ORRN OLNH WK

/I index.html

</head>

<body ng-controller="TempCtrl">

Current temperature: <input ng-model="temp' type="number'/> Celcius
<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.0.4/
angular.min.js">

<script src="app/js/app.js">

This will tell Angular to look for a function named TempCtrl inside the included
-DYD6FULSW AOHV 7KH -DYDG6FULSW AOHapjKDW ZLOO FRQWDLQ W
VR ZH ZLOO QHHG WR LQFOXGH WKDW LQ WKH +70/ AOH

To start off with a temperature of 17 degrees, the controller would look like
the following:

Ilappljs/app.js
'use strict’;

function TempCtrl($scope) {
$scope.temp = 17;
}

The controller function is called with the $scope variable. This variable represents

the scope the controller is responsible for. All properties of the $scope variable are
magically bound to variables of the same name in the HTML template. As you can see,
the temperature is simply set to 17 and the manipulation done inside this controller
gets synchronized to the template by Angular. The reverse is also true; when a variable
is changed in the template, it also gets synced to the controller. Angular has added a
two-way binding between the JavaScript code and the HTML template, as shown in
the following screenshot:

[8]

Chapter 1

Current | History

Y

Current temperature: [17 7| Celcius

Not too bad! 17 degrees, 7 would be a little cold

use strict

What about routes?

Next to seeing the actual temperature in the current page, it would be nice to have a
page showing some history of what the temperature has been in the past. To do this,
we need some kind of routing to navigate between the pages. Along with the routing
feature, you will see the Angular module system to organize the various components,

shown as follows:

/I index.html

<!doctype html>

<html lang="en" ng-app="tempApp">

<head>

<meta charset="utf-8">
<title>My AngularJS App</title>
<link rel="stylesheet" href="css/app.css"/>

</head>

<body>

<ul class="menu">
Current
History

<div ng-view></div>

<script src="//ajax.googleapis.com/ajax/libs/angularjs/1.0.4/
angular.min.js"></script>

is optional but helps you, as a developer, to create
ECMASCcript 5-compatible JavaScript and provides more feedback
in supported browsers. For more information, refer to the following
link, which is a good read among others http://ejohn.org/blog/
ecmascript-5-strict-mode-json-and-more/

[9]

Learning to Fly

<script src="app/js/app.js"></script>

</body>
</html>

/I partials/current.html

Current temperature: <input ng-model="temp' type="number'/> Celcius
<p ng-show="temp>=17">Not too bad! {{ temp }} degrees, {{ temp - 10 }}
would be a little cold</p>

<p ng-show="temp<17">{{ temp }} degrees, is a little chilly, {{ temp +

10 }} would be a nicer</p>

/I partials/history.html
<p>This will show some history</p>

The observant reader will have noticed that the ng-app attribute has been extended

with ="tempApp" 7KLV LV WR WHOO $QJXODU WR XVH D VSHFLAF PRGXC
part of the HTML page. The code that was inside the <BODY>tag has been moved

to the partial folder and has been replaced by a navigation menu. The navigation

menu just refers to routes using hashbangs ¢!). The following manual can help

you use the HTMLS5 History API and allow correct indexing using search engine

bots: http://docs.angularjs.org/guide/dev_guide.services.$location .

2XU PRGXOH LV GHAQHG LQ WKH IROORZLQJ -DYD6FULSW AOH

Il appljs/app.js
'use strict';

var tempApp = angular.module('tempApp', []).
config(['$routeProvider', function($routeProvider) {
$routeProvider.when('/current’, {templateUrl: 'partials/current.
html', controller: 'CurrentCtrl'});
$routeProvider.when('/history', {templateUrl: 'partials/history.
html', controller: 'HistoryCtrl'});
$routeProvider.otherwise({redirectTo: ‘/current});

H)B

/I appljs/controllers.js
'use strict';

tempApp.controller('CurrentCtrl', ['$scope’,
function($scope) {
$scope.temp = 17;
1)

tempApp.controller(‘'HistoryCtrl', ['$scope’,
function($scope) {

1

[10]

Chapter 1

First the module is initialized with the name from the template tempApp. The empty

array after the module name can contain dependencies for the module. Then the

PRGXOH LV FR QA$outdmdEidet V L §sJa dependency, which is used to

UHGLUHFW D 85, WR D SDUWLDO +70/ WHPSODWH XVLQJ D VSHFLAF
WKH FRQWUROOHUYV KDV DOVR VLIQLAFDQWO\ FKDQJHG 7KH\ DUH
DV D SURSHUW\ :KLOH GHAQLQJ WKH FRQWUROOHUV DV D IXQFWLR
VWLOO ZRddthliek Q H is the recommended way of writing Angular modules.

As before, thetemp controller is still depending on $scope to be present inside

the function.

Showing a list

The History tab is only showing a placeholder, so let's go ahead and change that.

Let's assume we have stored some temperature data in a database and we have

UHDG WKDW GDWD LQWR D YDULDEOH)RU GHPRQVWUDWLRQ SXU
some data inside the controller. Fetching data from a backend is beyond the scope

of this book:

tempApp.controller('HistoryCtrl', ['$scope’,
function($scope) {
$scope.historyData = [
{ day: 'saturday', temp: 8},
{ day: 'sunday’', temp: 13},
{ day: 'monday',temp: 15},
{ day: 'tuesday’, temp: 11},
{ day: 'wednesday',temp: 15},
{ day: 'thursday',temp: 17},
{ day: 'friday',temp: 21}
]
1)

The controller just depends on $scope and has assigned some data inside an array
to the property historyData . The template looks like the following:

<ul ng-repeat="value in historyData">
{{ value.day }} : {{ value.temp }}

ng-repeat is an Angular function to do something similar to a for-each loop.
Because it is declared on the tag, it will repeat the elements inside the list for
HYHU\ HOHPHQW LW AdpGDatd Q. VAl HayD ustDefers to the day
property day inside the hash.

[11]

Learning to Fly

$GGLQJ D ¢ OWHU

Let's say our users are only interested in temperatures above 15 degrees. We could

modify the data in the controller. If we need this same data elsewhere, we could

create a copy of the data and modify that for display. Angular has a neat feature

caled AOWHWKWUH DUH VHYHUDO AOWHUYV LQFOXGHG ZLWK $QJXODU
FUHDWH \RXU RZQ AOWHUV)LUVW ZH OO XVH D VWDQGDUG $QJX
names of all days to uppercase:

<ul ng-repeat="value in historyData">
{{ value.day | uppercase}} : {{ value.temp }}

Angular follows the Unix-style pipe to transfer data down the line usinga | symbol.
7R MXVW VKRZ WHPSHUDWXUHYV DERs¥iData Z&raHHG WR AOWHU WK

tempApp.filter('plusFifteen’, [function() {

return function(arrTemp) {
var arrReturn = new Array();
angular.forEach(arrTemp, function(value, key){

if(value.temp>=15) arrReturn.push(value);

Pk
return arrReturn;

}

i)

7KLY AOWHU WDNHV DQ DUUD\ DV LWV DUJXPHQW DQG UHWXUQV RC
temperature than 15. This piece of code is tightly coupled with the example we have |
KHUH 7KH AOWHU LV XVHG LQ D VLPLODU ZD\ DV WKH XSSHUFDVH ¢

<ul ng-repeat="value in historyData | plusFifteen">
{{ value.day | uppercase}} : {{ value.temp }}

1RZ ZH FRXOG PDNH RXU AOWHU D ELW PRUH FRQAJXUDEOH E\ PD
WHPSHUDWXUH FRQAJXUDEOH LQ WKH WHPSODWH 7KDW ZD\ ZH F
for lists where we want to see other minimum temperatures:

tempApp.filter(minimum’, [function() {

return function(arrTemp, minimum) {
var arrReturn = new Array();
var min = minimum ? minimum : 15;
angular.forEach(arrTemp, function(value, key){

if(value.temp>=min) arrReturn.push(value);

Pk
return arrReturn;

}

1)

Chapter 1

7KH AOWHU QRZ WDNHV DQ RSWLRQDO DUJXPHQW DV WKH PLQLPX
When you run the code without changing the template, it works exactly like

EHIRUH 7R UHAHFW WKH QHZ IXQFWLRQDOLW\ RI RXU AOWHU ZH
WKH AOW H UniMm@D Pd+akll Rdvantage of the new feature, we have to

VSHFLI\ WKH PLQLPXP WHPSHUDWXUH DV D AOWHU DUJXPHQW :KI
let our users decide for themselves what minimum temperature they wish to see:

Minimum temperature: <input ng-model="tempMin' type="number'/> Celcius
<ul ng-repeat="value in historyData | minimum:tempMin">

{{ value.day | uppercase}} : {{ value.temp }}

Our template now has an input box in which the value tempMin LV ERXQG WR WKH AOWHU
as an argument, shown as follows:

Current | History

Minimum temperature: |15 = Celcius
* MONDAY : 15
* WEDNESDAY : 15
* THURSDAY : 17

« FRIDAY :21

As the user changestheYDOXH RI WKH LQSXW ER[WKH OLVW LV G\QDPLFDO!
the input box with the value 15, all we have to do is add $scope.tempMin = 15 to our
history controller.

Chart directives

It is not bad to see our data as an unordered list, but showing it in a chart would
really make our users happy. We will be using a third-party library to render our
chart and wrap it inside an Angular directive. The goal of this exercise is to use

our directive as a new HTML tag <chart ...></chart> . This is, by far, one of the
coolest features of Angular. For a while the subtitle of the Angular website was after
all "teaching HTML new tricks". Let's go ahead and change our template, so it uses
our new directive:

Minimum temperature: <input ng-model="tempMin’ type="number’/> Celcius
<chart historyData | minimum:tempMin"></chart>

[13]

Learning to Fly

The real work is now delegated to our new directive, leaving the template clean
and concise:

tempApp.
directive('tempChart', [function(version) {
return {
template: '<div id="container"></div>',
link: function(scope, element, attrs) {
var chart = new Morris.Line({
/I ID of the element in which to draw the chart.
element: 'container,
/I The name of the data record attribute that contains

x-values.

xkey: 'date’,

/I A list of names of data record attributes that contain
y-values.

ykeys: [temp],
/I Labels for the ykeys -- will be displayed when you hover
over the
Il chart.
labels: ["Temperature']
»;
scope.$watch(function() {
chart.setData(angular.copy(JSON.parse(attrs.data)));
»;
}
}
H)E

The tempChart directive encapsulates a charting library by taking data from the
template and returning the rendered chart. One of the key elements in the code
snippet is the scope.$watch VWDWHPHQW Z L WvktéhixlvesBloV S HF LA F
It simply waits for a $digest run by Angular and will update the data for the

chart. $digest is run anytime a key is pressed and Angular calls $apply

internally. A good explanation of these concepts is in the Angular manual at
http://docs.angularjs.org/guide/concepts

The chart library we used is Morris.js (http://www.oesmith.co.uk/morris.js)

DQG WKH FKDUW VSHFLAF FRGH LV DQQRWDWHG EHFDXVH WKH Gt
the scope of this book. To get Morris to work correctly, add the following lines to the

indexhtml AOH

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.0/jquery.
min.js"></script>

<script src="//cdnjs.cloudflare.com/ajax/libs/raphael/2.1.0/
raphael-min.js"></script>

<script src="http://cdn.oesmith.co.uk/morris-0.4.1.min.js"></
script>

Chapter 1

The output is shown as follows:

Current | History

Minimum temperature: |15 +| Celcius

2013-08-03
Temperature: 17

. .

2013-05-05 2013-05-20 2013-06-04 2013-06-19 2013-07-04 20130719 2013-08-03 2013-08-18 2013-08-0f

The result is a page where the user can now use the number input to control the data
visualized in the chart.

Using services

One last element of Angular that deserves attention is the concept of services.

One of the built-in services is the location service. Thelocation service provides

read and write accesses to URLs and lets the developer use it for navigating around
the application. It can be used to read and change the URL. Changes can then be
picked up by the route service, as we have already seen before. Services are injected
into controllers or other services that depend on them.

These are the basic building blocks to create single-page applications using
AngularJS. In the following chapters you will learn more about injecting
GHSHQGHQFLHYV DQG ZK\ WKLV ZLOO EHQHAW \RX DV D GHYHORSH

Downloading the example code
M <RX FDQ GRZQORDG WKH H[DPSOH FRGH AOHV JRU DOO 3DFNW EF
Q purchased from your account at http://www.packtpub.com . Ifyou
purchased this book elsewhere, you can visit http://www.packtpub.
com/support DQG UHJLVWHU WR KDYH WKH AOHYV PDLOHG GLUHFW

[15]

Learning to Fly

Summary

In this chapter you have seen how to get started with AngularJS. First, we looked at

the setup of an Angular project. Then we created a simple page with some angular
bindings. We added a controller and another page. The second page showed just a
OLVW DW AUVW EXW JRW XSJUDGHG WR D QLFH FKDUW
in a directive. Lastly, we mentioned services since we had already used them.

[16]

‘H LPPHG

Better Code

When we created our HistoryController , we put the historyData object containing
days and their corresponding temperatures inside it. For demonstration purposes,

this is not the end of the world, but the controller is useless without it. So the controller
depends on this object to function correctly. The best thing to do here is to take the
hash object out of our controller and replace it with something that will retrieve the
data for us. After all, we are not building a static application. Let us refactor that to
make it a bit more lifelike by using an external source. For this example, we will use
Parse.com , aBackend as a Service(Baa$) that functions like an API. This service

can handle all the tasks that we would normally have to handcode in the backend of
our applications. Since it is beyond the scope of this book, using a Baas, let us use a
backend without coding one up.

Wiring up the backend

We have created a free developer account and imported our sample data into the
Parse classReading using the Parse dashboard.

/I Ipath/toffile/history.json

[
{"date": "2013-04-01T17:01:22.634Z", "temp": 8},
{"date": "2013-04-02T17:01:22.634Z", "temp": 13},
{"date": "2013-04-03T17:01:22.634Z", "temp": 15},
{"date": "2013-04-04T17:01:22.634Z", "temp": 11},
{"date": "2013-04-05T17:01:22.634Z", "temp": 15},
{"date": "2013-04-06T17:01:22.634Z", "temp": 17},
{"date": "2013-04-07T17:01:22.634Z", "temp": 21}

Better Code

JLUVW WKH GDWD LV PRYHG RXW RI WKH FRQWUROOHU LQWR D AC
Notice the difference in the notation of JSON compared to the previous JavaScript

notation. JSON doesn't allow keys to be unquoted. Next, we have to somehow

get our controller to use the Parse SDK to get data from the backend. There are

DIHZ GHVLJQ SDWWHUQV WKDW FRXOG KHOS XV KHUH 7KH AUVW
Parse the documentation. Just load the following script

before the Angular script tag:

/I index.html

<script type="text/javascript
src="http://www.parsecdn.com/js/parse-1.2.3.min.js"></script>
<script src="//ajax.googleapis.com/ajax/libs/angularjs/
1.0.4/angular.min.js"></script>

<script src="appl/js/app.js"></script>

<script src="app/js/controllers_factory.js"></script>

After loading the script, you will have to update the controller to get data from
Parse.com , using the Parse object from the global scope:

/lapp/controllers.js

tempApp.controller("HistoryCtrl', ['$scope’, function ($scope) {
Parse.initialize("wNpkWuOOBGAAajJInnqYPW3wsOT3T43LMn0e3VFb",

"04wqQGQq62frJjEWzDOhISMrmtWDRFPjGuCoD4zWi");

var Reading = Parse.Object.extend("Reading");
var query = new Parse.Query(Reading);
query.find({
success: function (results) {
$scope.historyData = [];
angular.forEach(results, function (i, e, a) {
$scope.historyData.push({
date: i.get('date’),
temp: i.get(‘temp’)
D
)
$scope.$apply();
h
error: function (error) {
alert("Error: " + error.code + " " + error.message);
}
i
/Ibelow unchanged
$scope.tempMin = 15;
$scope.minimum = function (value) {
if (value.temp >= $scope.tempMin) return value;
}
i)

[18]

Chapter 2

First, the Parse library needs to know our credentials in order to access the service.
This is done in the Parse.initialize call. After that is done a local Reading object is
created by extending Parse.Object . This connects our local object to a remote entity
named reading . Then, a query is created on the collection of theReading entities

that is used by the Parse service to return all objects in the collection. Upon success,
the result is then iterated and pushed into the $scope.historyData property. The end
result is the same as before; the template renders our chart directive with the

correct historyData ~ object.

Duplicating code

Duplicating code seems like a good approach. We're using a cool service to get our

data and insert it in the scope variable. It also looks very clean and concise. There are,

KRZHYHU VHYHUDO SUREOHPV KHUH 7KH AUVW LV WKDW WKH FUH
WKHUH LV D ORW Rl FRGH VSHFLAF WR 3DUVH LQ RXU FRQWUROOH!L
GLIAFXOWLHV ZH Zw@erd pige ikt RudlUallow users to save the

temperature they selected, using the Parse service, shown as follows:

/I partials/current.html

Current temperature: <input ng-model="temp' type="number'/> Celcius
<p ng-show="temp>=17">Not too bad! {{ temp }} degrees, {{ temp - 10 }}
would be a little cold</p>

<p ng-show="temp<17">{{ temp }} degrees, is a little chilly, {{ temp +

10 }} would be a nicer</p>

<input type="button" ng-click="save()" value="save"/>

First, we have to change the template because we want the user to decide which
values get saved to the database using a button. We just added this button as an
Angular attribute ng-click="save()" . This means that it will execute the function
that $scope.save returns when the button is clicked.

I/l app/controllers.js

tempApp.controller('CurrentCtrl', ['$scope’, function ($scope) {
$scope.temp = 17;
Parse.initialize("wNpkWuOOBGAAajJInnqgYPW3wsOT3T43LMn0e3VFb",
"04wqQGq62frJJEWzDOhISMrmtWDRFPjGUCoD4zWi");

var Reading = Parse.Object.extend("Reading");
var reading = new Reading();

$scope.save = function () {
reading.set("date", new Date().tolSOString());
reading.set("temp", $scope.temp);
reading.save(null, {
success: function (gameScore) {
alert('reading saved');

[19]

Better Code

3
error: function (gameScore, error) {
/I The save failed.
/I error is a Parse.Error with an error code and
description.
}

Ik
}
)5

7KH AUVW IHZ OLQHV DUH F Ri&lohi@antoNstUD LNéX/ IURP RXU

the $scope.save function gets invoked when the user presses the button.

We use the Parse SDK syntax to create a nevReadng REMHFW AOO LW ZLWK WKH
current date and the selected temperature in it and persist it in the Parse backend.

The two-way binding takes care of propagating the value that the user selected

from the input element to the $scopetemp YDULDEOH 7R FRQAUP WKDW WKH VDY
action worked, an alert will be shown with a success message. The same could

be done in case of an error. So now when we have an application that works well

and performs all that we have asked of it.

Current | History

Current temperature: 19 &1 Celcius
Mot too bad! 19 degrees, 9 would be a little cold

sava

However, we have duplicated code which is not very DRY (Don't Repeat Yourself).
This means that every time something changes, we have to keep it all in sync with
our credentials or the Parse API every time something changes. Secondly, the way to
test this service is a bit tricky since we need to have a live Internet connection and a
valid Parse account with known data at all times.

When developing in a test-driven manner, you would create your tests at the same
time or even before you create the actual code you are testing. We have dedicated a
chapter to testing and the advantages of Dependency Injection for testing. So don't
worry; we won't forget to create the tests!

Chapter 2

Angular service to the rescue

To circumvent all these problems, Angular has a concept of services that we
mentioned at the end of Chapter 1Learning to Fly Talking to the Parse API or
service can be viewed as a service to the application. The service is responsible
for initializing Parse and instantiating the Reading object that is ready for
manipulation. The service can then be injected in the two controllers and

the shared code is nicely centralized:

Il app/services.js
angular.module('serviceModule', [function ($provide) {
$provide.factory(‘parse’, [function () {
/I inti Parse SDK

Parse.initialize("wNpkWuOOBGAAajJInnqYPW3wsOT3T43LMn0e3VFb",
"04wqQGq62frJIEWzDOhISMrmtWDRFPjGUC0oD4zWi");

1)E
s

To make our service completely separate from our application, we create a new
module named serviceModule . You can read more about organizing your
application in the Chapter 5Large ApplicationsThe service simply initializes the
Parse service with the required credentials and returns the instance. When you
look closely, you see that the factory registers a function instead of the Parse
instance. This means that the service is only instantiated when actually called.
Creating our service inside a new module means our tempApp has no knowledge
of our service yet. It means we need to inject this new module in our application.

Il app/app.js
var tempApp = angular.module(‘tempApp', ['serviceModule').
config(['$routeProvider', function($routeProvider) {

$routeProvider.when('/current’, {templateUrl: 'partials/current.
html', controller: 'CurrentCtrl'});

Better Code

Let's take our new serviceModule one step further and extend it with a second
service on top of our generic Parse service that will use the Parse instance to expose
methods for query and save . This allows us to take some more code out of

our controllers.

angular.module('serviceModule', [function ($provide) {
$provide.factory(‘parse’, [function () {
Il init Parse SDK
Parse.initialize("wNpoWuOOBGAA&jJInngYPW3wsOT3T43
LMn0e3VFb", "04wgQGq62frJJEWzDOhISMZmtWDRFPjGuCoD4zWi");
1)
$provide.factory(‘'reading’, ['parse’, function () {
I/ our reading object
var Reading = Parse.Object.extend("Reading");
Il the service that will be returned
var servicelnstance = {
save: function (temp) {
reading = new Reading();
reading.set("date", new Date().tolSOString());

reading.set("temp", temp);
reading.save(null, {
success: function (reading) {
alert('reading saved);
h
error: function (reading, error) {
/I The save failed.
alert("Error: " + error.code + " " +
error.message);
}
Dk
2

query: function (callback) {
var query = new Parse.Query(Reading);
query.find({
success: function (results) {
var historyData = [];
angular.forEach(results,
function (i, e, a) {
historyData.push({
date: i.get('date"),
temp: i.get('temp’)
D
)
callback(historyData);
3

error: function (error) {

Chapter 2

alert("Error: " + error.code + " " + error.

message);
}
Pk
}
3
return servicelnstance;
1)
1)

Using the array notation that have seen before, we inject theParse service into
our Reading service and use it to return servicelnstance . The Reading object is

instantiated and exposed locally. Then, a public method for querying the Reading
objects is exposed throughquery . Lastly, we created a method for creating and
persisting an object by the save method. That's all we need for now, but we can freely
extend the functionality if we need to. As you can see, we have wrapped the native
Parse methods with our own methods. This means that if we should ever want to swap
Parse for something else, all we have to change is the service and nothing else.

tempApp.controller('CurrentCtrl', ['$scope’, 'reading’, function
($scope, reading) {
$scope.temp = 17;

$scope.save = function () {
reading.save($scope.temp);
}
1)

tempApp.controller("HistoryCtrl', ['$scope’, 'reading’, function
($scope, reading) {
reading.query(function (data) {
$scope.historyData = data;
$scope.$apply();
D

/Ibelow unchanged
$scope.tempMin = 15;
$scope.minimum = function (value) {
if (value.temp >= $scope.tempMin) return value;
}
1)

Better Code

YLUVW RI DOO WKH 3DUVH VSHFLAF FRGH KDV EHHQ FHQWUDOL]H
controllers. We can very easily use the reading service in many more classes with

minimal lines of code. Reducing lines of code is not a goal of Dependency Injection

but a side effect. Another advantage of separating the responsibilities is that the

separate parts are now smaller chunks of code. This means it will be easier for a

new developer coming to your team or (open source) project, to learn the purpose

and the functionality of the code. Fewer lines of code also means that there are less

possibilities for errors. The way we have now separated the responsibilities naturally

EHQHAWY WHVWLQJ EHFDXVH ZH FDQ WHVW LQGLYLGXDO IXQFWLE
a bunch of different functions in one single body of code.

We have now abstracted our service into a module. This means it has been separated

totally from our application and our shiny new service has been injected into our

controllers. Not only can we share the Parse module in our own application, but we

can also share it with others. A good place to look for existing modules, or share your

modules for Angular is http://www.ngmodules.org . This is a registry for public

modules to be used for your Angular applications. It includes modules for using

jQuery Ul or Twitter Bootstrap in your project. Have a look around; there are many

XVHIXO PRGXOHVY DYDLODEOH $IWHU DOO WKH AUVW UXOH RI VR
sure that you are not going to make something that is already available.

The theory behind Dependency Injection

We have now used Dependency Injection and seen it in action. By now you should

KDYH D GHFHQW JUDVS RI ZK\ LW LV XVHIXO EXW ZKDW DERXW WKI
with SOLID . This is a basic principle by Robert C. Martinthat was introduced in the

\HDU ,W LV DQ DFURQ\P WKDW GHVFULEHV WKH AYH EDVLF SUL
software design. It advocates a method of development that allows you to produce

software that can easily be extended and is also easier to read. The following table lists

WKH AYH 62/, SULQFLSOHYV

Initial Stands for Concept
Single . This principle states that a class should have only a
S responsibility single responsibilit
principle (SRP) 9 P Y.
o Open/closed This principle states that software entities should be
principle (OCP) open for extension, but closed for modification.
Liskov substitution This principle sta?es.that objects in a program should
L be replaceable with instances of their subtypes

principle (LSP) without altering the correctness of that program.

Chapter 2

Initial Stands for Concept

Interface
segregation
principle (ISP)

This principle states that many client-specific interfaces
are better than one general-purpose interface.

This principal states that one should depend upon

asgfsri]gr?n?i/nci le abstractions. Do not depend upon concretions.
(DIP) P P Dependency injection is one method following

this principle.

Source:http://en.wikipedia.org/wiki/SOLID

Let's see the principles of object-oriented software design in detail, shown as follows:

Single responsibility principle : This principle dictates that a class can

only have one responsibility, just as our services are divided into one that

FRQAJXUHV WKH 3DUVH VHUYLFH DQG WKH RWKHU WKDW XVH
service for providing a Reading object with some basic methods. This seems

like a very straightforward principle but can very easily be overlooked when

\RX UH LQ D KXUU\ 7KH EHQHAW LV WKDW \RXU FRGH ZLOO E
likely to break when something in the code needs change.

Openl/closed principle : This principle states that code should be designed

in such away thattheyare RSHQ WR H[WHQVLRQ EXW FORVHG IRU PRGI
Code written in this way will never change unless there is a bug in it.

This means that everything that depends on the code will always

understand it, and tests written for it will not have to be changed either

because they keep passing.

Liskov's principle : This principle reminds us of something that should already
be a common practice for any object-oriented developer: subclasses should be
behaviorally compatible with their superclass. A simple example would be

a new object namedhighestReading that is based on theReading object.
This new object may not changetemp to, say, highestTemp . This principle
really works together with the open/close principle. It allows you to re-use

your subclasses just like the superclass.

Interface Segregation principle : This principle tells us we should not force
users of a class to depend on methods they do not use. So ouReading
service should not force the caller to call unnecessary methods that are not
relevant for performing either a query or a save operation.

Better Code

Dependency Inversion principle : This principle resembles the subject of
this book quite closely and is, in fact, related to it, but not as closely as you
might think. Dependency inversion is about having high- and low-level
components in a software project that depends on abstractions. Abstractions
can be thought of as standard interfaces. In traditional software development,
lower-level code was consumed by higher-level components to create more
complex systems. This resulted in a close coupling of the different levels of
code. By depending on the different levels on abstractions, this coupling has
been largely reduced and code can be maintained and reused in an easier
way. Dependency Injection is one of the ways these dependencies can be
made available to the code. Others are plugins or a service locator.

Law of Demeter (LaD) : This is another design principle that has some

VLIQLAFDQFH LQ WKH FRQWH[W RI '"HSHQGHQF\ ,QMHFWLRQ
when calling classes or functions, you should not reach througtihe callee

and use functions of another object or class inside the one you called.

This causes tight coupling and makes maintenance and adaptability more

GLIAFXOW :KHQ DSSOLHG WR -DYD6FULSW EUHDNLQJ WKH /I
look like this:

/I service
angular.module(‘'serviceModule', [function ($provide) {
$provide.factory(‘parse’, [function () {
/ init Parse SDK
Parse.initialize("wNpoWuOOBGAAajJInngYPWS3......");
return Parse;
1)
$provide.factory(‘reading’, ['parse’, function
(backend) {
/I our reading object
var Reading = backend.Object.extend("Reading");
/I the service that will be returned
var servicelnstance = {
save: function (temp) {.....

backend: backend
return servicelnstance;
I return the Parse object tool
1)
1)

/[controller
var currentCtrl = function ($scope, reading) {
$scope.temp = 17;

$scope.bad_idea = reading.backend.VERSION
/Ireach through the 'reading' service

[]

Chapter 2

$scope.save = function () {
reading.save($scope.temp);
}
h

In the preceding example, we exposed the Parse service through the
"reading” service. In the controller, we reached through the reading

service and called a method on the Parse service withreading.backend.
VERSION This is a bad idea, because when something changes in the Parse
API, all its uses have to be changed throughout your code. Also, replacing
Parse with another service will mean a bigger search and replacement of
tasks. It means we should have written wrappers for the Parse methods that
we want to expose through the reading class. This would be the correct way
to get the version of the parse backend in the controller.

/I service
angular.module('serviceModule', [function ($provide) {
$provide.factory('parse’, [function () {
[l init Parse SDK
Parse.initialize("wNpoWuOOBGAAajJInngYPWS3......");
return Parse;
)R
$provide.factory('reading’, ['parse’, function
(backend) {
/I our reading object
var Reading = backend.Object.extend("Reading");
/I the service that will be returned
var servicelnstance = {
save: function (temp) {.....

version: backend.VERSION
return servicelnstance;
s
)2

llcontroller
var currentCtrl = function ($scope, reading) {
$scope.temp = 17;

$sopce.good_idea = reading.version

$scope.save = function () {
reading.save($scope.temp);
}
h

Better Code

Summary

In this chapter we have looked at simplifying our application by removing duplicate
code and abstracting that functionality away into a service and then injecting that
into different parts of the application. Afterwards, we looked at the SOLID principles
and how they play a role in Dependency Injection. The Law of Demeter was the
closing piece of to back up the Dependency Injection paradigm.

The Magic

It is time we explain some of the inner workings of Angular. Angular does some
neat things for us. It saves us from having to write a bunch of boilerplate code.
Dependency Injection is baked into AngularJS and heavily used throughout.
Another feature is a built-in subset of a jQuery functionality called jQLite.

It contains all the necessary functions to make AngularJS run without jQuery

and has the exact same interface. If jQuery is available in your application, it will
be used instead. Angular also takes the burden of bootstrapping your application,
which will be covered later in this chapter.

$SSOLFDWLRQ ARZ

,Q WKH IROORZLQJ GLDJUDP IURP WKH $QJXODU PDQXDO \RX AQ
schematic depicton RI WKH SURJUDP ARZ LQVLGH $QJXODU

{view) [$rootScope)

|HTML|
‘Browser N ‘AngularJS ,
DOM ;
Static Content " w]!
‘ DOM Loaded | ng-app="module ‘ :
Event * :
: | Sinjectar | :
: » !
| | Scompile || SrootScope ‘]
Dynamic : Scompile :
Dom] i dom) 1

The Magic

After the browser loads the HTML and parses it into a DOM, the angular.js

VFULSW AOH LV OhrBdeéti®eforekor st tRelb@tom of the <body> tag,

DOWKRXJK DGGLQJ LW DW WKH ERWWRP LV SUHIHUUHG $QJXODU
the DOMContentLoaded event. This is similar to the way jQuery is bootstrapped,

as illustrated in the following code:

$(document).ready(function(){
// do jQuery
)

In the Angular.js AOH W RE Bnd,@fter the entire code has been parsed by the
EURZVHU \RX ZLOO AQG WKH IROORZLQJ FRGH

jgLite(document).ready(function() {
angularlnit(document, bootstrap);

bl

7KH SUHFHGLQJ FRGH FDOOV WKH IXQFWLROQngMipDW ORRNV IRU YD
directive that you can use to bootstrap your Angular application.

['ng:app', 'ng-app’, 'x-ng-app’, 'data-ng-app’]

Typically, the ng-app directive will be the HTML tag, but in theory, it could be any
tag as long as thereisonly RQH Rl WKHP 7KH PRGXOH VSHFLAFDWLRQ LV RS
tell the $injector VHUYLFH ZKLFK RI WKH GHAQHG PRGXOHV WR ORDG

/lindex.html

<ldoctype html>

<html lang="en" ng-app="tempApp">
<head>

In turn, the $injector service will create $rootscope , the parent scope of all Angular

scopes, as the name suggests. Thigrootscope is linked to DOM itself as a parent to

all other Angular scopes. The $injector service will also create the $compile service

that will traverse the DOM and look for directives. These directives are searched for

within the complete list of declared Angular internal directives and custom directives

at hand. This way, it can recognize directives declared as an element, as attributes,

LQVLGH WKH FODVV GHAQLWLRQ RU DV D FRPPHQW 1RZ WKDW $QJ
Bootstrapped, we can actually start executing some application code. This can be

done in a variety of ways, shown as follows:

* Inthe initial examples, we started creating some Angular code with curly
braces using some built-in Angular functions

[30]

Chapter 3

« ,W LV DOVR SRVVLEOH WR GHAQH D FRQWUROOHU WR FRQWU
SDJH DV ZH KDYH VK REQL Qo KippatU V W

* We have also shown you how to use Angular's built-in router to manage
your application using client-side routing

As you can see, Angular extends the capabilities of HTML by providing a clever
way to add new directives. The key ingredient here is the $injector service,
which provides a way to look up for dependencies and create $rootscope

Different ways of injecting

Let's look a bit more at how S$injector ~ does its work. Throughout all the examples
LQ WKLY ERRN ZH KDYH XVHG WKH DUUD\ VW\OH QRWDWLRQ WR GF
services, and directives.

/I app/ controllers.js
tempApp.controller('CurrentCtrl', ['$scope’, 'reading’,
function ($scope, reading) {
$scope.temp = 17;

This style is commonly referred to as annotation . Each injected value is annotated in
the same order inside an array. You may have looked through the AngularJs website
DQG PD\ KDYH VHHQ GLIIHUHQW ZD\V RI GHAQLQJ IXQFWLRQV

/I angularJs home page JavaScript Projects example
functionListCtrl($scope, Project) {
$scope.projects = Project.query();

}

6R ZKDW LV WKH GLIIHUHQFH DQG ZK\ DUH ZH XVLQJ DQRWKHU 2z
7KH AUVW GLIIHUHQFH \RX PD\ QRWLFH LV WKH GHAQLWLRQ RI DO
scope. For reference, let's call this thesimple injection method . The documentation

states that this is a concise notation that really is only suited for demo applications

because it is nothing but a potential clash waiting to happen. Any other JS library or

framework you may have included could potentially have a function with the same

name and cause your software to malfunction by executing this function instead of

yours. After assigning the Angular module to a variable such as tempApp, we will

chain the methods to that variable like we have done in this book so far; you could

also just chain them directly as follows:

angular.module('tempApp’).controller('CurrentCtrl', function($scope)

B

[31]

The Magic

7KHVH DUH HVVHQWLDOO\ WKH VDPH GHAQLWLRQV DQG GRQ W FDX
The second difference that you may have noticed is in the way the dependencies

are injected in the function. At the time of writing this book, most, if not all of the

examples on the AngularJs website use the simple injection method. The dependencies

DUH MXVW SDUDPHWHUV LQ WKH IXQFWLRQ GHAQLWLRQV ODJLFDO
out which parameter is what by the name because the order does not matter. So the

preceding example could be rewritten as follows, and it would still function correctly:

I/l reversedangularJds home page JavaScript Projects example
functionListCtrl(Project, Scope) {
$scope.projects = Project.query();

}

This is not a feature of the JavaScript language, so it must have been added by
those smart Angular engineers. The magic behind this can be found in the injector.
The parameters of the function are scanned, and Angular extracts the names of the
parameters to be able to resolve them.

The problem with this approach is that when you deploy a wonderful new

DSSOLFDWLRQ WR SURGXFWLRQ LW ZLOO SUREDEO\ EH PLQLAHG
This will rename $scope and Project to something like a and b. Even Angular

will then be unable to resolve the dependencies. There are two ways to solve

this problem in Angular. You have seen one of them already, but we will explain

it further. You can wrap the function in an array and type the names of the

GHSHQGHQFLHV DV VWULQJVY EHIRUH WKH IXQFWLRQ GHAQLWLRQ
you supplied them as arguments to the function.

/I app/ controllers.js
tempApp.controller('CurrentCtrl', ['$scope’, 'reading’,
function ($scope, reading) {
$scope.temp = 17;

7KH FRUUHVSRQGLQJ RUGHU RI WKH VWULQJY DQG WKH IXQFWLRC
here. Also, the strings should appear before the function arguments.

Chapter 3

, I \RX SUHIHU WKH GHAQLWLRQ ZLWKRXW WKH DUUD\ QRWDWLRQ
Angular provides a way to inform the injector service of the dependencies you
are trying to inject.

varCurrentCtrl = function($scope, reading) {
$scope.temp = 17;

$scope.save = function() {
reading.save($scope.temp);

}
h

CurrentCtrl.$inject = ['$scope’, 'reading’];
tempApp.controller('CurrentCtrl’, CurrentCitrl);

$V \RX FDQ VHH WKH GHAQLWLRQ LV D ELW PRUH VL]IDEOH EXW }
LV KDSSHQLQJ KHUH 7KH LQMHFWS$hjdctl VprogeitRef &G E\ AOOLQJ WK
function with an array of the injected dependencies. This is where Angular will

then pick them up from.

To understand how Angular accomplishes all of this, you should read
M this excellent blog post by Alex RothenbergHere, he explains how all of
Q this works internally. The link to his blog is as follows:

http://www.alexrothenberg.com/2013/02/11/the-magic-
behind-angularjs-dependency-injection.html

Angular cleverly uses the toString() function of objects to be able to examine in
ZKLFK RUGHU WKH DUJXPHQWY ZHUH VSHFLAHG DQG ZKDW WKHLU

There is actually a third way to specify dependencies called ngmin,
which is not native to Angular. It lets you use the simple injection
PHWKRG DQG SDUVHV DQG WUDQVODWHYV LW WR DYRLG PLQLAFI
https://github.com/btford/ngmin
~ Consider the following code:
angular.module(‘whatever').controller('MyCtrl’,
function ($scope, $http) { ... });
ngmin will turn the preceding code into the following:

angular.module('whatever').controller('MyCtrl',
['$scope’, '$http’, function ($scope, $http) { ... J);

[33]

The Magic

Summary

In this chapter, we started by looking at how AngularJS is bootstrapped.

7KHQ ZH ORRNHG DW KRZ WKH LQMHFWRU ZRUNV DQG ZK\ PLQLAF
ruin your plans there. We also saw that there are ways to avoid these

problems by specifying dependencies differently.

Testing

During the course of this book we have spoken about testing a few times, but never
actually got into it. Now is the time to get our (testing) hands dirty. The reason we
reserved a section for testing is because it is the second most important part of the
development process, after your awesome code, of course.

Any modern software development process should include testing, and all

developers test their code by executing it to see if the correct behavior is delivered

by the code. For web developers this means looking at their work in a browser and

interacting with it. For many developers and even teams, testing is something that

FRPHV DW WKH HQG RI SURJUDPPLQJ ZKDW WKH\ PDGH :KLOH WK
projects up to a few hundred lines of code for a single developer, it will quickly

become a royal pain if there are more developers involved or the code base grows.

Test automation

Automated testing to the rescue! Automated testing will test your code without you

KDYLQJ WR JR WR WKH EURZVHU DQG FOLFN RQ WKLQJV DQG AOC
this for you, as if they were a real person visiting your application. The advantage is

WKDW RQFH \RX KDYH GHAQHG \RXU WHVWV WKH\ ZLOO EH DEOH
time, unlike your manual tests, where you have to take care to remember to test

every case every time. They are also able to run much faster than you could inside

a browser window. For those who haven't found the need for automated testing,

imagine having an Angular application behind an Ajax login form. As on every test

\RX ZLOO QHHG WR AOO RXW WKH ORJLQ IRUP WR WHVW WKH IXQF
very tedious later.

Testing

With the rise of open source software, the adoption of test driven development has

WDNHQ ALJKW :KHQ \RX ZDQW WR FRQWULEXWH WR D SURMHFW
be required to accompany your code with tests. Writing decent tests for your code

LQYROYHV WHVWLQJ WKH GHAQLWLRQ RI WKH IXQFWLRQDOLW\ <I
UHTXLUHPHQWY LQ D VSHFLDO WHVW ODQJXDJH DQG \RXU WHVW
something like the following:

/I pseudo code

describe "home page”
it "should show the 10 latest tweets"
expect("tweets").count to_equal(10)

The output of this test reads almost like a story: "Home page should show the 10
latest tweets", and "expect the tweets count to equal 10;" as you can see, this natural
language resembles the actual testing syntax.

One could even argue that if you'd write down your thoughts about how to construct

a piece of code, you would have a large part of your tests already written. The thing

that is missing for now is the negative testing. We are now expecting things to be there,

but it gets more interesting when we start testing for edge negatives. A scenario that

GHVFULEHV W\SLQJ D QDPH LQ DQ H PDLO LQSXW AHOG FRXOG ORR

/l pseudo code
describe "login form"
it "should require an email address"
element(‘#submit').click()
expect(input#email('name')).to_raise(validation_exception)

7KLV ZLOO WHVW LI DQ H[FHSWLRQ ZDV UDLVHG ZKHQ WKH LQSXW
unacceptable value. This test implies a rendered form in a web browser, but it

could just as easily have been testing a validation on a model class or a controller.

Writing your tests before you actually start coding will make you think about your

code in a way that you might not directly do so when you would have tested in the

browser afterwards. Test-driven development is built on the premise that when

you write your tests before you code, you will have thought about more edge cases

DQG FDXJKW PRUH DQRPDOLHV :KHQ WKH WHVWYV DUH ZULWWHQ
This is called the red. After you start coding to meet the requirements in your tests,

they will start turning green. This change from red to green creates eagerness in the

developer's mind, which is called The Flow in psychological terms.

[36]

Chapter 4

/HVW \RXU FRGH QRW WKH

This eagerness is also a danger, because testing is a means to an end, not a purpose!
You should only test your code and not the tools you embedded. An example is a

test that checks if a scope variable was correctly shown on the page using the curly
braces{{}} , shown as follows:

/I pseudo code for our tempApp project
describe('tempApp', function() {

it('should automatically redirect to /viewl when location hash/
fragment is empty', function() {
browser().navigateTo('../../app/index.html#/current’);
expect(element([ng-view] p:first’).text()).
toMatch(/17/);
i

This test checks if the Angular assignment $scope.temp = 17; was correctly
bound to the {{temp }} value in the template. Here, we are actually testing
the Angular framework and not the code we wrote. When are interested in
the state of the Angular tests, you should check out their Travis Cl state at
https://travis-ci.org/angular/angular.js

Testing the parts

Angular projects can be tested with two types of tests. To test your entire application
front to back, end-to-end tests should be used. To test the full stack of an Angular
application, the best tool for the job would be to use Protractor. To test individual
components, unit testing is the way to go. Before we get our hands dirty, we need to
set up the testing environment. Jasmine will be used in this book to run AngularJS
unit tests using a behavior-driven approach seen in many server-side testing
frameworks. There are certainly other options out there, such as Mocha or QUnit,
and they integrate quite nicely with AngularJS as well. The AngularJS integration

of Jasmine solves dependency resolving quite nicely, whereas, others leave more to
the developer. Jasmine is the default framework in the documentation and seems to
be the most widely adopted option for AngularJS projects. This means that you can
HDVLO\ AQG KHOS RQ WKH tEhbEiotariven Bpp@ach) Hnedrls that
the tests have some resemblance to human language. Have a look at the following
sample taken from the Jasmine website:

describe("Adding function", function() {
it("should add two arguments", function() {
expect(add(1,2)).toBe(3);
Dk
»;

|UDP H .

Testing

When the test is executed, it will read like human language: "Adding a function
should add two arguments”. The describe function is used to put a description

on your group of tests, or assertions, as they are sometimes called. This string has
no functionality. The it() function starts a new test, which is also named with a
string. Be sure to group and name your tests in such a way that when you have a few
hundred, they are still descriptive enough to know what they are about. The actual
test is as follows:

expect(add(1,2)).toBe(3);

We are comparing whether the function add(a,b) produces 3 when fed with 1 and

2 as arguments. This seems silly to test, and maybe it is, because you made thedd()

function to add numbers and return the result. But what about negative numbers,

RU ZKDW KDSSHQV LI , IHHG LW D VWULQJ RU D ELQDU\N QXPEHU" °
that as you are writing your tests and thinking of ways to "break” your code, you are

actually shaping the way your function should look.

Most developers enter the testing arena by creating some tests after the code has

been created, and most of the time, has even been stabilized. When you take the step

to start creating tests while you are contemplating your awesome new code, you will

AQG WKDW WKH FRGH \RX SURGXFH ZLOO EH EHWWHU IURP WKH V
the tests you created.

To get started with Jasmine is very easy. Just head over tdnttp://tryjasmine.com/

and try some tests to get used to the syntax. Another thing to familiarize yourself with
is the matchers.Matchers take the output of the expect() function and compare it to
something for success or failure.

After you have gotten familiar with the Jasmine syntax, head over to https://
github.com/pivotal/jasmine/downloads and download the latest version.

,QVLGH WKH =,3 AOH \RX ZLOO AQis Mirkdtbry.OrkePiotH AOHV LQ WKH
L QW H U H V WecRunnkiMithhl L Vbecause this will actually run the tests. There are

some example functions and accompanying tests to get you started. The source code

isin src and the tests are inspec :KHQ \RX H[WUDFW WKLV =,3 AOH VRPHZKHUH
local web root, you can navigate to the specRunner.html AOH DQG VHH WKH -DVPLQH
tests in action. Your screen should look something like the following:

[38]

Chapter 4

Jasmine

Player
should be able to play a Song

when song has been paused
should indicate that the song is currently paused
should be possible to resume

tells the current song if the user has made it a favorite

#resume
should throw an exception if song is already playing

Before we look at the tests, let's examine thespecRunner.html AOH WR AQG RXW KRZ
-DVPLQH JHWYV DOO WKH AOHV WRJHWKHU 7KH KHDGHU RI WKH A

<title>Jasmine Spec Runner<f/title>

<link rel="shortcut icon" type="image/png" href="lib/jasmine-1.3.1/
jasmine_favicon.png">

<link rel="stylesheet" type="text/css" href="lib/jasmine-1.3.1/
jasmine.css">

<script type="text/javascript" src="lib/jasmine-1.3.1/jasmine.js"></
script>

<script type="text/javascript" src="lib/jasmine-1.3.1/jasmine-html.
js"></script>

<l--include source files here... -->
<script type="text/javascript" src="src/Player.js"></script>
<script type="text/javascript" src="src/Song.js"></script>

<l-- include spec files here... -->
<script type="text/javascript" src="spec/SpecHelper.js"></script>
<script type="text/javascript" src="spec/PlayerSpec.js"></script>

[39]

Testing

$IWHU ORDGLQJ WKH -DVPLQH VW\OHVY DQG OLEUDULHYV WKH VRX
then the tests under/spec DOWKRXJK WKH RUGHU LQ ZKLFK WKH AOHV DUH
PDWWHU %\ WKH ZzD\ WKH WHUP VSHF FRPHV IURP EHKDYLRU V
what drives behavior-driven tests. The inline JavaScript in the following code shippet

LV WKH FRQAJXUDWLRQ RI -DVPLQH DQG WKH UHSRUWHU WKDW L\
The default is the HTML reporter inside the jasmine-hmtl.js AOH EXW WKHUH DUH
options available on the Web to produce output in other formats. At the bottom,

the Jasmine suite is bootstrapped.

The following snippet from the /spec/PlayerSpec.js AOH VKRZV XV DQ DFWXDO
EHKDYLRU VSHFLAFDWLRQ VR OHW V WDNH D ORRN

describe("Player", function() {
var player;
var song;

beforeEach(function() {
player = new Player();
song = new Song();

b

7KLV AOH VSHFLAHV WHaer§ H KuBcHdnRAASS).|1Batdi€ERch will
EH H[HFXWHG EHIRUH HYHU\ ®)0 DS, evalylestwill lave AlQ H G E\
instantiated player and song available, shown as follows:

it("should be able to play a Song", function() {

player.play(song);
expect(player.currentlyPlayingSong).toEqual(song);

/l[demonstrates use of custom matcher
expect(player).toBePlaying(song);
D

7KH AUVW WHVW VSHFLAHV WKH DELOLW\ WR SOD\ D VRQJ E\ H[SF
song to be the song that was asked to play. The last line inspec uses a custom

matcher. There is no magic here. ThetoBePlaying() DVVHUWLRQ KDV EHHQ GHAQHG

in the specHelper.js AOH

beforeEach(function() {
this.addMatchers({
toBePlaying: function(expectedSong) {
var player = this.actual;
return player.currentlyPlayingSong === expectedSong &&
player.isPlaying;

Chapter 4

}
M
b

As this beforeEach block has not been included in adescribe() block, it will
be executed before any Jasmine test. The value passed to the custom matcher is

this.actual . An explanation of how to add a custom failure message can be
found at https://github.com/pivotal/jasmine/wiki/Matchers#writing-new-
matchers .

Now let's change this to test the code that we have made so far. We will start by
FRQAJXULQJ -DVPLQH Sp&RRubhet Fttd O\ A@QHWKHH ZLOO QHHG WR OHW
Jasmine know about Angular and the code we have made:

/I test/SpecRunner.html

<link rel="stylesheet" type="text/css" href="lib/jasmine-1.3.1/
jasmine.css">

<script type="text/javascript" src="lib/jasmine-1.3.1/jasmine.
js"></script>

<script type="text/javascript" src="lib/jasmine-1.3.1/jasmine-
html.js"></script>

<!-- include angular specific files here... -->

<script type="text/javascript" src="lib/angular.js"></script>

<script type="text/javascript" src="lib/angular-mocks.js"></
script>

<!-- include source files here... -->

<script type="text/javascript" src="../app/js/app.js"></script>

<script type="text/javascript" src="../app/js/controllers.js"></
script>

<script type="text/javascript" src="../app/js/services.js"></
script>

<script type="text/javascript" src="../app/js/directives.js"></
script>

<script type="text/javascript" src="../app/js/filters.js"></
script>

'
|
\%

<!--include spec files here...
<script type="text/javascript" src="/test/spec/appl/js/filterSpec.
js"></script>

Testing

We started by adding a section for Angular that includes the Angular.js AOH

The next inclusion is angular-mocks.js 7KLV AOH FRQWDLQV DOO NLQGV RI IXQ
that help us, or even better, help our testing framework test our Angular code after

ZH VLPSO\ LQFOXGH DOO RXU DSSOLFDWLRQ FRGH 2XU AUVW DFV
AOH WKDW GRH Yil@romspé¢jsVW \HWF WKLY AOH ZH ZLOO WHVW WKH A
KDYH ZULWWHQ :H ZLOO FUsép&@Mpplis W Kirecioy BEnd @@d/the&s H W K H

following content:

describe("filters", function () {
beforeEach(
module(‘tempApp’)
)i

describe("minimum filter", function() {
it('should be available’, function () {
inject(function ($filter) {
expect($filter('minimum’)).toBeDefined();
i
i
i
D;

7KLV ZLOO SHUIRUP D VLPSOH WHVW WR VHH LI WKH AOWHU H[LV\
test is constructed, let's take a look at the output in the browser. When the Node.js

web server is running, the output can be viewed at http://localhost:8000/test/

SpecRunner.html

Jasmine

-

HistoryController
minimum filter
should be available

Chapter 4

Every time you refresh the browser, the tests are run again and the result is shown.

Now for the test code there are two descibe EORFNV WKH RXWHU RQH WHVWYV AO!
WKH LQQHU RQH VSHFLAHV WKH PLQLP X BefdxdBabhH BlockQ WKH RXWHU
the module for our application is loaded:

beforeEach(
module(‘tempApp")
);

This happens before any of the inner blocks that follow inside the outer block. Like in

RXU DSSOLFDWLRQ WKLV H[SRVHV DOO AOWHUV FRQWUROOHUV G
module. Inside the actual test, the $filter object is injected, which should contain all

WKH AOWHUV RI WKLV PRGXOH

it('should filter an array to be above a minimum value', function ()

{
inject(function ($filter) {
expect($filter('minimum')).toBeDefined();
D
D

7KLV VLPSOH AOWH UnmiXumVARKHEN L L IUMBEHYWHUHG LQVLGH WKH P
Of course this is not a real test, because we are actually testing the Angular
IUDPHZRUN /HW V UHIDFWRU DQG WHVW VRPH FRQGLWLRQV WR W

it('should filter an array to be above or equal to the default 15',
function () {

inject(function ($filter) {
var unfiltered = [
{ "date": "2013-04-01T17:01:22.634Z", "temp™: 8},
{ "date": "2013-04-02T17:01:22.634Z", "temp™: 13},
{ "date": "2013-04-03T17:01:22.634Z", "temp™: 15},
{ "date": "2013-04-04T17:01:22.634Z", "temp™: 11},
{ "date": "2013-04-05T17:01:22.634Z", "temp™: 15},
{ "date": "2013-04-06T17:01:22.634Z", "temp™: 17},
{ "date": "2013-04-07T17:01:22.634Z", "temp": 21}
I;
var filtered = $filter('minimum’)(unfiltered);
console.log(filtered)
expect(filtered.length).toBe(4);

i

i

Testing

This new test prepares an array with data from the history.json AOH WKDW ZDV XVHG

LQ WKH AUVW FKDSWHU ,W WKHQ UXQV WKH DUUD\ WKURXJK WKH
number of items are returned. A more thorough test would be to iterate over the

resulting array and check if there really aren't any values below 15. Feel free to play

with this example a bit to get the hang of it. The important thing to note here is that

ZH KDYH LVRODWHG WKH AOWHU IURP RXU WHPSODWH DQG FRQW
ZLWK D SUHGHAQHG LQSXW YDOXH DQG WHVW RXU H[SHFWDWLRQ

Jasmine

- .

filters
minimum filter
should be available

minimum filter
should filter an array to be above the default 15

This is just a simple example of unit testing with Angular. Next, we will do something
more advanced—test our historyController . The controller has one function and
one property. To test these, our test could look something like the following:

beforeEach(function () {
module(‘tempApp");
»;

beforeEach(inject(function ($rootScope, $controller, currentUser) {
scope = $rootScope.$new();
$controller('HistoryCtrl', {
$scope: scope
i
n);

describe(‘tempMin’, function () {
it('should be defined', function () {
expect(scope.tempMin).toBeDefined();
b
D

Chapter 4

This simple start of a test will fail, as shown in the following screenshot:

As seen before, we have loaded the moduletempApp . After which we instantiated
the controller, as stated in the documentation:

beforeEach(inject(function ($rootScope, $controller) {
scope = $rootScope.$new();
$controller('HistoryCtrl', {
$scope: scope
i
N

Testing

This is where it went wrong! The controller not only depends on the $scope variable,

but also on our reading service. Since the controller depends on it, we can feed

the controller a special version of this reading service that will supply static data.

7KH EHQHAW LV WKDW WKH RXWFRPH FDQ EH SUHGHAQHG DQG ZH
connection to run the test. The test will also run a lot faster. We will update the

controller test to instantiate a mock version of the reading service:

beforeEach(module(function ($provide) {
$provide.service(‘reading’, [function (Project) {
this.query = function () {
return [
{"date": "2013-04-01T17:01:22.634Z", "temp": 8},
{"date": "2013-04-02T17:01:22.634Z", "temp": 13},
{"date": "2013-04-03T17:01:22.634Z", "temp": 15},
{"date": "2013-04-04T17:01:22.634Z", "temp": 11}
I
h
1)
n);

The instantiation uses the $provide function of Angular and it just returns a static

version of some history data. We have injected this dependency so our controller

can function and the outcome is predictable. When we visit the SpecRunner.html

AOH DJDLQ \RX ZLOO VHH WKDW WKH WHVW ZLOO QRZ SDVV 7KH
something like the following:

Chapter 4

In these simple examples, the power of dependency injection really shows it's
strength. We would have had a hard time testing the controller without it. If you
want to see how the unit tests for other parts of the application are constructed,
have a look in the Git repository for this book <packpub git url>

The Karma test runner

7KH $QJXODU WHDP KDV PDGH D WHVW UXQQHU WKDW ZLOO ZDWF
\RXU WHVWYV ZKHQ QHHGHG VR \RX GRQ W KDYH WR UHIUHVK \RXI
your tests pass or not. It is a small inconvenience, but having it automated will

lower the barrier to writing tests. The Karma test runner runs your unit tests inside

real browsers and reports the results back to you. You can run several browsers in

parallel and verify that your "Angularized" JavaScript code actually runs in those

browsers. The setup is very easy when you have node, and thereby npm, installed.

Just run npm [CODE IN TEXT]install -g karma[END CODE IN TEXT] ina

command prompt window.

$IWHU .DUPD LV LQVWDOOHG ZH Q HddfBg WiRedtddyHdPMeH D QHZ AOH LQ
XQLW WHVWV ,Q WKH IROORZLQJ FRGH VQLSSHW \RX ZLOO AQG D
test suite:

/I Karma configuration
/I Generated on Fri Aug 16 2013 16:33:21 GMT+0200 (CEST)

module.exports = function (config) {
config.set({

// base path, that will be used to resolve files and exclude
basePath: ./,

/I frameworks to use
frameworks: ['jasmine’],

/I list of files / patterns to load in the browser
files: [
'..Itest/lib/angular.js',
'..Itest/lib/angular-mocks.js',

"..lapp/js/*.js',
'..Itest/specl/app/**/*.js'
1

/I list of files to exclude

Testing

exclude: [

1,

/I test results reporter to use

/I possible values: 'dots’, 'progress', 'junit’, 'growl’,
‘coverage’

reporters: ['progress’],

/I web server port
port: 9876,

/l enable / disable colors in the output (reporters and logs)
colors: true,

/' level of logging

/I possible values: config.LOG_DISABLE || config.LOG_ERROR ||
config.LOG_WARN || config.LOG_INFO || config.LOG_DEBUG

logLevel: config.LOG_INFO,

/I enable / disable watching file and executing tests whenever any
file changes
autoWatch: true,

/I Start these browsers, currently available:
/I - Chrome

/I - ChromeCanary

/I - Firefox

/I - Opera

/I - Safari (only Mac)

/I - PhantomJS

/I - IE (only Windows)

browsers: ['Chrome?],

/' If browser does not capture in given timeout [ms], kill it
captureTimeout: 60000,

/I Continuous Integration mode
/I if true, it capture browsers, run tests and exit

Chapter 4

singleRun: false,

preprocessors: {

}

Pk

h
7KH FRQAJ ZLOO ORDG WKH VBpgé¢RuA@ HM DVAWOHKHEZHDVPLQH
created before. There are someDGGLWLRQDO FRQAJXUDWLRQ SDUDPHWHUYV IR
Karma test runner that are explained in the comments of the preceding code

VQLSSHW $GGLWLRQDO LQIRUPDWLRQ RQ WKH FRQAJXUDWLRQ FI
projects homepage athttp://karma-runner.github.io

7KH VHFRQG WKLQJ WR GR LV FUHDWH D VFULSW WR UXQ .DUPD Z
This script will go in the /scripts folder and looks like the following:

#!/bin/bash
BASE_DIR="dirname $0°

echo "™

echo "Starting Testacular Server (https://github.com/karma-runner/
karma)"
echo ™"

karma start $BASE_DIR/../config/karma.conf.js $*

W MXVW SULQWYVY D VWDUWXS PHVVDJH DQG WKHQ VWDUWYV .DUPI
2Q :LQGRZV WKLV AOH MXVW Q HihG ¥éxtévistorEdAd Yddtgil G ZLWK WKH
the following:

@ECHO OFF

ECHO
ECHO Starting Testacular Server (https://github.com/karma-runner/
karma)
ECHO

node_modules/.bin/testacular start test/karma.conf.js

Testing

'KHQ ZH AUH XS eRedudiiy thi$ script, the output should look like
the following:

$V ORQJ DV \RX NHHS WKLY ZLQGRZ RSHQ .DUPD ZLOO NHHS ZDW
UHUXQQLQJ DOO WKH XQLW WHVWY 1RWLFH WKH WLPH LW WRRN
suite for the Angular framework itself takes less than a second to run. To keep

Karma running while you develop is very useful, because it will give you almost

instant feedback!

End-to-end testing

End-to-end testing should actually be the start of your test-driven development cycle

when you adhere to the BDD standard. While behavior-driven development (BDD)

LV PXFK PRUH WKDQ MXVW WHVWLQJ RQH RI WKH SLOODUV LV WKL
for a behavior at the highest possible level. This test will obviously fail if the parts

underneath aren't ready yet. ltwillalow D ZHOO GHAQHG EHKDYLRU DQG DOO WKH
parts that will power this feature will get their own special unit test. We have seen how

these unit tests are constructed and how dependency injection plays a role in there.

After all the underlying unit tests are made to pass, the end-to-end test should pass as

well. In the end, the end-to-end tests should test the entire stack including all the code

tested by the unit tests.

The following is a quote from an article by Dan North on BDD:
http://dannorth.net/introducing-bdd/ :

$W AUVW WKH IUDJPHQWY DUH LPSOHPHQWHG XVLQJ PRFNV W
LQ FUHGLW RU D FDUG WR EH YDOLG 7KHVH IRUP WKH VWDUW|
EHKDYLRU $V \RX LPSOHPHQW WKH DSSOLFDWLRQ WKH JLYHQ
WR XVH WKH DFWXDO FODVVHV \RX KDYH LPSOHPHQWHG VR W
FRPSOHWHG WKH\ KDYH EHFRPH SURSHU HQG WR HQG IXQFWL

[50]

Chapter 4

The end-to-end tests require us to have a running application server because

this type of testing will act like a "real user,"” clicking and interacting with your

application in other ways. We need to have a way to navigate pages and simulate

this user interaction. The tool for this job is Protractor—a brand new testing

framework based on Selenium and WebDriver. Here we will explain how to use

VRPH Rl WKH VSHFLAF DGGLWLRQV WKDW 3URWUDFWRU DGGV WR

Setting up the Protractor

This setup is similar tothe onewe GLG IRU .DUPD LW DOVR QHHGV D FRQAJXUDYV
AOH DQG D VWDUWXS VFULSW +RZHYHU WKH AUVW WKLQJ WR GR |
npm install protractor -g . This will make Protractor available for all of

\RXU SURMHFWY 7KH IROORZLQJ LV WKH FRQWHQW IRU WKRVH WZ

/I config/selenium-conf.js
/I protractor configuration file.
/I fully annotated config file can be found here:
/I https://github.com/angular/protractor/blob/master/referenceConf.js
exports.config = {
// The address of a running selenium server. If this is specified,
Il seleniumServerJar and seleniumPort will be ignored.
seleniumAddress: 'http://localhost:4444/wd/hub’,

/I A base URL for your application under test. Calls to protractor.
get()

Il with relative paths will be prepended with this.

baseUrl: 'http://localhost:8000',

/I Capabilities to be passed to the webdriver instance.
capabilities: {
‘browserName'": firefox'

2

Il Spec patterns are relative to the current working directly when
I/ protractor is called.
specs: ['../test/e2e/**/*.js'],

// Options to be passed to Jasmine-node.
jasmineNodeOpts: {
isVerbose: true,
showColors: true,
includeStackTrace: true
}
3
/I scripts/test-e2e.sh
#!/bin/bash

[51]

Testing

BASE_DIR="dirname $0°

echo ™

echo "Starting Protractor Server (https://github.com/angular/
protractor)”

echo "

protractor config/selenium-conf.js

Since Protractor runs on top of Selenium, there are many different setups and
options available that go too far for our book. This setup will read end-to-end tests
from the /test/e2e/ folder and execute them inside a Firefox browser. The tests
can be started by simply executing /scripts/test-e2e.sh

The difference is that this time as well the application server has to be started along
with the Selenium server. Starting the server is, the same as before, to be able to
access the application in a browser:

node scripts/web-server.js

,QVWDOOLQJ 6HOHQLXP LV DV HDV\ DV GRZQORDGLQJ WKH DSSUR
https://code.google.com/p/selenium/downloads/list . Since itis a Java

executable, you do need to have Java installed on your machine. Most Mac and

/[LOQX[VAIVWHPYVY ZLOO KDYH LW E\ GHIDXOW EXW DQ\ SODWIRUP FLC
Java by visiting http://ww.java.com/en/download/index.jsp

2QFH DOO LV LQ SODFH H[HF XaVaHjalWpaiH to Seenid® H E\ W\SLQJ M

server file> 7KLV ZLOO VWDUW WKH 6HOHQLXP VHUYHU ZKLFK FDQ
this http://localhost:4444/wd/hub link in your browser. You should see

something like the following if all is well:

Chapter 4

1RZ WKDW ZH DUH DOO VHW XS ZH FDQ VWDUW FRGLQJ RXU AUVW
QHZ AO H tdsp2aV Kfblder:

/I Itest/e2elapp.js
'use strict’;

describe(‘tempApp', function() {
var ptor;

describe(‘current page', function() {
ptor = protractor.getinstance();

beforeEach(function() {
ptor.get(‘/index.html");
b

it('should find an element by binding', function() {
var binding = ptor.findElement(protractor.By.binding(‘{{ temp
BY)E
expect(binding.getText()).toContain(17);
b
Pk
D

The syntax is similar to the unit tests we created with Jasmine, so it follows the same
patterns. First, describe what you are testing and then write your test in the it()
function. This test just tests to see if17 is present in the text node that contains the
{temp }} binding. If you started both, the NodeJS server and the Selenium server,
you can run the tests. The output of this test should be similar to the following:

[53]

Testing

Even the output looks like the Karma output! More importantly, the browser opened
your application and "saw" in the page that string 17 was present.

In the next test we will try to have our test runner change the input box to something

HOVH DQG WKHQ WHVW WKH RXWFRPH 7KH VHFRQG WHVW LV DSS

current describe page function:

it('should reflect a change in the input field', function () {

var binding = ptor.findElement(protractor.By.binding('{{ temp
1)

expect(binding.getText()).toContain(17);

ptor.findElement(protractor.By.tagName('input’)).clear();
ptor.findElement(protractor.By.tagName('input')).sendKeys('20");

var binding = ptor.findElement(protractor.By.binding('{{ temp
1)
expect(binding.getText()).toContain(20);
)

First we check if {{ temp }} contains 17 before we change it. Then thetemp input
LV FOHDUHG DQG AO OH @0ZAftéhiartlé KhdreQd-bZh¥dR © Xee if the
value has changed to20. When you run the test, you will see all of this happening on
the screen. Also, you will notice that these tests take a lot longer than the unit tests.
A few simple tests only take a few seconds on a fast system to complete. That's one
of the reasons you want to run these tests manually, unlike the Karma unit tests.
Ideally, you'd run these and the unit tests on different browsers on a continuous
integration system. This is, however, outside the scope of this book.

To get the most out of Angular e2e testing with Protractor, you are
M strongly encouraged to refer to https://github.com/angular/
Q protractor and all the linked documentation in that page. At the
time of writing this book, Protractor is still very much in development,
but the Angular team has already adopted the framework.

Summary

In this chapter we have covered some of the reasons behind testing after which we
dove right into the testing, starting with unit tests in Jasmine, and then automating

WKHP VR WKH\ DUH UH UXQ DIWHU HDFK AOH FKDQJH

IDVWO\ ZH

WHVWLQJ ZLWK WKH $QJXODU VSHFLAF SBURWUDFWRU WHVW IUDPI

Large Applications

Writing a large, single-page application using traditional methods that are based on

'20 PDQLSXODWLRQ KDV WXUQHG RXW WR EH GLIAFXOW WR PDQD.
have seen in this book, Angular brings a new paradigm to the table for creating more

maintainable applications by using dependency injection. Even when using Angular,

it is still entirely possible to create unmaintainable and untestable code. In this

chapter, we will look at the patterns that can be used with Angular to further ease

your work as a developer.

Organizing your application
Most newcomers to Angular start off by cloning the Angular seed project on

GitHub. This roughly resembles the setup that you have seen in this book so far
https://github.com/angular/angular-seed.git

This basic project contains most of the elements that we have discussed so far in

this book. There is some sample code that uses routes, controllers, service, directive,

DQG D AOWHU $00 Rl WKH FRGH KDV DFFRPSDQ\LQJ WHVWV DQG
with Karma and Jasmine. Although the Angular team themselves have titled the

UHSRVLWRU\ DV D EDVLF VNHOHWRQ PDQ\ SHRSOH AQG WKH VHW
applications that have lengths of up to several hundred lines of code. The project

layout on the GitHub page explains the different parts quite well:

app/ --> all of the files to be used in production

css/ --> css files

app.css --> default stylesheet

img/ --> image files

index.html --> app layout file (the main html template file
of the app)

index-async.html --> just like index.html, but loads js files
asynchronously

js/ --> javascript files

Large Applications

app.js --> application
controllers.js --> application controllers
directives.js --> application directives

filters.js --> custom angular filters
services.js --> custom angular services
lib/ --> angular and 3rd party javascript libraries
angular/
angular.js --> the latest angular js
angular.min.js --> the latest minified angular js
angular-*.js --> angular add-on modules
version.txt --> version number
partials/ --> angular view partials (partial html
templates)
partiall.html
partial2.html
config/karma.conf.js --> config file for running unit tests
with Karma
config/karma-e2e.conf.js --> config file for running e2e tests with
Karma
scripts/ --> handy shell/js/ruby scripts
e2e-test.sh --> runs end-to-end tests with Karma (*nix)
e2e-test.bat -->runs end-to-end tests with Karma (windows)
test.bat --> autotests unit tests with Karma (windows)
test.sh --> autotests unit tests with Karma (*nix)

web-server.js -->simple development webserver based on node.js

test/ --> test source files and libraries
e2e/ -->
runner.html --> end-to-end test runner (open in your browser
to run)
scenarios.js --> end-to-end specs
lib/
angular/ --> angular testing libraries
angular-mocks.js --> mocks that replace certain angular

services in tests
angular-scenario.js --> angular's scenario (end-to-end) test
runner library

version.txt --> version file
unit/ --> unit level specs/tests
controllersSpec.js --> specs for controllers
directivessSpec.js --> specs for directives
filtersSpec.js --> specs for filters
servicesSpec.js --> specs for services

[56]

Chapter 5

Thanks to Igor Minar for the annotated directory structure. This being a "seed"

application, it's tailored for simple projects. This setup puts all the Angular

DSSOLFDWLRQ FRGH LQ VLQJOH AOHV ZKLFK ZLOO ZRUN AQH IRU
projects. The repository comes with a complete test setup with end-to-end unit tests

to get you started. The scripts directory houses a simple NodeJS server script next

to the test startup scripts. Although, strictly speaking, you don't need a server to
VHUYH WKH VWDWLF AOHV WKLV PDNHV LW UHDOO\ HDV\ WR JHW

some browsers put on running scripts IURP WKH ORFDO AOHV\VWHP

This setup has its limitations. When your app grows, the number of controllers,
GLUHFWLYHV AOWHUV DQG VHUYLFHV ZLOO SUREDEO\ JURZ WRR

KDYH WR VHDUFK WKURXJK ODUJH AOHV IRU \RXU FRGH :KHQ \RX
\RX KDYH WR XVH \RXU HGLWRU V VHDUFK IXQFWLRQ WR AQG D V¢

AOH LW V WLPH WR UHRUJDQLI]H

Going a bit larger

The next step is to organize your application by separating all similar code.
For example, all controllerscanbe VHSDUDWHG LQWR VLQJOH AOHV XQGHU D V.

directory. It would look something like the following:

app/ --> all of the files to be used in production
js/ --> javascript files
app.js --> application

controllers/

main.js --> main application controller
subl.js --> another application controller
directives/

chart.js -->the chart directive
another.js --> another directive

filters/
translate.js --> a translation filter filters

services/
parse.js --> parse data backend service

Naturally, this setup will have to be mirrored in the test directory, so that things are
HDVLO\ ORFDWDEOH ,W VKRXOG VHUYH \RX TXLWH ZHOO XQWLO \

ELJ WKDW \RX FDQ W AQG ZKDW \RX UH ORRNLQJ IRU DQ\PRUH ,Q
you will see many directives. Grouping related functionality into a directory may
help organize things a little more.

Large Applications

7KH FKDQJLQJ AOHV\VWHP

<RX ZRXOG KDYH WR PDQXDOO\ FKDQJH AOHV WKDW DUH LQFOX
+70/ AOH WR VWD\ LQ V\QF ZLWK \RXU AOHV\VWHP FKDQJHV :KH
JavaScript application is served from within a framework such as Ruby on
M Rails, Symfony (PHP), or NodeJS using Brunch.io, organizing your app is
VLPSOLAHG FRQVLGHUDEO\ 7KH\ DQG RWKHUV|] SURYLGH WRRO
VHOHFW FRPSLOH DQG PLQ LThis\Wexnd thaOybivonyQ G|PR U H
FRQAJXUH WKLV RQFH DQG FKDQJHV LQ \RXU APHV DUH QRWLFH
served to the browser are updated.

Check out the following sites for reference: http://rubyonrails.
org/ , http://brunch.io/ , and http://symfony.com/

Organizing using dynamic teams

Organizing your code according to the type hierarchy doesn't help new developers

AQG WKH FRGH UHODWHG WR D FHUWDLQ IXQFWLRQ RU DSSOLFDV
reviewer would have to look through all four top level jss» GLUHFWRULHV WR AQG ZKDW
they are looking for.

So, when the project gets to a level where the team has to grow and will most likely
have a more dynamic nature, organizing according to functional area is a good
alternative. This is also where the Angular module system comes into play.

Using modules

Angular modules are a way to organize your code in a functional manner.
Modules can contain any kind of Angular code. They are injected into each
other to make the Angular code available. It makes sense to do this in a
functional manner because a group of functionalities such as charting functions
is not needed in areas where they are not shown.

,Q WKH AOHV\VWHP WKH UHVXOW RI RXU IXQFWLRQDO DSSURDFK

App/ all of the files to be used in production
js/ javascript files
app.js application
common/ common module

filters/
translation.js translation filter
directives/

[58]

Chapter 5

checkbox.js checkbox directive
services/
logging.js central application logging service
parse.js parse data backend service
config.js central configuration service
admin/ admin module
controller.js the main admin controller
sidebar/
controller.js sidebars controller
tree.js tree directive specific for sidebar
main/ main module
controller.js the main user facing application
controller
directives/
chart.js a directive for a specific chart widget
twitter.js a directive for a twitter widget

Then, the various modules can be easily injected in the following manner:

var App = angular.module('App’, [commonModule', ‘adminModule’,
‘mainModule)

There are different ways to bundle functionality into modules, but it makes sense to
have submodules independent of any other modules, so that they can be tested and
shared more easily.

Testing with module separation becomes easy because you only need to bootstrap

the module you are testing. This means you are sure there are no hidden dependencies,
such as some property attached to the application global variable. For instance,

testing your chart directive in the previous example would require you to just

write the following:

'use strict';

describe('chart’, function () {
var scope;

beforeEach(module('mainModule"));

describe("chart”, function () {

itg....
}

[59]

Large Applications

Organizing using directives

Directives have been mentioned a few times already in this chapter. So far, we have
used them to encapsulate JavaScript code which is not Angular aware, such as the
third-party charting library from the previous chapters. Another way to use directives
is to abstract pieces of functionality, so that their complexity is encapsulated inside the
directive. Even when we don't need the possibilities that are not available outside a
directive, such as DOM manipulation, code clarity and legibility can be served by this
kind of encapsulation. Directives can only be "used" and not injected, although the
module they belong to has to be injected.

Nesting controllers

An interesting topic, which is not covered in the documentation, is nested modules.

However, they offer a greatwayto RUJDQL]H FRGH

%HVLGHV WKDW WKH\ DOV

with the functional organization because all code is grouped in a layered structure
like the parts that the user sees on the screen. Nested controllers can be used at any
level of an Angular application and all the properties and methods of their parents

are available.

Al

Nested controllers copies the scope variables in the inheritance
chain. Updating a parent property in a child controller affects only
~ its own child level and the lower levels. If you want to update the
Q property at the top level, use a setter. Using the $scope.$parent
notation to update the property will work, but it makes unit testing
the subcontroller problematic.

With this setup, a page that is navigated using an Angular route will have one main
controller and several subcontrollers, which in turn can have more sub controllers.
7KH AOH VWUXFWXUH FRXOG ORRN VRPHWKLQJ OLNH WKH IROORZ

main/ main module
controller.js the main user facing application
controller
toptoolbar/
controller.js controls the top toolbar
leftsidebar/
controller.js controller for entire sidebar
navigator/
controller.js controller for the navigator
properties/
controller.js controller for the properties

[60]

Chapter 5

When testing nested controllers, it is very easy to stub scope variables of the parent
controllers so that they are available inside the sub controller. When you used a
setter to set a parent scope variable, it should also be stubbed in the test:

describe('nested controller', function() {

var $scope, ctrl;
it('should have a value', inject(function($rootScope, $controller)

{

$rootScope.myValue = 1;

$rootScope.setMyValue = function(val) {
$rootScope.myValue = val;

}

$scope = $rootScope.$new();

ctrl = $controller('nestedController’, {
$scope: $scope

B

expect($scope.myValue).toEqual(1);

b))}
b

More powerful nesting

While the previous approach with nested controllers is useful, it does have its
limitations. For instance, there is no natural way to open a page in your routing

in a certain state; we could have a list view in our main controller and a detail view
based on the user interaction. In the default AngularJS routing setup, you would
have to use query parameters to achieve this and then still re-render the client-side
view. The Ul-router project from the Angular-Ul team has a great solution for this
at https://github.com/angular-ui/ui-router

The following is taken from the readme.md A OH
Main Goal

7R HYROYH WKH FRQFHSW RI DQ $QJXODU-6 URXWH LQWR D PR
IRU PDQDJLQJ FRPSOH[DSSOLFDWLRQ 8, VWDWHYV

[61]

Large Applications

We won't even try to replace their excellent documentation, but it centers around
state instead of URL and makes it possible to access page a certain stataising a
URL. So, the state of a page becomes a part of the routing possibilities, and as such,
will allow you to step over the limitation of the default routing system. So, hop on
over to the GitHub page and have a look.

Application communication

Even though we have options to organize our application in different ways, the parts
still need to communicate with each other. Imagine a protected part of your application
has a feature implemented that a session times out when there is no user interaction.
This requires the user to log in again.

Events

The traditional way of handling this is to set up events and handlers to take of
this. This approach is very acceptable and can also be implemented in Angular.
Angular supports scope events out of the box using the scope.$broadcast
scope.$emit and scope.$on methods. $hroadcast is used to send an event
down the scope, and it is mostly used from the rootScope to notify listeners.
$emit sends events upwards so it is used to notify the rootScope. A listener is
G H A Q H G$aa lowary event.

In the example, the expired session would send an event up the scope chain and
the rootScope would catch that and initiate route change to the login page. This is
a familiar way for many JavaScript applications that do not use Angular.

Let the model speak

With Angular following a model-driven approach, there is an alternative.

For example, in a situation where a dataset QHHGV WR EH UHQGHUHG LQ D VSHFLAI
way based on its content. An example of this is a model describing a DOM

element that's being moved by the user by dragging inside a workspace:

/lpseudo code
{
id: "box1",
style: {
left: 10px,
top:10px
}
}

Chapter 5

In Angular, it makes sense to capture the dragging events and update the position in
the model so the renderer can update its position on the screen. When the element is
moving over the screen, we might need to show the actual coordinates of the object,
the left andtop CSS properties, in the sidebar. This can then easily be done by
binding scope values to thetop and left properties of the model and showing these
in the view template. This approach requires that the model should be separated
from the original controller and should be encapsulated inside a "model service."
This is done so that it can be injected in both the workspace and the sidebar. As the
model is updated by the JS drag events, the dependent scope variables will change
along with the models' values.

In contrast, we could KDYH MXVW XSGDWHG WKH '20 WR UHAHFW WKH SRV
but that would have left us unable to share or store the data in a consistent manner.

Summary

This chapter discussed the different ways to organize larger Angular applications,
from the Angular Seed repository, to more complex projects layouts. Also, the way
different parts of your application communicate was covered. This can be done using
inheritance, events, or simply by using the model. After reading this chapter, you now
have a larger set of tools to organize your application in a more structured way.

[63]

Symbols

$inject property 33
$provide function 46
$scope.save function 20
$scope.temp variable 20
<BODY>tag 10

A

add() function 38
Angular
about 29
SURJUDP24R¥
Angular e2e testing 54
Angular JS
downloading 5, 6, 7
Angular projects
testing 37
angular service 21, 23, 24
annotation 31
application communication
events 62
model-driven approach 62, 63
automated testing 35, 36

%

BackBoneJS 6
backend
wiring up 17-19
beforeEach block 43
behavior-driven approach 37
behavior-driven development (BDD) 50

C

chart directive
about 13

Index

location service 15

services, using 15
code

duplicating 19, 20

testing 37
controller

adding 8

nesting 60

D

delimiters 7
Dependency Injection
SOLID principles 24
Dependency inversion principle
(DIP) 25, 26
describe() block 41
DOMContentLoaded event 30
Download button 5
DRY (Don't Repeat Yourself) 20
dynamic teams organization
directives, using 60
modules, using 58, 59

E
end-to-end testing
about 50, 51
Protractor, setting up 51-54
events 62
expect() function 38
F
AOWHU
adding 12, 13

G
green 36

H

hashbangs (#!) 10
HistoryController 17
historyData property 11

injecting

ways 31-33
Interface segregation principle (ISP) 25
it() function 38, 53

J

Jasmine 37

JavaScript library
getting started 5

jQuery tool 6

K

Karma test runner 47, 49, 50
KnockoutJS 6

L

larger application
organizing 57, 58
Law of Demeter 26, 27
Liskov substitution principle (LSP) 24, 25
list
displaying 11
location service 15

M

Matchers 38
Morris.js
URL 14

N

nested modules 60
nesting 61

ng-app attribute 10
ng-repeat 11

O

Open/closed principle (OCP) 24, 25

P

Player() function 40

SURJUDP ARZ $QJXODU
about 30
application code, executing 30
diagram 30

Prototype tool
about 6, 37
setting up 51-54

R

red 36
routes 9, 10

S

save method 23

simple injection method 31

Single responsibility principle (SRP) 24, 25

SOLID principles
Dependency inversion principle (DIP) 25
Interface segregation principle (ISP) 25
Liskov substitution principle (LSP) 24
Open/closed principle (OCP) 24
Single responsibility principle (SRP) 24

T

tempChart directive 14
test driven development 36
testing 35

The Flow 36

toBePlaying() assertion 40
toString() function 33

U

use strict 9

[66]

open source

community experience distilled

PUBLISHING

Thank you for buying
Dependency Injection with AngularJS

About Packt Publishing

S3DFNW SURQRXQFHG SDFNHG GXEWHUVUKAG $MSO0YSGWPYKERRWN (IIHFWLYH
0\64/ 0D Q DJHiR Apgl\2004 and subsequently continued to specialize in publishing
KLJKO\ IRFXVHG ERRNV RQ VSHFLAF WHFKQRORJLHYVY DQG VROXWLRQV

Our books and publications share the experiences of your fellow IT professionals in adapting

and customizing today's systems, applications, and frameworks. Our solution based books

give you the knowledge and power to customize the software and technologies you're using

WR JHW WKH MRE GRQH 3DFNW ERRNV DUH PRUH VSHFLAF DQG OHVV JH
seen in the past. Our unique business model allows us to bring you more focused information,

giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals

should be sent to author@packtpub.com . If your book idea is still at an early stage and you

ZRXOG OLNH WR GLVFXVV LW AUVW EHIRUH ZULWLQJ D IRUPDO ERRN SUF
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

"PUBLISHING

open source

community experience distilled

Angular JS Directives
ISBN: 978-1-78328-033-9 Paperback: 110 pages

Learn how to craft dynamics directives to fuel your
single-page web applications using AngularJS

1. Learn how to build an AngularJS directive

2. Create extendable modules for plug-and-play
usability

3. Build apps that react in real-time to changes in
your data model

Mastering Web Application
Development with AngularJS
ISBN: 978-1-78216-182-0 Paperback: 372 pages

Build single-page web applications using the power
of AngularJS

1. Make the most out of AngularJS by
understanding the AngularJS philosophy and
applying it to real life development tasks

(I!THFWLYHO\ VWUXFWXUH ZULWH WHVW
deploy your application

3. Add security and optimization features to your
AngularJS applications

4. Harness the full power of AngularJS by
creating your own directives

Please check www.PacktPub.com for information on our titles

DQG

open source

community experience distilled

"PUBLISHING

([W -6 30XJLQ DQG ([WHQVLRQ
Development
ISBN: 978-1-78216-372-5 Paperback: 116 pages

A hands-on development of several Ext JS plugins
and extensions

1. Easy-to-follow examples on ExtJS plugins
and extensions

2. Step-by-step instructions on developing ExtJS
plugins and extensions

3. Provides a walkthrough of several useful ExtJS
libraries and communities

Social Data Visualization with
HTMLS5 and JavaScript
ISBN: 9781782166542 Paperback: 104 pages

Leverage the power of HTML5 and JavaScript to
build compelling visualizations of social data from
Twitter, Facebook, and more

1. Learn how to use JavaScript to create
compelling visualizations of social data

2. Use the d3 library to create impressive SVGs

3. Master OAuth and how to authenticate with
social media sites

Please check www.PacktPub.com for information on our titles

~StormR&G

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Learning to Fly
	Let's get going
	Adding a controller
	What about routes?
	Showing a list
	Adding a filter
	Chart directives
	Using services

	Summary

	Chapter 2: Better Code
	Wiring up the backend
	Duplicating code
	Angular service to the rescue
	The theory behind Dependency Injection
	Summary

	Chapter 3: The Magic
	Application flow
	Different ways of injecting
	Summary

	Chapter 4: Testing
	Test automation
	Test your code, not the framework
	Testing the parts
	The Karma test runner
	End-to-end testing
	Setting up Protractor

	Summary

	Chapter 5: Large Applications
	Organizing your application
	Going a bit larger

	Organizing using dynamic teams
	Using modules
	Organizing using directives

	Nesting controllers
	More powerful nesting
	Application communication
	Events
	Let the model speak

	Summary

